Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 9

* LR parsing with ambiguous grammars
* Error detection in LR parsing
* Some exercises on parsing

LL,SLR, LR, LALR Summary

* LL parse tables
— Nonterminals x terminals — productions
— Computed using FIRST/FOLLOW

* LR parsing tables computed using closure/goto

— LR states x terminals — shift/reduce actions
— LR states x nonterminals — goto state transitions

* A grammar 1s
— LL(1) 1f its LL(1) parse table has no conflicts
— SLR if its SLR parse table has no conflicts
— LALR if its LALR parse table has no conflicts
— LR(1) if 1ts LR (1) parse table has no conflicts

LL,SLR, LR, LALR Grammars

Dealing with Ambiguous Grammars

U

stack input

1.5 —E id + $ $0 id+id+id$
2.E—E+E 0 ”
3. —id > ..

! 53 ace SOE1+3E4 +id$

2 3 13

3 S2 ~ ~

4 r2 When shifting on +:

yields right associativity
- id+(id+id)

Shift/reduce conflict:
action[4,+] = shift 4

action[4,+] =reduce E - E+E

-

When reducing on +:
yields left associativity

(id+id)+id

4

Using Associativity and Precedence to
Resolve Conflicts

Left-associative operators: reduce

Right-associative operators: shift

Operator of higher precedence on stack: reduce

Operator of lower precedence on stack: shift

S —=E
E—E+E
E—E*E
E—id

U

stack input
$0 id*id+id$
$SOE1*3E5 +id$

U

U

reduce E = E* E

5

Error Detection in LR Parsing

* Canonical LR parser uses full LR(1) parse
tables and will never make a single reduction
before recognizing the error when a syntax
error occurs on the input

* SLR and LALR may still reduce when a
syntax error occurs on the input, but will never
shift the erroneous input symbol

Error Recovery in LR Parsing

e Panic mode

— Pop until state with a goto on a nonterminal A 1s found,

(where A represents a major programming construct), push
A

— Discard input symbols until one is found in the FOLLOW
set of A

* Phrase-level recovery
— Implement error routines for every error entry in table
* Error productions

— Pop until state has error production, then shift on stack

— Discard input until symbol is encountered that allows
parsing to continue

Exercises on Parsing

1. Contex-free Languages strictly include Regular
Language
— Prove it by showing that L ={a"b" [n >0 } is context-
free but not regular

2. Consider the grammar:
A - aB|BC
B> bB|e

C—>c
— Construct the LL(1) parsing table

— Show configurations of stack and input recognizing
strings bbc, abb

Exercises on Parsing

* Consider the grammar augmented with a new start
symbol S’ and production S’ - S:

Q) s >s

Q) s> AB

a) Construct the LR(0O) sets of items.
b) Construct the SLR parsing table from the LR(0) items.
c) Isthe grammar LR(0)? Is it SLR?

