Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 6

* From RE to DFA, directly
* Minimization of DFA’s

* Exercises on lexical analysis

From Regular Expression to DFA
Directly

* The “important states” of an NFA are those
with a non-¢ outgoing transition,
— if move({s}, a) # & for some a then s 1s an
important state

* The subset construction algorithm uses only
the important states when 1t determines
e-closure(move(T, a))

What are the “important states” in the
NFA built from Regular Expression?

start
€ ""*“1|P'ii*>CiD

start

a

Fi17s EEEE>‘l'::::::::::::::::::fi:@ib

start

Firp

From Regular Expression to DFA
Directly (Algorithm)
The only accepting state (via the Thompson
algorithm) 1s not important

Augment the regular expression r with a
special end symbol # to make accepting states
important: the new expression 1s r#

Construct a syntax tree for r#

Attach a unique integer to each node not
labeled by ¢

From Regular Expression to DFA
Directly: Syntax Tree of (a|b)*abb#

: @
concatenation

PN

()
closure / \
“star—nod\ ® \ 131

#
6
b t
5

% a \
alternation |) \
“or-node” \ | position
/ \ number
5 a 1; (for leafs =€)

1

From Regular Expression to DFA
Directly: Annotating the Tree

* Traverse the tree to construct functions nullable,
firstpos, lastpos, and followpos

* For a node n, let L(n) be the language generated by
the subtree with root n

* nullable(n): L(n) contains the empty string €

* firstpos(n): set of positions under n that can match the
first symbol of a string in L(n)

* lastpos(n): the set of positions under n that can match
the last symbol of a string in L(n)

* followpos(i): the set of positions that can follow
position i 1n any generated string

From Regular Expression to DFA
Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)
Leaf ¢ true %, %
Leaf i false {i} {i}
| nullable(c,) firstpos(c,) lastpos(c,)
/\ or U U
C, C, nullable(c,) firstpos(c,) lastpos(c,)
. nullable(c,) if nullable(c,) then | if nullable(c,) then
/A and firstpos(c,) U lastpos(c,) U
llable(c,) firstpos(c,) lastpos(c,)
“ ©2 nutanele; else firstpos(c,) else lastpos(c,)
%
| true firstpos(c,) lastpos(c,)

From Regular Expression to DFA
Annotating the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}

N

{1,2,3} @ {5} (6} # {6}

SN 1

{1,2,3} @ {4} {5} b {5}
5

nullable / \

{1,2,3} @ {3} {4}131{4}

{1,2}{',]5‘::{1,2} Gra

firstpos lastpos

{1,23 | {1,2}

PN

{1}?{1} {2}1;{2} 3

From Regular Expression to DFA
followpos on the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}
{19 ® {5} {6} 12{6}
{1,2,3} @ {4} {5} b {5}
nullable / \ S
{1,2,3} @ {3} {4}131{4}
/ \3a ; NODE n | followpos(n)
{1,2} %:{1,2} {3} 3{ } 1 1.2.3]
| 2 {1,2,3}
3 {4}
N 5 (6
6 0 o

{1}511{1} {2}1;{2}

From Regular Expression to DFA
Directly: followpos

for each node 7 in the tree do
if 1s a cat-node with left child ¢, and right child ¢, then
for each i in lastpos(c,) do
followpos(i) := followpos(i) U firstpos(c,)
end do
else if » 1s a star-node
for each i in lastpos(n) do
followpos(i) = followpos(i) U firstpos(n)
end do
end if
end do

10

From Regular Expression to DFA
Directly: Example

Node followpos

a 1 {1,2,3}

{1,2,3}

14}

b 2

a 3

b 4 {5}
b 5 {6}
6 -

From Regular Expression to DFA
Directly: The Algorithm

Sy :=firstpos(root) where root 1s the root of the syntax tree for (r)#
Dstates = {s,} and 1s unmarked
while there is an unmarked state 7 in Dstates do

mark T

for each input symbol ¢ € 2 do
let U be the union of followpos(p) for all positions p in T
such that the symbol at position p 1s a
if U 1s not empty and not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|T, a]l :=U
end do
end do

12

Minimizing the Number of States
of a DFA

b

) ok 'b G

b a a

* Given a DFA, let us show how to get a DFA
which accepts the same regular language with
a minimal number of states

13

Equivalent States: Example

Consider the accept states c and g. They are both sinks.
Q: Do we need both states?

14

Equivalent States: Example

A: No, they can be merged!

Q: Can any other states be merged because any subsequent
string suffixes produce identical results?

15

Equivalent States: Example

A: Yes, b and f. Notice that if you're in b or f then:

1. if string ends, reject in both cases

2. if next character is O, forever accept in both cases
3. if next characteris 1, forever reject in both cases

So merge b with f.

0

16

Equivalent States: Definition

Intuitively two states are equivalent if all subsequent
behavior from those states is the same. 0.1

DEF: Two statesgand g'ina DFA M =(Q, %, 0, q,, F) are
equivalent (or indistinguishable) if for all strings u € 2*,
the states on which u ends on when read from g and g’

are both accept, or both non-accept.

17

Finishing the Example

Q: Any other ways to simplify the
automaton?

18

Useless States

A: Get rid of d.

Getting rid of unreachable useless states
doesn't affect the accepted language.

19

Minimization Algorithm: Goals

DEF: An automaton is irreducible if

— it contains no useless states, and
— no two distinct states are equivalent.

The goal of the Minimization Algorithm is to create an
irreducible automata from an arbitrary one, accepting
the same language.

The minimization algorithm incrementally builds a
partition of the states of the given DFA:

|t starts with a partition separating just accepting/non
accepting states

* Next it splits an equivalence class if it contains two non
equivalent states

Minimization Algorithm.
(Partition Refinement) Code

DFA minimize(DFA (Q, S, d, g, F))
remove any state g unreachable from g,
Partition P={F, Q- F}
boolean Consistent = false
while (Consistent == false) Consistent = true
for(every Set S €P,chara €5, Set T &P)
// collect states of T that reach S using a
Set temp={g &T | d(g,a) €S}
if (tlemp =@ && temp !I=T)
Consistent = false
P=(P-T)U{temp, T-temp}
return defineMinimizor((Q, S, d, g, F), P)

Minimization Algorithm.

(Partition Refinement) Code
DFA defineMinimizor (DFA (Q, 2, o, q,, F), Partition P)
Set Q'=P
State g’ = the set in P which contains g,
F'={SEP |SCF}
for (eachSE P, a €X)

define 0'(S,a) = the set T & P which contains
the states 0'(S,a)

return (Q) 2, 6, q’, F')

Minimization Algorithm: Example

Show the result of applying the minimization

0,1

algorithm to this DFA

Proof of Minimal Automaton

Previous algorithm guaranteed to produce an
irreducible DFA. Why should that FA be the
smallest possible FA for its accepted
language?

Analogous question in calculus: Why should a
local minimum be a global minimum? Usually
not the case!

Proof of Minimal Automaton

THM (Myhill-Nerode): The minimization algorithm
produces the smallest possible automaton for its
accepted language.

Proof. Show that any irreducible automaton is the
smallest for its accepted language L:

We say that two strings u,v € 2* are indistinguishable
if for all strings x, ux&€l <& vxeEL

Notice that if u and v are distinguishable, their paths
from the start state must have different endpoints.

Proof of Minimal Automaton

Consequently, the number of states in any DFA for L
must be as great as the number of mutually
distinguishable strings for L.

But an irreducible DFA has the property that every

state gives rise to another mutually distinguishable
string!

Therefore, any other DFA must have at least as many
states as the irreducible DFA

Let’s see how the proof works on a previous example:

Proof of Minimal Automaton: Example

The “spanning tree of strings” {€,0,01,00} is a
ly distinguishable set (otherwise
ancy would occur and hence DFA

mutua
redunc

would
has =4

oe reducible). Any other DFA for L
states. 01

Exercises on Lexical Analysis

3.1.1 Divide the following C++ program into appropriate
lexemes:

float limitedSquare(x){float x;
/* returns x-squared, but never more than 100 */
return (x <= -10.0 || x >= 10.0) ? 100 : x*x;

}

Which lexemes should get associated lexical values?
What should those values be?

From RE to Automata and backwards

* We have seen:
— RE = NFA
— NFA = DFA [and obviously DFA = NFA]
— RE - DFA, directly
— DFA = minimal DFA

 What about NFA, DFA = RE? More difficult.

Three approaches (not presented):

* Dynamic Programming [Scott Section 2.4 on CD][Hopcroft,
Motwani, Ullman, Section 3.2.1]

* Incremental state elimination [HMU, Section 3.2.2]
* RE as fixpoint solution of system of language equations
[uses right-linear grammars for Regular Languages]

Exercises on Regular Expressions

3.3.2 Describe the languages denoted by the following regular
expressions:

b) ((e]a)b”)”

c) (alb)"a(a|b)(a|b)

3.3.5 Write regular definitions for the following languages:

b) All strings of lowercase letters in which the letters are in
ascending lexicographic order.

c) Comments, consisting of a string surrounded by /* and */,
without an intervening */, unless it is inside double-quotes (")

i) All strings of a's and b's that do not contain the subsequence
abb.

Exercises with Lex or Flex

e 3.5.2 Write a Lex program that copies a file,
replacing each non-empty sequence of white
spaces by a single blank.

* 3.5.3 Write a Lex program that copiesa C
program, replacing each instance of the
keyword £1loat by double.

Exercises on Finite Automata

e 3.6.2 Design finite automata for the following
languages (providing both the transition graph
and the transition table):

a) All strings of lowercase letters that contain the five
vowels in order.

d) All strings of digits with no repeated digits. Hint: Try
this problem first with a few digits, such as {O, 1, 2}.

f) All strings of a's and b's with an even number of a's
and an odd number of b's.

Exercises: from RE to DFA

3.7.3 Convert the following regular expressions to
deterministic finite automata, using the [McNaughton-
Yamada-]Thompson algorithm (3.23) and the subset
construction algorithm (3.20):

a) (a|b)”

b) (a"|b")

c) ((ela)|b")”

d) (a|b) "abb(a|b)”

Exercises: Minimizing DFA

* 3.9.3 Show that the RE

a) (alb)’

b) (a”|b")

c) ((ela)|b’)’
are equivalent by showing that their minimum
state DFA’s are isomorphic.

