Principles of Programming Languages

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
Prof. Andrea Corradini
Department of Computer Science, Pisa

Lesson 5

* Generation of Lexical Analyzers

Creating a Lexical Analyzer with Lex

and Flex
lex
source > lex.yy.cC
program
lex.1
lex.yy.c > a.out
input sequence
stream of tokens

Lex Specification

* A lex specification consists of three parts:
regular definitions, C declarations in ${ %}

o O
%%

translation rules
S o
OO

user-defined auxiliary procedures

e The translation rules are of the form:

p, 1 action, }
p, { action, }

p, 1 action, }

Regular Expressions in Lex

x match the character x
\ . match the character .
“string” match contents of string of characters
match any character except newline
~ match beginning of a line
$ match the end of a line
[xyz] match one character x, y, or z (use \ to escape —)
[*xyz] match any character except x, y, and z
[a-z] matchoneofato z
r* closure (match zero or more occurrences)
r+ positive closure (match one or more occurrences)
r? optional (match zero or one occurrence)
r,r, match r, then r, (concatenation)
ry|r, match r, or r, (union)
(r) grouping
r,\r, match r, when followed by r,
{d} match the regular expression defined by d

Example Lex Specification 1

Contains
% { the matching

Translation finclude <stdio.h> lexeme
rules \ . l

[0-9]1+ { printf(“%s\n”, yytext); }
N %\n] Invokes
main () — the lexical

} yylex () ; < analyzer

lex spec.1
gce lex.yy.c -11
./a.out < spec.l

Example Lex Specification 2

Translation

rules \

51

#include <stdio.h> Regular
int ch = 0, wd = 0, nl = 0; definition
%}

delim [\t]+

\n { ch++; wd++; nl++; }

~*{delim} { ch+=yyleng; }

{delim} { ch+=yyleng; wd++; }

. { ch++; }

main ()

{ yylex();

printf ("%$8d%8d%8d\n", nl, wd, ch);
}

Example Lex Specification 3

51

#include <stdio.h> Regular

: s} definitions

rules letter [A-Za-Z]
\\\\\N‘id {letter} ({letter} | {digit}) *

%%

{digit}+ { printf (“number: %s\n”, yytext); }
{id} { printf (“ident: %s\n”, yytext); }
{ printf (“other: %s\n”, yytext); }

o®
o®

main ()

{ yylex();
}

Example Lex Specification 4

%${ /* definitions of manifest constants */
#define LT (256)

)

delim [\t\n]

ws {delim}+

letter [A-Za-Zz] Return
digit [0-9]

id {letter} ({letter} | {digit})* t(ﬂierltC)
zgmber {digit}+(\.{digit}+)?(E[+\-]1?{digit}+)?2 parser
{ws} {1}

if {return IF;} TOken

then {return THEN;} attribute

else {return ELSE.

{id} {yylval = install id(); return ID;}

{number} {yylval = install num(return NUMBER; }

“< {yylval = LT; return RELOK;

“<=" {yylval = LE; return RELOP;

“= {yylval = EQ; return RELOP;}

“<> {yylval = NE; return RELOP;}

“> {yylval = GT; return RELOP;}

;::“ {yylval = GE; return RELOP;} B InStaH yytext as

int install_id() < identifier in symbol tabple

Design of a Lexical Analyzer Generator

* Translate regular expressions to NFA
* Translate NFA to an efficient DFA

~ Optional ~

Simulate NFA Simulate DFA
to recognize to recognize
tokens - tokens /9

Nondeterministic Finite Automata
* An NFA is a 5-tuple (S, 2, 0, s, F) where

S 1s a finite set of states

> 1s a finite set of symbols, the alphabet

0 is a mapping from § x X to a set of states
0:5x2 2> P(S)

so € S 18 the start state

F C § is the set of accepting (or final) states

10

Transition Graph

* An NFA can be diagrammatically represented

by a labeled directed graph called a transition
graph

$={0,1,2,3}
> ={a,b}

start)%g -@—>b >@ 0> 5,20

F={3}

11

Transition Table

* The mapping o of an NFA can be represented
In a transition table

Input Input
5(0,a) = {0,1} State | b
o(0,b)={0} __| 0 {0, 1} {0}
6(1,1)) - {2} 1 {2}
5(2,b) = {3} A o

12

The Language Defined by an NFA

An NFA accepts an input string x (over 2) if and only
if there 1s some path with edges labeled with symbols
from x 1n sequence from the start state to some
accepting state in the transition graph

A state transition from one state to another on the
path 1s called a move

The language defined by an NFA 1is the set of input
strings 1t accepts

What 1s the language accepted by the example NFA?
— (a|b)*abb

13

Design of a Lexical Analyzer Generator:
RE to NFA to DFA

Lex specification with NFA
regular expressions

pi {action, } action,
Py vaction, ; ‘ M

start
acﬂonz

p, 1action, } \

q action,,

l Subset construction

14

From Regular Expression to NFA
(Thompson’s Construction)

start
€ — Q=@

start

start
riry

€

e 15

An example: / \

RE -> Parse Tree -> NFA / AN i
/ \ |

b

AN
(a|b)*abb /'\
/l\

Combining the NFAs of a Set of
Regular Expressions

start ‘ a C
a {action, }
, start
abb { action, } ‘ —3@ 202020

a*b+ { action,} a 5
start
./ b é

Simulating the Combined NFA
Example 1

action,
7
start
0000 action,,
a b

X >,
@ b action,

a
> > none

N W =[O

action,

Must find the longest match:
Continue until no further moves are possible
When last state is accepting: execute actign

Simulating the Combined NFA
Example 2

action,
7
tart
— 0000 action2
a b

X >,
@ b action,

> b, b, 2 > none
0 2 0 action,,
1 8 8 action;
3
7

When two or more accepting states are reached, the
first action given in the Lex specification is executed

Deterministic Finite Automata

* A deterministic finite automaton 1s a special case of
an NFA

— No state has an s-transition

— For each state s and input symbol a there 1s at most one
edge labeled a leaving s

* Each entry in the transition table is a single state
— At most one path exists to accept a string

— Simulation algorithm is simple

20

start

Example DFA

A DFA that accepts (a |b)*abb

O——@—"—0

21

Conversion of an NFA into a DFA

* The subset construction algorithm converts an NFA
into a DFA using:
e-closure(s) = {s} U {r ‘ s —>. ... > I}
e-closure(T) = U o e-closure(s)
move(T, a) = {t | s— tand sE T}
* The algorithm produces:
Dstates 1s the set of states of the new DFA consisting
of sets of states of the NFA
Dtran 1s the transition table of the new DFA

22

e-closure and move Examples

e-closure({0}) = {0,1,3,7}
. a . move({0,1,3,7},a) ={2,4,7}
o @ e-closure({2,4,7}) ={2,4,7}
% move({2,4,7},a) = {7}
tart e-closure({7}) = {7}
—@-0-° >© >@>>@® move({7}b) = {8}

e-closure({8}) = {8}

\ i ? ’ move({8},a) =

a a b o a o none
0 2 7 8
1 4
3 7
7 Also used to simulate NFAs (!)

23

Simulating an NFA using
e-closure and move

S :=e-closure({s,})

Sprev = @

a = nextchar()

while S = & do
Sprev :: S
S := e-closure(move(S,a))
a := nextchar()

end do

if S, N F = then
execute action in S,
return “yes”

else return “no”

The Subset Construction Algorithm:
from a NFA to an equivalent DFA

* Initially, e-closure(s) 1s the only state in Dstates and it i1s unmarked

while there 1s an unmarked state T in Dstates do
mark T

for each input symbol ¢ € 2 do
U .= e-closure(move(T,a))
if U is not in Dstates then

add U as an unmarked state to Dstates

end if
Dtran|T,al .=U

end do

end do

25

Subset Construction Example 1

.

O Dstates

A={0,124,7}
B={1,234,6,78}
C={12456,7}
D={124,5,6,79}
E={1245,6,7,10} 26

Subset Construction Example 2

v
start

—@ >0 -0>-0>-0 .,

N

12>
ay

a b b
a b
./bé%

Dstates
A={0,1,3,7}
B={24,7}
C={8}
D={7}

E = {58}
F={638}

Minimizing the Number of States of a
DFA

b

/)

e

28

From Regular Expression to DFA
Directly

* The “important states” of an NFA are those
without an e-transition, that 1s 1f
move({s}, a) = & for some a then s is an
important state

* The subset construction algorithm uses only
the important states when 1t determines
e-closure(move(T, a))

29

What are the “important states” in the
NFA built from Regular Expression?

start
€ ""*“1|P'ii*>CiD

a start

Fi17s EEEE>‘l'::::::::::::::::::fi:@ib

start
Firy

€

e 30

From Regular Expression to DFA
Directly (Algorithm)
The only accepting state (via the Thompson
algorithm) 1s not important

Augment the regular expression r with a
special end symbol # to make accepting states
important: the new expression 1s r#

Construct a syntax tree for r#

Attach a unique integer to each node not
labeled by ¢

31

From Regular Expression to DFA
Directly: Syntax Tree of (a|b)*abb#

: @
concatenation

PN

()
closure / \
“star—nod\ ® \ 131

#
6
b t
5

% a \
alternation |) \
“or-node” \ | position
/ \ number
32 a 1; (for leafs =€)

1

From Regular Expression to DFA
Directly: Annotating the Tree

* Traverse the tree to construct functions nullable,
firstpos, lastpos, and followpos

* For a node n, let L(n) be the language generated by
the subtree with root n

* nullable(n): L(n) contains the empty string €

* firstpos(n): set of positions under n that can match the
first symbol of a string in L(n)

* lastpos(n): the set of positions under n that can match
the last symbol of a string in L(n)

* followpos(i): the set of positions that can follow
position i 1n the tree

33

From Regular Expression to DFA
Annotating the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}

N

{1,2,3} @ {5} (6} # {6}

SN 1

{1,2,3} @ {4} {5} b {5}
5

nullable / \

{1,2,3} @ {3} {4}131{4}

{1,2}{',]5‘::{1,2} Gra

firstpos lastpos

{1,23 | {1,2}

PN

(ayan {2} 13 {2} "

From Regular Expression to DFA
Directly: Annotating the Tree

Node n nullable(n) firstpos(n) lastpos(n)
Leaf ¢ true %, %
Leaf i false {i} {i}
| nullable(c,) firstpos(c,) lastpos(c,)
/\ or U U
C, C, nullable(c,) firstpos(c,) lastpos(c,)
. nullable(c,) if nullable(c,) then | if nullable(c,) then
/A and firstpos(c,) U lastpos(c,) U
llable(c,) firstpos(c,) lastpos(c,)
“ ©2 nutanele; else firstpos(c,) else lastpos(c,)
%
| true firstpos(c,) lastpos(c,)

39|

From Regular Expression to DFA
Directly: followpos

for each node 7 in the tree do
if 1s a cat-node with left child ¢, and right child ¢, then
for each i in lastpos(c,) do
followpos(i) := followpos(i) U firstpos(c,)
end do
else if » 1s a star-node
for each i in lastpos(n) do
followpos(i) = followpos(i) U firstpos(n)
end do
end if
end do

36

From Regular Expression to DFA
followpos on the Syntax Tree of (alb)*abb#

{1,2,3} @ {6}
{19 ® {5} {6} 12{6}
{1,2,3} @ {4} {5} b {5}
nullable / \ S
{1,2,3} @ {3} {4}131{4}
/ \3a ; NODE n | followpos(n)
{1,2} %:{1,2} {3} 3{ } 1 1.2.3]
| 2 {1,2,3}
3 {4}
N 5 (6
6 0 .

{1}511{1} {2}1;{2}

From Regular Expression to DFA
Directly: Algorithm

Sy :=firstpos(root) where root 1s the root of the syntax tree for (r)#
Dstates = {s,} and 1s unmarked
while there is an unmarked state 7 in Dstates do

mark T

for each input symbol ¢ € 2 do
let U be the union of followpos(p) for all positions p in T
such that the symbol at position p 1s a
if U 1s not empty and not in Dstates then
add U as an unmarked state to Dstates
end if
Dtran|T, a]l :=U
end do
end do

38

From Regular Expression to DFA
Directly: Example

Node followpos

1 a {1,2,3}
2 b {1,2,3}
3 a 4}
4 b (5}
5 b (6}
6 # i

