
603AA	 -‐	 Principles	 of	 Programming	
Languages	 [PLP-‐2014]	

Andrea	 Corradini	
Department	 of	 Computer	 Science,	 Pisa	

Academic	 Year	 2014/15	

Admins	

•  h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-‐14/	
•  9	 CFU/ECTS	 	 (3	 +	 6)	
•  Replaces	 previous	 PLP	 of	 12	 CFU	 [379AA]	
•  Students	 enrolled	 Pll	 AY	 2013/14	 have	 to	
integrate	 the	 course	 with	 a	 3	 CFU	 acPvity	
– To	 be	 agreed	 upon	 with	 me	

•  Office	 Hours?	 	
•  Please,	 fill	 in	 the	 sheet	 with	 required	 info	

2	

EvaluaPon	

•  2	 midterms	
– December	 18,	 2014,	 at	 16:00	
– March	 or	 May	 2014	

•  Wri_en	 proof	
•  Oral	 examinaPon	
•  Homeworks?	 Project?	 Seminars?	

3	

Course	 ObjecPves	
•  Understand	 the	 significance	 of	 the	 design	 of	 a	 programming	

language	 and	 its	 implementaPon	 in	 a	 compiler	 or	 interpreter	
•  Enhance	 the	 ability	 to	 learn	 new	 programming	 languages	
•  Understand	 how	 programs	 are	 parsed	 and	 translated	 by	 a	 compiler	
•  Be	 able	 to	 define	 LL(1),	 LR(1),	 and	 LALR(1)	 grammars	
•  Know	 how	 to	 use	 compiler	 construcPon	 tools,	 such	 as	 generators	 of	

scanners	 and	 parsers	
•  Be	 able,	 in	 principle,	 to	 implement	 significant	 parts	 of	 a	 compiler	
•  Improve	 the	 understanding	 of	 general	 programming	 concepts	 and	

the	 ability	 to	 choose	 among	 alternaPve	 ways	 to	 express	 things	 in	 a	
parPcular	 programming	 language	

•  Simulate	 useful	 features	 in	 languages	 that	 lack	 them	
•  …	

4	

Course	 Outline	 (temptaPve)	
•  Abstract	 Machines	 and	 their	 Languages	
•  Interpreta@on	 and	 Compila@on	
•  Structure	 of	 a	 Compiler	

–  Lexical	 Analysis	 and	 Lex/Flex	
–  Syntax	 Analysis	 and	 Yacc	
–  Syntax-‐Directed	 Transla@on	
–  Sta@c	 Seman@cs	 and	 Type	 Checking	
–  Intermediate	 Code	 Genera@on	

•  Programming	 language	 concepts	 and	 their	 semanPcs	
–  Names,	 scopes	 and	 bindings	
–  Control	 flow	
–  Data	 types	
–  Control	 abstracPon	
–  Data	 abstracPon	

•  Programming	 paradigms	
–  Logic	 programming	 	
–  ScripPng	 languages	
–  FuncPonal	 programming	
–  Object-‐Oriented	 programming	 	

5	

Textbooks	
•  [Sco"]	 Programming	 Language	 Pragma@cs	 	

by	 Michael	 L.	 Sco_,	 3rd	 ediPon	 	
	

•  [ALSU]	 Compilers:	 Principles,	 Techniques,	
and	 Tools	 	
by	 Alfred	 V.	 Aho,	 Monica	 S.	 Lam,	 Ravi	 Sethi,	
and	 Jeffrey	 D.	 Ullman,	 2nd	 ediPon	 	 	 	 	
	 	

•  [GM]	 Programming	 Languages:	 Principles	
and	 Paradigms	 	
by	 Maurizio	 Gabbrielli	 and	 Simone	 MarPni	 	

•  +	 other	 references	
6	

Credits	

•  Slides	 freely	 taken	 and	 elaborated	 from	 a	
number	 of	 sources:	
– Marco	 Bellia	 (DIP)	
– Gianluigi	 Ferrari	 (DIP)	
– Robert	 A.	 van	 Engelen	 	 (Florida	 State	 University)	
– Gholamreza	 Ghassem-‐Sani	 (Sharif	 University	 of	
Technology)	

7	

Abstract	 Machines	

Abstract	 Machine	 for	 a	 Language	 L	
•  Given	 a	 programming	 language	 L,	 an	 Abstract	 Machine	
ML	 for	 L	 is	 a	 collec'on	 of	 data	 structures	 and	 algorithms	
which	 can	 perform	 the	 storage	 and	 execu'on	 of	 programs	
wri6en	 in	 L	 	 	 	 	

•  An	 abstracPon	 of	 the	 concept	 of	 hardware	 machine	
•  Structure	 of	 an	 abstract	 machine:	

Programs	

	

Data	

Memory	 	

Operations and Data Structures for:	

•  Primitive Data processing	

•  Sequence control	

•  Data Transfer control	

•  Memory management	

Interpreter	

9	

General	 structure	 of	
the	 Interpreter	

Sequence	 control	

Data	 control	

OperaPons	

start	

stop	

Fetch	 next	 instrucPon	

Decode	

Fetch	 operands	

Choose	

Execute	 op1	 Execute	 op2	 Execute	 opn	 Execute	 HALT	 ...	

Store	 the	 result	 Data	 control	

10	

The	 Machine	 Language	 of	 an	 AM	

•  Given	 and	 Abstract	 machine	 M,	 the	 machine	 language	 LM	 of	 M	
–  includes	 all	 programs	 which	 can	 be	 executed	 by	 the	 interpreter	 of	 M	

•  Programs	 are	 parPcular	 data	 on	 which	 the	 interpreter	 can	 act	
•  The	 components	 of	 M	 correspond	 to	 components	 of	 LM,	 eg:	

–  PrimiPve	 data	 types	
–  Control	 structures	
–  Parameter	 passing	 and	 value	 return	
–  Memory	 management	

•  Every	 Abstract	 Machine	 has	 a	 unique	 Machine	 Language	
•  A	 programming	 language	 can	 have	 several	 Abstact	 Machines	

11	

An	 example:	 the	 Hardware	 Machine	 	 6 1 Abstract Machines

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

•  The	 language?	
•  The	 memory?	
•  The	 interpreter?	
•  OperaPons	 and	 Data	 Structures	 for:	

•  PrimiPve	 Data	 processing?	
•  Sequence	 control?	
•  Data	 Transfer	 control?	
•  Memory	 management?	 12	

ImplemenPng	 an	 Abstract	 Machine	
•  Each	 abstract	 machine	 can	 be	 implemented	 in	 hardware	 or	 in	

firmware,	 but	 if	 it	 is	 high-‐level	 this	 is	 not	 convenient	 in	 general	
•  An	 abstract	 machine	 M	 can	 be	 implemented	 over	 a	 host	

machine	 MO,	 which	 we	 assume	 is	 already	 implemented	
•  The	 components	 of	 M	 are	 realized	 using	 data	 structures	 and	

algorithms	 implemented	 in	 the	 machine	 language	 of	 MO	
•  Two	 main	 cases:	
–  The	 interpreter	 of	 M	 coincides	 with	 the	 interpreter	 of	 MO	

• M	 is	 an	 extension	 of	 MO	

•  other	 components	 of	 the	 machines	 can	 differ	
–  The	 interpreter	 of	 M	 is	 different	 from	 the	 interpreter	 of	 MO	

• M	 is	 interpreted	 over	 MO	
•  other	 components	 of	 the	 machines	 may	 coincide	

13	

Hierarchies	 of	 Abstract	 Machines	
•  ImplementaPon	 of	 an	 AM	 with	 another	 can	 be	
iterated,	 leading	 to	 a	 hierarchy	 (onion	 skin	 model)	 	

•  Example:	
22 1 Abstract Machines

Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.

14	

ImplemenPng	 a	 	
Programming	 Language	

•  L	 	 high	 level	 programming	 language	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

•  ML 	 abstract	 machine	 for	 L	
•  MO	 	 host	 machine	
•  Pure	 Interpreta@on	

–  ML	 is	 interpreted	 over	 MO	
–  Not	 very	 efficient,	 mainly	 because	 of	 the	 interpreter	 (fetch-‐decode	

phases)	

•  Pure	 Compila@on	
–  Programs	 wri_en	 in	 L	 are	 translated	 into	 equivalent	 programs	

wri_en	 in	 LO,	 the	 machine	 language	 of	 MO	
–  The	 translated	 programs	 can	 be	 executed	 directly	 on	 MO	 	

•  	 ML	 is	 not	 realized	 at	 all	
–  ExecuPon	 more	 efficient,	 but	 the	 produced	 code	 is	 larger	

•  Two	 limit	 cases	 that	 almost	 never	 exist	 in	 reality	
	 15	

Pure	 InterpretaPon	
•  Program	 P 	 in	 L	 as	 a	 parPal	 funcPon	 on	 D:	

•  Set	 of	 programs	 in	 L:	

	

•  The	 interpreter	 defines	 a	 funcPon	

1.2 Implementation of a Language 13

1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

16	

Pure	 [cross]	 CompilaPon	

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

A	 compiler	 from	 L	 to	 LO	 defines	 a	 funcPon	

such	 that	 if	
	
then	 for	 every	 Input	 we	 have	 	 	 	

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

17	

Compilers	 versus	 Interpreters	
•  Compilers	 efficiently	 fix	 decisions	 that	 can	 be	 taken	 at	 compile	

Pme	 to	 avoid	 to	 generate	 code	 that	 makes	 this	 decision	 at	 run	
Pme	
–  Type	 checking	 at	 compile	 Pme	 vs.	 runPme	
–  StaPc	 allocaPon	
–  StaPc	 linking	
–  Code	 opPmizaPon	

•  CompilaPon	 leads	 to	 be_er	 performance	 in	 general	
–  AllocaPon	 of	 variables	 without	 variable	 lookup	 at	 run	 Pme	
–  Aggressive	 code	 opPmizaPon	 to	 exploit	 hardware	 features	

•  InterpretaPon	 facilitates	 interacPve	 debugging	 and	 tesPng	
–  InterpretaPon	 leads	 to	 be_er	 diagnosPcs	 of	 a	 programming	
problem	

–  Procedures	 can	 be	 invoked	 from	 command	 line	 by	 a	 user	
–  Variable	 values	 can	 be	 inspected	 and	 modified	 by	 a	 user	

18	

CompilaPon	 +	 InterpretaPon	

•  All	 implementaPons	 of	 programming	 languages	
use	 both.	 At	 least:	
– CompilaPon	 (=	 translaPon)	 from	 external	 to	 internal	
representaPon	

–  InterpretaPon	 for	 I/O	 operaPons	 (runPme	 support)	
•  Can	 be	 modeled	 by	 idenPfying	 an	 Intermediate	
Abstract	 Machine	 MI	 with	 language	 LI	
– A	 program	 in	 L	 is	 compiled	 to	 a	 program	 in	 LI	
– The	 program	 in	 LI	 is	 executed	 by	 an	 interpreter	 for	 MI	

19	

CompilaPon	 +	 InterpretaPon	
with	 Intermediate	 Abstract	 Machine	

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and

•  The	 “pure”	 schemes	 as	 limit	 cases	
•  Let	 us	 sketch	 some	 typical	 implementaPon	 schemes…	

20	

Virtual	 Machines	 as	 Intermediate	
Abstract	 Machines	

•  Several	 language	 implementaPons	 adopt	 a	 compilaPon	
+	 interpretaPon	 schema,	 where	 the	 Intermediate	
Abstract	 Machine	 is	 called	 Virtual	 Machine	

•  Adopted	 by	 Pascal,	 Java,	 Smalltalk-‐80,	 C#,	 funcPonal	
and	 logic	 languages,	 and	 some	 scripPng	 languages	
–  Pascal	 compilers	 generate	 P-‐code	 that	 can	 be	 interpreted	
or	 compiled	 into	 object	 code	

–  Java	 compilers	 generate	 bytecode	 that	 is	 interpreted	 by	
the	 Java	 virtual	 machine	 (JVM)	

–  The	 JVM	 may	 translate	 bytecode	 into	 machine	 code	 by	
just-‐in-‐Pme	 (JIT)	 compilaPon	

21	

CompilaPon	 and	 ExecuPon	 on	 	
Virtual	 Machines	

•  Compiler	 generates	 intermediate	 program	
•  Virtual	 machine	 interprets	 the	 intermediate	
program	

•  Portability!	 Virtual	
Machine	

Compiler	
Source	

Program	

Intermediate	

Program	

Input	
 Output	

Run on VM	
Compile on X	

Run on X, Y, Z, …	

22	

Pure	 CompilaPon	 and	 StaPc	 Linking	

•  Adopted	 by	 the	 typical	 Fortran	 systems	
•  Library	 rouPnes	 are	 separately	 linked	
(merged)	 with	 the	 object	 code	 of	 the	 program	

Compiler	
Source	

Program	

Incomplete	

Object Code	

Linker	 Static Library���
Object Code	

_printf
_fget
_fscan
…

extern printf();

Binary	

Executable	

23	

CompilaPon,	 Assembly,	 and	 	
StaPc	 Linking	

•  Facilitates	 debugging	 of	 the	 compiler	

Compiler	
Source	

Program	

Assembly���
Program	

Linker	 Static Library���
Object Code	

Binary	

Executable	

Assembler	

_printf
_fget
_fscan
…

extern printf();

24	

CompilaPon,	 Assembly,	 and	 	
Dynamic	 Linking	

•  Dynamic	 libraries	 (DLL,	 .so,	 .dylib)	 are	 linked	 at	
run-‐Pme	 by	 the	 OS	 (via	 stubs	 in	 the	 executable)	

Compiler	
Source	

Program	

Assembly���
Program	

Incomplete	
Executable	

Input	

Output	

Assembler	

Shared Dynamic Libraries	

_printf, _fget, _fscan, …

extern printf();

25	

Preprocessing	

•  Most	 C	 and	 C++	 compilers	 use	 a	 preprocessor	
to	 import	 header	 files	 and	 expand	 macros	

Compiler	

Preprocessor	
Source	

Program	

Modified Source���

Program	

Assembly or ���
Object Code	

#include <stdio.h>
#define N 99
…
for (i=0; i<N; i++)

for (i=0; i<99; i++)

26	

The	 CPP	 Preprocessor	

•  Early	 C++	 compilers	 used	 the	 CPP	 preprocessor	
to	 generated	 C	 code	 for	 compilaPon	

C	 Compiler	

C++	
Preprocessor	

C++	

Source	

Code	

C Source	

Code	

Assembly or ���
Object Code	

27	

Compilers	

The	 Analysis-‐Synthesis	 	
Model	 of	 CompilaPon	

•  Compilers	 translate	 programs	 wri_en	 in	 a	
language	 into	 equivalent	 programs	 in	 another	
language	 	

•  There	 are	 two	 parts	 to	 compilaPon:	
– Analysis	 determines	 the	 operaPons	 implied	 by	 the	
source	 program	 which	 are	 recorded	 in	 a	 tree	
structure	

– Synthesis	 takes	 the	 tree	 structure	 and	 translates	
the	 operaPons	 therein	 into	 the	 target	 program	

29	

Other	 Tools	 that	 Use	 the	 Analysis-‐
Synthesis	 Model	

•  Editors	 (syntax	 highlighPng)	
•  Pre_y	 printers	 (e.g.	 Doxygen)	
•  StaPc	 checkers	 (e.g.	 Lint	 and	 Splint)	
•  Interpreters	
•  Text	 forma_ers	 (e.g.	 TeX	 and	 LaTeX)	
•  Silicon	 compilers	 (e.g.	 VHDL)	
•  Query	 interpreters/compilers	 (Databases)	
Several	 compilaPon	 techniques	 are	 used	 in	
other	 kinds	 of	 systems	

30	

CompilaPon	 Phases	 and	 Passes	
•  CompilaPon	 of	 a	 program	 proceeds	 through	 a	
fixed	 series	 of	 phases	

•  A	 pass	 is	 one	 phase	 or	 a	 sequence	 of	 phases	 that	
starts	 from	 a	 representaPon	 of	 the	 program	 and	
produces	 another	 representaPon	 of	 it	

•  Passes	 can	 be	 serialized,	 phases	 not	 necessarily	
–  Pascal,	 FORTRAN,	 C	 languages	 designed	 for	 one-‐pass	
compilaPon,	 which	 explains	 the	 need	 for	 funcPon	
prototypes	

–  Single-‐pass	 compilers	 need	 less	 memory	 to	 operate	
–  Java	 and	 ADA	 are	 mulP-‐pass	

31	

The	 Many	 Phases	 of	 a	 Compiler	
Source Program

Lexical analyzer 1

Syntax Analyzer 2

 Semantic Analyzer 3

Intermediate
Code Generator 4

Code Optimizer 5

Code Generator

Target Program

Symbol-table
Manager

Error Handler

 Analyses

Peephole Optimization 7
1, 2, 3, 4 : Front-End
5, 6, 7 : Back-End

6
 Syntheses

32	

