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Course	
  ObjecPves	
  
•  Understand	
  the	
  significance	
  of	
  the	
  design	
  of	
  a	
  programming	
  

language	
  and	
  its	
  implementaPon	
  in	
  a	
  compiler	
  or	
  interpreter	
  
•  Enhance	
  the	
  ability	
  to	
  learn	
  new	
  programming	
  languages	
  
•  Understand	
  how	
  programs	
  are	
  parsed	
  and	
  translated	
  by	
  a	
  compiler	
  
•  Be	
  able	
  to	
  define	
  LL(1),	
  LR(1),	
  and	
  LALR(1)	
  grammars	
  
•  Know	
  how	
  to	
  use	
  compiler	
  construcPon	
  tools,	
  such	
  as	
  generators	
  of	
  

scanners	
  and	
  parsers	
  
•  Be	
  able,	
  in	
  principle,	
  to	
  implement	
  significant	
  parts	
  of	
  a	
  compiler	
  
•  Improve	
  the	
  understanding	
  of	
  general	
  programming	
  concepts	
  and	
  

the	
  ability	
  to	
  choose	
  among	
  alternaPve	
  ways	
  to	
  express	
  things	
  in	
  a	
  
parPcular	
  programming	
  language	
  

•  Simulate	
  useful	
  features	
  in	
  languages	
  that	
  lack	
  them	
  
•  …	
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Course	
  Outline	
  (temptaPve)	
  
•  Abstract	
  Machines	
  and	
  their	
  Languages	
  
•  Interpreta@on	
  and	
  Compila@on	
  
•  Structure	
  of	
  a	
  Compiler	
  

–  Lexical	
  Analysis	
  and	
  Lex/Flex	
  
–  Syntax	
  Analysis	
  and	
  Yacc	
  
–  Syntax-­‐Directed	
  Transla@on	
  
–  Sta@c	
  Seman@cs	
  and	
  Type	
  Checking	
  
–  Intermediate	
  Code	
  Genera@on	
  

•  Programming	
  language	
  concepts	
  and	
  their	
  semanPcs	
  
–  Names,	
  scopes	
  and	
  bindings	
  
–  Control	
  flow	
  
–  Data	
  types	
  
–  Control	
  abstracPon	
  
–  Data	
  abstracPon	
  

•  Programming	
  paradigms	
  
–  Logic	
  programming	
  	
  
–  ScripPng	
  languages	
  
–  FuncPonal	
  programming	
  
–  Object-­‐Oriented	
  programming	
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  Jeffrey	
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  Ullman,	
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Abstract	
  Machines	
  



Abstract	
  Machine	
  for	
  a	
  Language	
  L	
  
•  Given	
  a	
  programming	
  language	
  L,	
  an	
  Abstract	
  Machine	
  
ML	
  for	
  L	
  is	
  a	
  collec'on	
  of	
  data	
  structures	
  and	
  algorithms	
  
which	
  can	
  perform	
  the	
  storage	
  and	
  execu'on	
  of	
  programs	
  
wri6en	
  in	
  L	
  	
  	
  	
  	
  

•  An	
  abstracPon	
  of	
  the	
  concept	
  of	
  hardware	
  machine	
  
•  Structure	
  of	
  an	
  abstract	
  machine:	
  

Programs	


	



Data	



Memory	
   	


Operations and Data Structures for:	


•  Primitive Data processing	


•  Sequence control	


•  Data Transfer control	


•  Memory management	



Interpreter	
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General	
  structure	
  of	
  
the	
  Interpreter	
  

Sequence	
  control	
  

Data	
  control	
  

OperaPons	
  

start	
  

stop	
  

Fetch	
  next	
  instrucPon	
  

Decode	
  

Fetch	
  operands	
  

Choose	
  

Execute	
  op1	
   Execute	
  op2	
   Execute	
  opn	
   Execute	
  HALT	
  ...	
  

Store	
  the	
  result	
  Data	
  control	
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The	
  Machine	
  Language	
  of	
  an	
  AM	
  

•  Given	
  and	
  Abstract	
  machine	
  M,	
  the	
  machine	
  language	
  LM	
  of	
  M	
  
–  includes	
  all	
  programs	
  which	
  can	
  be	
  executed	
  by	
  the	
  interpreter	
  of	
  M	
  

•  Programs	
  are	
  parPcular	
  data	
  on	
  which	
  the	
  interpreter	
  can	
  act	
  
•  The	
  components	
  of	
  M	
  correspond	
  to	
  components	
  of	
  LM,	
  eg:	
  

–  PrimiPve	
  data	
  types	
  
–  Control	
  structures	
  
–  Parameter	
  passing	
  and	
  value	
  return	
  
–  Memory	
  management	
  

•  Every	
  Abstract	
  Machine	
  has	
  a	
  unique	
  Machine	
  Language	
  
•  A	
  programming	
  language	
  can	
  have	
  several	
  Abstact	
  Machines	
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An	
  example:	
  the	
  Hardware	
  Machine	
  	
  6 1 Abstract Machines

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

•  The	
  language?	
  
•  The	
  memory?	
  
•  The	
  interpreter?	
  
•  OperaPons	
  and	
  Data	
  Structures	
  for:	
  

•  PrimiPve	
  Data	
  processing?	
  
•  Sequence	
  control?	
  
•  Data	
  Transfer	
  control?	
  
•  Memory	
  management?	
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ImplemenPng	
  an	
  Abstract	
  Machine	
  
•  Each	
  abstract	
  machine	
  can	
  be	
  implemented	
  in	
  hardware	
  or	
  in	
  

firmware,	
  but	
  if	
  it	
  is	
  high-­‐level	
  this	
  is	
  not	
  convenient	
  in	
  general	
  
•  An	
  abstract	
  machine	
  M	
  can	
  be	
  implemented	
  over	
  a	
  host	
  

machine	
  MO,	
  which	
  we	
  assume	
  is	
  already	
  implemented	
  
•  The	
  components	
  of	
  M	
  are	
  realized	
  using	
  data	
  structures	
  and	
  

algorithms	
  implemented	
  in	
  the	
  machine	
  language	
  of	
  MO	
  
•  Two	
  main	
  cases:	
  
–  The	
  interpreter	
  of	
  M	
  coincides	
  with	
  the	
  interpreter	
  of	
  MO	
  

• M	
  is	
  an	
  extension	
  of	
  MO	
  

•  other	
  components	
  of	
  the	
  machines	
  can	
  differ	
  
–  The	
  interpreter	
  of	
  M	
  is	
  different	
  from	
  the	
  interpreter	
  of	
  MO	
  

• M	
  is	
  interpreted	
  over	
  MO	
  
•  other	
  components	
  of	
  the	
  machines	
  may	
  coincide	
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Hierarchies	
  of	
  Abstract	
  Machines	
  
•  ImplementaPon	
  of	
  an	
  AM	
  with	
  another	
  can	
  be	
  
iterated,	
  leading	
  to	
  a	
  hierarchy	
  (onion	
  skin	
  model)	
  	
  

•  Example:	
  
22 1 Abstract Machines

Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.
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ImplemenPng	
  a	
  	
  
Programming	
  Language	
  

•  L	
   	
  high	
  level	
  programming	
  language	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

•  ML 	
  abstract	
  machine	
  for	
  L	
  
•  MO	
   	
  host	
  machine	
  
•  Pure	
  Interpreta@on	
  

–  ML	
  is	
  interpreted	
  over	
  MO	
  
–  Not	
  very	
  efficient,	
  mainly	
  because	
  of	
  the	
  interpreter	
  (fetch-­‐decode	
  

phases)	
  

•  Pure	
  Compila@on	
  
–  Programs	
  wri_en	
  in	
  L	
  are	
  translated	
  into	
  equivalent	
  programs	
  

wri_en	
  in	
  LO,	
  the	
  machine	
  language	
  of	
  MO	
  
–  The	
  translated	
  programs	
  can	
  be	
  executed	
  directly	
  on	
  MO	
  	
  

•  	
  ML	
  is	
  not	
  realized	
  at	
  all	
  
–  ExecuPon	
  more	
  efficient,	
  but	
  the	
  produced	
  code	
  is	
  larger	
  

•  Two	
  limit	
  cases	
  that	
  almost	
  never	
  exist	
  in	
  reality	
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Pure	
  InterpretaPon	
  
•  Program	
  P 	
  in	
  L	
  as	
  a	
  parPal	
  funcPon	
  on	
  D:	
  

•  Set	
  of	
  programs	
  in	
  L:	
  

	
  

•  The	
  interpreter	
  defines	
  a	
  funcPon	
  

1.2 Implementation of a Language 13

1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L ) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L ) on input
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because the code corresponding to an instruction of L is executed, not output, by
the interpreter.
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chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.
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shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L ) on input
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Pure	
  [cross]	
  CompilaPon	
  

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L ) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

A	
  compiler	
  from	
  L	
  to	
  LO	
  defines	
  a	
  funcPon	
  

such	
  that	
  if	
  
	
  
then	
  for	
  every	
  Input	
  we	
  have	
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the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.
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Compilers	
  versus	
  Interpreters	
  
•  Compilers	
  efficiently	
  fix	
  decisions	
  that	
  can	
  be	
  taken	
  at	
  compile	
  

Pme	
  to	
  avoid	
  to	
  generate	
  code	
  that	
  makes	
  this	
  decision	
  at	
  run	
  
Pme	
  
–  Type	
  checking	
  at	
  compile	
  Pme	
  vs.	
  runPme	
  
–  StaPc	
  allocaPon	
  
–  StaPc	
  linking	
  
–  Code	
  opPmizaPon	
  

•  CompilaPon	
  leads	
  to	
  be_er	
  performance	
  in	
  general	
  
–  AllocaPon	
  of	
  variables	
  without	
  variable	
  lookup	
  at	
  run	
  Pme	
  
–  Aggressive	
  code	
  opPmizaPon	
  to	
  exploit	
  hardware	
  features	
  

•  InterpretaPon	
  facilitates	
  interacPve	
  debugging	
  and	
  tesPng	
  
–  InterpretaPon	
  leads	
  to	
  be_er	
  diagnosPcs	
  of	
  a	
  programming	
  
problem	
  

–  Procedures	
  can	
  be	
  invoked	
  from	
  command	
  line	
  by	
  a	
  user	
  
–  Variable	
  values	
  can	
  be	
  inspected	
  and	
  modified	
  by	
  a	
  user	
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CompilaPon	
  +	
  InterpretaPon	
  

•  All	
  implementaPons	
  of	
  programming	
  languages	
  
use	
  both.	
  At	
  least:	
  
– CompilaPon	
  (=	
  translaPon)	
  from	
  external	
  to	
  internal	
  
representaPon	
  

–  InterpretaPon	
  for	
  I/O	
  operaPons	
  (runPme	
  support)	
  
•  Can	
  be	
  modeled	
  by	
  idenPfying	
  an	
  Intermediate	
  
Abstract	
  Machine	
  MI	
  with	
  language	
  LI	
  
– A	
  program	
  in	
  L	
  is	
  compiled	
  to	
  a	
  program	
  in	
  LI	
  
– The	
  program	
  in	
  LI	
  is	
  executed	
  by	
  an	
  interpreter	
  for	
  MI	
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CompilaPon	
  +	
  InterpretaPon	
  
with	
  Intermediate	
  Abstract	
  Machine	
  

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and

•  The	
  “pure”	
  schemes	
  as	
  limit	
  cases	
  
•  Let	
  us	
  sketch	
  some	
  typical	
  implementaPon	
  schemes…	
  

20	
  



Virtual	
  Machines	
  as	
  Intermediate	
  
Abstract	
  Machines	
  

•  Several	
  language	
  implementaPons	
  adopt	
  a	
  compilaPon	
  
+	
  interpretaPon	
  schema,	
  where	
  the	
  Intermediate	
  
Abstract	
  Machine	
  is	
  called	
  Virtual	
  Machine	
  

•  Adopted	
  by	
  Pascal,	
  Java,	
  Smalltalk-­‐80,	
  C#,	
  funcPonal	
  
and	
  logic	
  languages,	
  and	
  some	
  scripPng	
  languages	
  
–  Pascal	
  compilers	
  generate	
  P-­‐code	
  that	
  can	
  be	
  interpreted	
  
or	
  compiled	
  into	
  object	
  code	
  

–  Java	
  compilers	
  generate	
  bytecode	
  that	
  is	
  interpreted	
  by	
  
the	
  Java	
  virtual	
  machine	
  (JVM)	
  

–  The	
  JVM	
  may	
  translate	
  bytecode	
  into	
  machine	
  code	
  by	
  
just-­‐in-­‐Pme	
  (JIT)	
  compilaPon	
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CompilaPon	
  and	
  ExecuPon	
  on	
  	
  
Virtual	
  Machines	
  

•  Compiler	
  generates	
  intermediate	
  program	
  
•  Virtual	
  machine	
  interprets	
  the	
  intermediate	
  
program	
  

•  Portability!	
   Virtual	
  
Machine	
  

Compiler	
  
Source	



Program	


Intermediate	



Program	



Input	

 Output	



Run on VM	

Compile on X	



Run on X, Y, Z, …	
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Pure	
  CompilaPon	
  and	
  StaPc	
  Linking	
  

•  Adopted	
  by	
  the	
  typical	
  Fortran	
  systems	
  
•  Library	
  rouPnes	
  are	
  separately	
  linked	
  
(merged)	
  with	
  the	
  object	
  code	
  of	
  the	
  program	
  

Compiler	
  
Source	



Program	


Incomplete	



Object Code	



Linker	
  Static Library���
Object Code	



_printf 
_fget 
_fscan 
… 

extern printf(); 

Binary	


Executable	
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CompilaPon,	
  Assembly,	
  and	
  	
  
StaPc	
  Linking	
  

•  Facilitates	
  debugging	
  of	
  the	
  compiler	
  

Compiler	
  
Source	



Program	


Assembly���
Program	



Linker	
  Static Library���
Object Code	



Binary	


Executable	



Assembler	
  

_printf 
_fget 
_fscan 
… 

extern printf(); 

24	
  



CompilaPon,	
  Assembly,	
  and	
  	
  
Dynamic	
  Linking	
  

•  Dynamic	
  libraries	
  (DLL,	
  .so,	
  .dylib)	
  are	
  linked	
  at	
  
run-­‐Pme	
  by	
  the	
  OS	
  (via	
  stubs	
  in	
  the	
  executable)	
  

Compiler	
  
Source	



Program	


Assembly���
Program	



Incomplete	
  
Executable	
  

Input	


Output	



Assembler	
  

Shared Dynamic Libraries	


_printf, _fget, _fscan, … 

extern printf(); 
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Preprocessing	
  

•  Most	
  C	
  and	
  C++	
  compilers	
  use	
  a	
  preprocessor	
  
to	
  import	
  header	
  files	
  and	
  expand	
  macros	
  

Compiler	
  

Preprocessor	
  
Source	



Program	


Modified Source���

Program	



Assembly or ���
Object Code	



#include <stdio.h> 
#define N 99 
… 
for (i=0; i<N; i++) 

for (i=0; i<99; i++) 
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The	
  CPP	
  Preprocessor	
  

•  Early	
  C++	
  compilers	
  used	
  the	
  CPP	
  preprocessor	
  
to	
  generated	
  C	
  code	
  for	
  compilaPon	
  

C	
  Compiler	
  

C++	
  
Preprocessor	
  

C++	


Source	


Code	



C Source	


Code	



Assembly or ���
Object Code	
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Compilers	
  



The	
  Analysis-­‐Synthesis	
  	
  
Model	
  of	
  CompilaPon	
  

•  Compilers	
  translate	
  programs	
  wri_en	
  in	
  a	
  
language	
  into	
  equivalent	
  programs	
  in	
  another	
  
language	
  	
  

•  There	
  are	
  two	
  parts	
  to	
  compilaPon:	
  
– Analysis	
  determines	
  the	
  operaPons	
  implied	
  by	
  the	
  
source	
  program	
  which	
  are	
  recorded	
  in	
  a	
  tree	
  
structure	
  

– Synthesis	
  takes	
  the	
  tree	
  structure	
  and	
  translates	
  
the	
  operaPons	
  therein	
  into	
  the	
  target	
  program	
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Other	
  Tools	
  that	
  Use	
  the	
  Analysis-­‐
Synthesis	
  Model	
  

•  Editors	
  (syntax	
  highlighPng)	
  
•  Pre_y	
  printers	
  (e.g.	
  Doxygen)	
  
•  StaPc	
  checkers	
  (e.g.	
  Lint	
  and	
  Splint)	
  
•  Interpreters	
  
•  Text	
  forma_ers	
  (e.g.	
  TeX	
  and	
  LaTeX)	
  
•  Silicon	
  compilers	
  (e.g.	
  VHDL)	
  
•  Query	
  interpreters/compilers	
  (Databases)	
  
Several	
  compilaPon	
  techniques	
  are	
  used	
  in	
  
other	
  kinds	
  of	
  systems	
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CompilaPon	
  Phases	
  and	
  Passes	
  
•  CompilaPon	
  of	
  a	
  program	
  proceeds	
  through	
  a	
  
fixed	
  series	
  of	
  phases	
  

•  A	
  pass	
  is	
  one	
  phase	
  or	
  a	
  sequence	
  of	
  phases	
  that	
  
starts	
  from	
  a	
  representaPon	
  of	
  the	
  program	
  and	
  
produces	
  another	
  representaPon	
  of	
  it	
  

•  Passes	
  can	
  be	
  serialized,	
  phases	
  not	
  necessarily	
  
–  Pascal,	
  FORTRAN,	
  C	
  languages	
  designed	
  for	
  one-­‐pass	
  
compilaPon,	
  which	
  explains	
  the	
  need	
  for	
  funcPon	
  
prototypes	
  

–  Single-­‐pass	
  compilers	
  need	
  less	
  memory	
  to	
  operate	
  
–  Java	
  and	
  ADA	
  are	
  mulP-­‐pass	
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The	
  Many	
  Phases	
  of	
  a	
  Compiler	
  
Source Program 

Lexical analyzer 1

Syntax Analyzer 2

  Semantic Analyzer 3

Intermediate 
Code Generator 4

Code Optimizer 5

Code Generator 

Target Program 

Symbol-table 
Manager 

Error Handler 

 Analyses 

Peephole Optimization 7 
1, 2, 3, 4 :  Front-End 
5, 6, 7 :  Back-End 

6
 Syntheses 
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