
603AA	
 -­‐	
 Principles	
 of	
 Programming	

Languages	
 [PLP-­‐2014]	

Andrea	
 Corradini	

Department	
 of	
 Computer	
 Science,	
 Pisa	

Academic	
 Year	
 2014/15	

Admins	

•  h"p://www.di.unipi.it/~andrea/Dida2ca/PLP-­‐14/	

•  9	
 CFU/ECTS	
 	
 (3	
 +	
 6)	

•  Replaces	
 previous	
 PLP	
 of	
 12	
 CFU	
 [379AA]	

•  Students	
 enrolled	
 Pll	
 AY	
 2013/14	
 have	
 to	

integrate	
 the	
 course	
 with	
 a	
 3	
 CFU	
 acPvity	

– To	
 be	
 agreed	
 upon	
 with	
 me	

•  Office	
 Hours?	
 	

•  Please,	
 fill	
 in	
 the	
 sheet	
 with	
 required	
 info	

2	

EvaluaPon	

•  2	
 midterms	

– December	
 18,	
 2014,	
 at	
 16:00	

– March	
 or	
 May	
 2014	

•  Wri_en	
 proof	

•  Oral	
 examinaPon	

•  Homeworks?	
 Project?	
 Seminars?	

3	

Course	
 ObjecPves	

•  Understand	
 the	
 significance	
 of	
 the	
 design	
 of	
 a	
 programming	

language	
 and	
 its	
 implementaPon	
 in	
 a	
 compiler	
 or	
 interpreter	

•  Enhance	
 the	
 ability	
 to	
 learn	
 new	
 programming	
 languages	

•  Understand	
 how	
 programs	
 are	
 parsed	
 and	
 translated	
 by	
 a	
 compiler	

•  Be	
 able	
 to	
 define	
 LL(1),	
 LR(1),	
 and	
 LALR(1)	
 grammars	

•  Know	
 how	
 to	
 use	
 compiler	
 construcPon	
 tools,	
 such	
 as	
 generators	
 of	

scanners	
 and	
 parsers	

•  Be	
 able,	
 in	
 principle,	
 to	
 implement	
 significant	
 parts	
 of	
 a	
 compiler	

•  Improve	
 the	
 understanding	
 of	
 general	
 programming	
 concepts	
 and	

the	
 ability	
 to	
 choose	
 among	
 alternaPve	
 ways	
 to	
 express	
 things	
 in	
 a	

parPcular	
 programming	
 language	

•  Simulate	
 useful	
 features	
 in	
 languages	
 that	
 lack	
 them	

•  …	

4	

Course	
 Outline	
 (temptaPve)	

•  Abstract	
 Machines	
 and	
 their	
 Languages	

•  Interpreta@on	
 and	
 Compila@on	

•  Structure	
 of	
 a	
 Compiler	

–  Lexical	
 Analysis	
 and	
 Lex/Flex	

–  Syntax	
 Analysis	
 and	
 Yacc	

–  Syntax-­‐Directed	
 Transla@on	

–  Sta@c	
 Seman@cs	
 and	
 Type	
 Checking	

–  Intermediate	
 Code	
 Genera@on	

•  Programming	
 language	
 concepts	
 and	
 their	
 semanPcs	

–  Names,	
 scopes	
 and	
 bindings	

–  Control	
 flow	

–  Data	
 types	

–  Control	
 abstracPon	

–  Data	
 abstracPon	

•  Programming	
 paradigms	

–  Logic	
 programming	
 	

–  ScripPng	
 languages	

–  FuncPonal	
 programming	

–  Object-­‐Oriented	
 programming	
 	

5	

Textbooks	

•  [Sco"]	
 Programming	
 Language	
 Pragma@cs	
 	

by	
 Michael	
 L.	
 Sco_,	
 3rd	
 ediPon	
 	

	

•  [ALSU]	
 Compilers:	
 Principles,	
 Techniques,	

and	
 Tools	
 	

by	
 Alfred	
 V.	
 Aho,	
 Monica	
 S.	
 Lam,	
 Ravi	
 Sethi,	

and	
 Jeffrey	
 D.	
 Ullman,	
 2nd	
 ediPon	
 	
 	
 	
 	

	
 	

•  [GM]	
 Programming	
 Languages:	
 Principles	

and	
 Paradigms	
 	

by	
 Maurizio	
 Gabbrielli	
 and	
 Simone	
 MarPni	
 	

•  +	
 other	
 references	

6	

Credits	

•  Slides	
 freely	
 taken	
 and	
 elaborated	
 from	
 a	

number	
 of	
 sources:	

– Marco	
 Bellia	
 (DIP)	

– Gianluigi	
 Ferrari	
 (DIP)	

– Robert	
 A.	
 van	
 Engelen	
 	
 (Florida	
 State	
 University)	

– Gholamreza	
 Ghassem-­‐Sani	
 (Sharif	
 University	
 of	

Technology)	

7	

Abstract	
 Machines	

Abstract	
 Machine	
 for	
 a	
 Language	
 L	

•  Given	
 a	
 programming	
 language	
 L,	
 an	
 Abstract	
 Machine	

ML	
 for	
 L	
 is	
 a	
 collec'on	
 of	
 data	
 structures	
 and	
 algorithms	

which	
 can	
 perform	
 the	
 storage	
 and	
 execu'on	
 of	
 programs	

wri6en	
 in	
 L	
 	
 	
 	
 	

•  An	
 abstracPon	
 of	
 the	
 concept	
 of	
 hardware	
 machine	

•  Structure	
 of	
 an	
 abstract	
 machine:	

Programs	

	

Data	

Memory	
 	

Operations and Data Structures for:	

•  Primitive Data processing	

•  Sequence control	

•  Data Transfer control	

•  Memory management	

Interpreter	

9	

General	
 structure	
 of	

the	
 Interpreter	

Sequence	
 control	

Data	
 control	

OperaPons	

start	

stop	

Fetch	
 next	
 instrucPon	

Decode	

Fetch	
 operands	

Choose	

Execute	
 op1	
 Execute	
 op2	
 Execute	
 opn	
 Execute	
 HALT	
 ...	

Store	
 the	
 result	
 Data	
 control	

10	

The	
 Machine	
 Language	
 of	
 an	
 AM	

•  Given	
 and	
 Abstract	
 machine	
 M,	
 the	
 machine	
 language	
 LM	
 of	
 M	

–  includes	
 all	
 programs	
 which	
 can	
 be	
 executed	
 by	
 the	
 interpreter	
 of	
 M	

•  Programs	
 are	
 parPcular	
 data	
 on	
 which	
 the	
 interpreter	
 can	
 act	

•  The	
 components	
 of	
 M	
 correspond	
 to	
 components	
 of	
 LM,	
 eg:	

–  PrimiPve	
 data	
 types	

–  Control	
 structures	

–  Parameter	
 passing	
 and	
 value	
 return	

–  Memory	
 management	

•  Every	
 Abstract	
 Machine	
 has	
 a	
 unique	
 Machine	
 Language	

•  A	
 programming	
 language	
 can	
 have	
 several	
 Abstact	
 Machines	

11	

An	
 example:	
 the	
 Hardware	
 Machine	
 	
 6 1 Abstract Machines

Fig. 1.3 The structure of a conventional calculator

For this specific case, we can, using what we have already said about the compo-
nents of an abstract machine, identify the following parts.

Memory The storage component of a physical computer is composed of various
levels of memory. Secondary memory implemented using optical or magnetic com-
ponents; primary memory, organised as a linear sequence of cells, or words, of fixed
size (usually a multiple of 8 bits, for example 32 or 64 bits); cache and the registers
which are internal to the Central Processing Unit (CPU).

Physical memory, whether primary, cache or register file, permits the storage of
data and programs. As stated, this is done using the binary alphabet.

Data is divided into a few primitive “types”: usually, we have integer numbers,
so-called “real” numbers (in reality, a subset of the rationals), characters, and fixed-
length sequences of bits. Depending upon the type of data, different physical repre-
sentations, which use one or more memory words for each element of the type are
used. For example, the integers can be represented by 1s or 2s complement num-
bers contained in a single word, while reals have to be represented as floating point
numbers using one or two words depending on whether they are single or double
precision. Alphanumeric characters are also implemented as sequences of binary
numbers encoded in an appropriate representational code (for example, the ASCII
or UNI CODE formats).

We will not here go into the details of these representations since they will be
examined in more detail in Chap. 8. We must emphasise the fact that although all
data is represented by sequences of bits, at the hardware level we can distinguish
different categories, or more properly types, of primitive data that can be manip-
ulated directly by the operations provided by the hardware. For this reason, these
types are called predefined types.

The language of the physical machine The language, L H which the physical
machine executes is composed of relatively simple instructions. A typical instruc-

•  The	
 language?	

•  The	
 memory?	

•  The	
 interpreter?	

•  OperaPons	
 and	
 Data	
 Structures	
 for:	

•  PrimiPve	
 Data	
 processing?	

•  Sequence	
 control?	

•  Data	
 Transfer	
 control?	

•  Memory	
 management?	
 12	

ImplemenPng	
 an	
 Abstract	
 Machine	

•  Each	
 abstract	
 machine	
 can	
 be	
 implemented	
 in	
 hardware	
 or	
 in	

firmware,	
 but	
 if	
 it	
 is	
 high-­‐level	
 this	
 is	
 not	
 convenient	
 in	
 general	

•  An	
 abstract	
 machine	
 M	
 can	
 be	
 implemented	
 over	
 a	
 host	

machine	
 MO,	
 which	
 we	
 assume	
 is	
 already	
 implemented	

•  The	
 components	
 of	
 M	
 are	
 realized	
 using	
 data	
 structures	
 and	

algorithms	
 implemented	
 in	
 the	
 machine	
 language	
 of	
 MO	

•  Two	
 main	
 cases:	

–  The	
 interpreter	
 of	
 M	
 coincides	
 with	
 the	
 interpreter	
 of	
 MO	

• M	
 is	
 an	
 extension	
 of	
 MO	

•  other	
 components	
 of	
 the	
 machines	
 can	
 differ	

–  The	
 interpreter	
 of	
 M	
 is	
 different	
 from	
 the	
 interpreter	
 of	
 MO	

• M	
 is	
 interpreted	
 over	
 MO	

•  other	
 components	
 of	
 the	
 machines	
 may	
 coincide	

13	

Hierarchies	
 of	
 Abstract	
 Machines	

•  ImplementaPon	
 of	
 an	
 AM	
 with	
 another	
 can	
 be	

iterated,	
 leading	
 to	
 a	
 hierarchy	
 (onion	
 skin	
 model)	
 	

•  Example:	

22 1 Abstract Machines

Fig. 1.8 A hierarchy of
abstract machines

A canonical example of a hierarchy of this kind in a context that is seemingly
distant from programming languages is the hierarchy5 of communications protocols
in a network of computers, such as, for example, the ISO/OSI standard.

In a context closer to the subject of this book, we can consider the example shown
in Fig. 1.8.

At the lowest level, we have a hardware computer, implemented using physical
electronic devices (at least, at present; in the future, the possibility of biological
devices will be something that must be actively considered). Above this level, we
could have the level of an abstract, microprogrammed machine. Immediately above
(or directly above the hardware if the firmware level is not present), there is the ab-
stract machine provided by the operating system which is implemented by programs
written in machine language. Such a machine can be, in turn, seen as a hierarchy of
many layers (kernel, memory manager, peripheral manager, file system, command-
language interpreter) which implement functionalities that are progressively more
remote from the physical machine: starting with the nucleus, which interacts with
the hardware and manages process state changes, to the command interpreter (or
shell) which allows users to interact with the operating system. In its complexity,
therefore, the operating system on one hand extends the functionality of the physical
machine, providing functionalities not present on the physical machine (for exam-
ple, primitives that operate on files) to higher levels. On the other hand, it masks
some hardware primitives (for example, primitives for handling I/O) in which the
higher levels in the hierarchy have no interest in seeing directly. The abstract ma-
chine provided by the operating system forms the host machine on which a high-
level programming language is implemented using the methods that we discussed in
previous sections. It normally uses an intermediate machine, which, in the diagram
(Fig. 1.8), is the Java Virtual machine and its bytecode language. The level provided
by the abstract machine for the high-level language that we have implemented (Java

5In the literature on networks, one often speaks of a stack rather than, more correctly, of a hierarchy.

14	

ImplemenPng	
 a	
 	

Programming	
 Language	

•  L	
 	
 high	
 level	
 programming	
 language	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

•  ML 	
 abstract	
 machine	
 for	
 L	

•  MO	
 	
 host	
 machine	

•  Pure	
 Interpreta@on	

–  ML	
 is	
 interpreted	
 over	
 MO	

–  Not	
 very	
 efficient,	
 mainly	
 because	
 of	
 the	
 interpreter	
 (fetch-­‐decode	

phases)	

•  Pure	
 Compila@on	

–  Programs	
 wri_en	
 in	
 L	
 are	
 translated	
 into	
 equivalent	
 programs	

wri_en	
 in	
 LO,	
 the	
 machine	
 language	
 of	
 MO	

–  The	
 translated	
 programs	
 can	
 be	
 executed	
 directly	
 on	
 MO	
 	

•  	
 ML	
 is	
 not	
 realized	
 at	
 all	

–  ExecuPon	
 more	
 efficient,	
 but	
 the	
 produced	
 code	
 is	
 larger	

•  Two	
 limit	
 cases	
 that	
 almost	
 never	
 exist	
 in	
 reality	

	
 15	

Pure	
 InterpretaPon	

•  Program	
 P 	
 in	
 L	
 as	
 a	
 parPal	
 funcPon	
 on	
 D:	

•  Set	
 of	
 programs	
 in	
 L:	

	

•  The	
 interpreter	
 defines	
 a	
 funcPon	

1.2 Implementation of a Language 13

1.2.2 Implementation: The Ideal Case

Let us consider a generic language, L , which we want to implement, or rather, for
which an abstract machine, ML is required. Assuming that we can exclude, for the
reasons just given, direct implementation in hardware of ML , we can assume that,
for our implementation of ML , we have available an abstract machine, M oL o,
which we will call the host machine, which is already implemented (we do not care
how) and which therefore allows us to use the constructs of its machine language
L o directly.

Intuitively, the implementation of L on the host machine M oL o takes place
using a “translation” from L to L o. Nevertheless, we can distinguish two con-
ceptually very different modes of implementation, depending on whether there is
an “implicit” translation (implemented by the simulation of ML ’s constructs by
programs written in L o) or an explicit translation from programs in L to cor-
responding programs in L o. We will now consider these two ways in their ideal
forms. We will call these ideal forms:

1. purely interpreted implementation, and
2. purely compiled implementation.

Notation

Below, as previously mentioned, we use the subscript L to indicate that a particular
construct (machine, interpreter, program, etc.) refers to language L . We will use
the superscript L to indicate that a program is written in language L . We will use
ProgL to denote the set of all possible programs that can be written in language
L , while D denotes the set of input and output data (and, for simplicity of treatment,
we make no distinction between the two).

A program written in L can be seen as a partial function (see the box):

PL : D → D

such that

PL (Input) = Output

if the execution of PL on input data Input terminates and produces Output as its
result. The function is not defined if the execution of PL on its input data, Input,
does not terminate.3

3It should be noted that there is no loss of generality in considering only one input datum, given
that it can stand for a set of data.

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

14 1 Abstract Machines

Fig. 1.4 Purely interpreted implementation

Purely interpreted implementation In a purely interpreted implementation
(shown in Fig. 1.4), the interpreter for ML is implemented using a set of instruc-
tions in L o. That is, a program is implemented in L o which interprets all of L ’s
instructions; this is an interpreter. We will call it I L o

L .
Once such interpreter is implemented, executing a program PL (written in lan-

guage L) on specified input data D ∈ D , we need only execute the program I L o
L

on machine M oL o, with PL and D as input data. More precisely, we can give
the following definition.

Definition 1.3 (Interpreter) An interpreter for language L , written in language
L o, is a program which implements a partial function:

I L o
L : (ProgL × D) → D such that I L o

L (PL , Input) = PL (Input) (1.1)

The fact that a program can be considered as input datum for another program
should not be surprising, given that, as already stated, a program is only a set of
instructions which, in the final analysis, are represented by a certain set of symbols
(and therefore by bit sequences).

In the purely interpreted implementation of L , therefore, programs in L are
not explicitly translated. There is only a “decoding” procedure. In order to execute
an instruction of L , the interpreter I L o

L uses a set of instructions in L o which
corresponds to an instruction in language L . Such decoding is not a real translation
because the code corresponding to an instruction of L is executed, not output, by
the interpreter.

It should be noted that we have deliberately not specified the nature of the ma-
chine M oL o. The language L o can therefore be a high-level language, a low-level
language or even one firmware.

Purely compiled implementation With purely compiled implementation, as
shown in Fig. 1.5, the implementation of L takes place by explicitly translating
programs written in L to programs written in L o. The translation is performed
by a special program called compiler; it is denoted by CL ,L o. In this case, the
language L is usually called the source language, while language L o is called
the object language. To execute a program PL (written in language L) on input

16	

Pure	
 [cross]	
 CompilaPon	

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

A	
 compiler	
 from	
 L	
 to	
 LO	
 defines	
 a	
 funcPon	

such	
 that	
 if	

	

then	
 for	
 every	
 Input	
 we	
 have	
 	
 	
 	

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

1.2 Implementation of a Language 15

Fig. 1.5 Pure compiled implementation

data D, we must first execute CL ,L o and give it PL as input. This will produce
a compiled program PcL o as its output (written in L o). At this point, we can
execute PcL o on the machine M oL o supplying it with input data D to obtain the
desired result.

Definition 1.4 (Compiler) A compiler from L to L o is a program which imple-
ments a function:

CL ,L o : ProgL → ProgL o

such that, given a program PL , if

CL ,L o(P
L) = PcL o, (1.2)

then, for every Input∈ D4:

PL (Input) = PcL o(Input) (1.3)

Note that, unlike pure interpretation, the translation phase described in (1.2)
(called compilation) is separate from the execution phase, which is, on the other
hand, handled by (1.3). Compilation indeed produces a program as output. This
program can be executed at any time we want. It should be noted that if M oL o is
the only machine available to us, and therefore if L o is the only language that we
can use, the compiler will also be a program written in L o. This is not necessary,
however, for the compiler could in fact be executed on another abstract machine
altogether and this, latter, machine could execute a different language, even though
it produces executable code for M oL o.

4It should be noted that, for simplicity, we assume that the data upon which programs operate are
the same for source and object languages. If were not the case, the data would also have to be
translated in an appropriate manner.

17	

Compilers	
 versus	
 Interpreters	

•  Compilers	
 efficiently	
 fix	
 decisions	
 that	
 can	
 be	
 taken	
 at	
 compile	

Pme	
 to	
 avoid	
 to	
 generate	
 code	
 that	
 makes	
 this	
 decision	
 at	
 run	

Pme	

–  Type	
 checking	
 at	
 compile	
 Pme	
 vs.	
 runPme	

–  StaPc	
 allocaPon	

–  StaPc	
 linking	

–  Code	
 opPmizaPon	

•  CompilaPon	
 leads	
 to	
 be_er	
 performance	
 in	
 general	

–  AllocaPon	
 of	
 variables	
 without	
 variable	
 lookup	
 at	
 run	
 Pme	

–  Aggressive	
 code	
 opPmizaPon	
 to	
 exploit	
 hardware	
 features	

•  InterpretaPon	
 facilitates	
 interacPve	
 debugging	
 and	
 tesPng	

–  InterpretaPon	
 leads	
 to	
 be_er	
 diagnosPcs	
 of	
 a	
 programming	

problem	

–  Procedures	
 can	
 be	
 invoked	
 from	
 command	
 line	
 by	
 a	
 user	

–  Variable	
 values	
 can	
 be	
 inspected	
 and	
 modified	
 by	
 a	
 user	

18	

CompilaPon	
 +	
 InterpretaPon	

•  All	
 implementaPons	
 of	
 programming	
 languages	

use	
 both.	
 At	
 least:	

– CompilaPon	
 (=	
 translaPon)	
 from	
 external	
 to	
 internal	

representaPon	

–  InterpretaPon	
 for	
 I/O	
 operaPons	
 (runPme	
 support)	

•  Can	
 be	
 modeled	
 by	
 idenPfying	
 an	
 Intermediate	

Abstract	
 Machine	
 MI	
 with	
 language	
 LI	

– A	
 program	
 in	
 L	
 is	
 compiled	
 to	
 a	
 program	
 in	
 LI	

– The	
 program	
 in	
 LI	
 is	
 executed	
 by	
 an	
 interpreter	
 for	
 MI	

19	

CompilaPon	
 +	
 InterpretaPon	

with	
 Intermediate	
 Abstract	
 Machine	

18 1 Abstract Machines

Can interpreter and compiler always be implemented?

At this point, the reader could ask if the implementation of an interpreter or a com-
piler will always be possible. Or rather, given the language, L , that we want to
implement, how can we be sure that it is possible to implement a particular program
I L o

L in language L o which performs the interpretation of all the constructs of L ?
How, furthermore, can we be sure that it is possible to translate programs of L into
programs in L o using a suitable program, CL ,L o?

The precise answer to this question requires notions from computability theory
which will be introduced in Chap. 3. For the time being, we can only answer that the
existence of the interpreter and compiler is guaranteed, provided that the language,
L o, that we are using for the implementation is sufficiently expressive with respect
to the language, L , that we want to implement. As we will see, every language
in common use, and therefore also our L o, have the same (maximum) expressive
power and this coincides with a particular abstract model of computation that we
will call Turing Machine. This means that every possible algorithm that can be for-
mulated can be implemented by a program written in L o. Given that the interpreter
for L is no more than a particular algorithm that can execute the instructions of
L , there is clearly no theoretical difficulty in implementing the interpreter I L o

L .
As far as the compiler is concerned, assuming that it, too, is to be written in L o,
the argument is similar. Given that L is no more expressive than L o, it must be
possible to translate programs in L into ones in L o in a way that preserves their
meaning. Furthermore, given that, by assumption, L o permits the implementation
of any algorithm, it will also permit the implementation of the particular compiling
program CL ,L o that implements the translation.

Fig. 1.6 Implementation: the real case with intermediate machine

The real situation for the implementation of a high-level language is therefore
that shown in Fig. 1.6. Let us assume, as above, that we have a language L that has
to be implemented and assume also that a host machine M oL o exists which has
already been constructed. Between the machine ML that we want to implement and

•  The	
 “pure”	
 schemes	
 as	
 limit	
 cases	

•  Let	
 us	
 sketch	
 some	
 typical	
 implementaPon	
 schemes…	

20	

Virtual	
 Machines	
 as	
 Intermediate	

Abstract	
 Machines	

•  Several	
 language	
 implementaPons	
 adopt	
 a	
 compilaPon	

+	
 interpretaPon	
 schema,	
 where	
 the	
 Intermediate	

Abstract	
 Machine	
 is	
 called	
 Virtual	
 Machine	

•  Adopted	
 by	
 Pascal,	
 Java,	
 Smalltalk-­‐80,	
 C#,	
 funcPonal	

and	
 logic	
 languages,	
 and	
 some	
 scripPng	
 languages	

–  Pascal	
 compilers	
 generate	
 P-­‐code	
 that	
 can	
 be	
 interpreted	

or	
 compiled	
 into	
 object	
 code	

–  Java	
 compilers	
 generate	
 bytecode	
 that	
 is	
 interpreted	
 by	

the	
 Java	
 virtual	
 machine	
 (JVM)	

–  The	
 JVM	
 may	
 translate	
 bytecode	
 into	
 machine	
 code	
 by	

just-­‐in-­‐Pme	
 (JIT)	
 compilaPon	

21	

CompilaPon	
 and	
 ExecuPon	
 on	
 	

Virtual	
 Machines	

•  Compiler	
 generates	
 intermediate	
 program	

•  Virtual	
 machine	
 interprets	
 the	
 intermediate	

program	

•  Portability!	
 Virtual	

Machine	

Compiler	

Source	

Program	

Intermediate	

Program	

Input	

 Output	

Run on VM	

Compile on X	

Run on X, Y, Z, …	

22	

Pure	
 CompilaPon	
 and	
 StaPc	
 Linking	

•  Adopted	
 by	
 the	
 typical	
 Fortran	
 systems	

•  Library	
 rouPnes	
 are	
 separately	
 linked	

(merged)	
 with	
 the	
 object	
 code	
 of	
 the	
 program	

Compiler	

Source	

Program	

Incomplete	

Object Code	

Linker	
 Static Library���
Object Code	

_printf
_fget
_fscan
…

extern printf();

Binary	

Executable	

23	

CompilaPon,	
 Assembly,	
 and	
 	

StaPc	
 Linking	

•  Facilitates	
 debugging	
 of	
 the	
 compiler	

Compiler	

Source	

Program	

Assembly���
Program	

Linker	
 Static Library���
Object Code	

Binary	

Executable	

Assembler	

_printf
_fget
_fscan
…

extern printf();

24	

CompilaPon,	
 Assembly,	
 and	
 	

Dynamic	
 Linking	

•  Dynamic	
 libraries	
 (DLL,	
 .so,	
 .dylib)	
 are	
 linked	
 at	

run-­‐Pme	
 by	
 the	
 OS	
 (via	
 stubs	
 in	
 the	
 executable)	

Compiler	

Source	

Program	

Assembly���
Program	

Incomplete	

Executable	

Input	

Output	

Assembler	

Shared Dynamic Libraries	

_printf, _fget, _fscan, …

extern printf();

25	

Preprocessing	

•  Most	
 C	
 and	
 C++	
 compilers	
 use	
 a	
 preprocessor	

to	
 import	
 header	
 files	
 and	
 expand	
 macros	

Compiler	

Preprocessor	

Source	

Program	

Modified Source���

Program	

Assembly or ���
Object Code	

#include <stdio.h>
#define N 99
…
for (i=0; i<N; i++)

for (i=0; i<99; i++)

26	

The	
 CPP	
 Preprocessor	

•  Early	
 C++	
 compilers	
 used	
 the	
 CPP	
 preprocessor	

to	
 generated	
 C	
 code	
 for	
 compilaPon	

C	
 Compiler	

C++	

Preprocessor	

C++	

Source	

Code	

C Source	

Code	

Assembly or ���
Object Code	

27	

Compilers	

The	
 Analysis-­‐Synthesis	
 	

Model	
 of	
 CompilaPon	

•  Compilers	
 translate	
 programs	
 wri_en	
 in	
 a	

language	
 into	
 equivalent	
 programs	
 in	
 another	

language	
 	

•  There	
 are	
 two	
 parts	
 to	
 compilaPon:	

– Analysis	
 determines	
 the	
 operaPons	
 implied	
 by	
 the	

source	
 program	
 which	
 are	
 recorded	
 in	
 a	
 tree	

structure	

– Synthesis	
 takes	
 the	
 tree	
 structure	
 and	
 translates	

the	
 operaPons	
 therein	
 into	
 the	
 target	
 program	

29	

Other	
 Tools	
 that	
 Use	
 the	
 Analysis-­‐
Synthesis	
 Model	

•  Editors	
 (syntax	
 highlighPng)	

•  Pre_y	
 printers	
 (e.g.	
 Doxygen)	

•  StaPc	
 checkers	
 (e.g.	
 Lint	
 and	
 Splint)	

•  Interpreters	

•  Text	
 forma_ers	
 (e.g.	
 TeX	
 and	
 LaTeX)	

•  Silicon	
 compilers	
 (e.g.	
 VHDL)	

•  Query	
 interpreters/compilers	
 (Databases)	

Several	
 compilaPon	
 techniques	
 are	
 used	
 in	

other	
 kinds	
 of	
 systems	

30	

CompilaPon	
 Phases	
 and	
 Passes	

•  CompilaPon	
 of	
 a	
 program	
 proceeds	
 through	
 a	

fixed	
 series	
 of	
 phases	

•  A	
 pass	
 is	
 one	
 phase	
 or	
 a	
 sequence	
 of	
 phases	
 that	

starts	
 from	
 a	
 representaPon	
 of	
 the	
 program	
 and	

produces	
 another	
 representaPon	
 of	
 it	

•  Passes	
 can	
 be	
 serialized,	
 phases	
 not	
 necessarily	

–  Pascal,	
 FORTRAN,	
 C	
 languages	
 designed	
 for	
 one-­‐pass	

compilaPon,	
 which	
 explains	
 the	
 need	
 for	
 funcPon	

prototypes	

–  Single-­‐pass	
 compilers	
 need	
 less	
 memory	
 to	
 operate	

–  Java	
 and	
 ADA	
 are	
 mulP-­‐pass	

31	

The	
 Many	
 Phases	
 of	
 a	
 Compiler	

Source Program

Lexical analyzer 1

Syntax Analyzer 2

 Semantic Analyzer 3

Intermediate
Code Generator 4

Code Optimizer 5

Code Generator

Target Program

Symbol-table
Manager

Error Handler

 Analyses

Peephole Optimization 7
1, 2, 3, 4 : Front-End
5, 6, 7 : Back-End

6
 Syntheses

32	

