603AA - Principles of Programming
Languages [PLP-2014]

Andrea Corradini
Department of Computer Science, Pisa

Academic Year 2014/15

Admins

http://www.di.unipi.it/~andrea/Didattica/PLP-14/
9 CFU/ECTS (3 + 6)
Replaces previous PLP of 12 CFU [379AA]

Students enrolled till AY 2013/14 have to
integrate the course with a 3 CFU activity

— To be agreed upon with me
Office Hours?

Please, fill in the sheet with required info

Evaluation

2 midterms
— December 18, 2014, at 16:00
— March or May 2014

Written proof
Oral examination
Homeworks? Project? Seminars?

Course Objectives

Understand the significance of the design of a programming
language and its implementation in a compiler or interpreter

Enhance the ability to learn new programming languages
Understand how programs are parsed and translated by a compiler

Be able to define LL(1), LR(1), and LALR(1) grammars

Know how to use compiler construction tools, such as generators of
scanners and parsers

Be able, in principle, to implement significant parts of a compiler

Improve the understanding of general programming concepts and
the ability to choose among alternative ways to express things in a
particular programming language

Simulate useful features in languages that lack them

Course Outline (temptative)

Abstract Machines and their Languages
Interpretation and Compilation

Structure of a Compiler
— Lexical Analysis and Lex/Flex
— Syntax Analysis and Yacc
— Syntax-Directed Translation
— Static Semantics and Type Checking
— Intermediate Code Generation
Programming language concepts and their semantics
— Names, scopes and bindings
— Control flow
— Data types
— Control abstraction
— Data abstraction
Programming paradigms
— Logic programming
— Scripting languages
— Functional programming
— Object-Oriented programming

Textbooks

[Scott] Programming Language Pragmatics
by Michael L. Scott, 3™ edition

[ALSU] Compilers: Principles, Techniques,
and Tools

by Alfred V. Aho, Monica S. Lam, Ravi Sethi,
and Jeffrey D. Ullman, 2" edition

[GM] Programming Languages: Principles
and Paradigms
by Maurizio Gabbrielli and Simone Martini

+ other references

Compilers

Principles, Techniques, & Tool:

=k PROGRAMMING
LANGUAGE
PRAGMATICS

Programming
Languages:

Principles
and Paradigms

Credits

* Slides freely taken and elaborated from a
number of sources:

— Marco Bellia (DIP)
— Gianluigi Ferrari (DIP)
— Robert A. van Engelen (Florida State University)

— Gholamreza Ghassem-Sani (Sharif University of
Technology)

Abstract Machines

Abstract Machine for a Language L

* Given a programming language L, an Abstract Machine
M, for L is a collection of data structures and algorithms
which can perform the storage and execution of programs
written in L

* An abstraction of the concept of hardware machine
e Structure of an abstract machine:

Memory Interpreter

Operations and Data Structures for:
< > ¢ Primitive Data processing
Sequence control

Data Transfer control

Memory management

Programs

Data

General structure of
the Interpreter @

Sequence control Fetch next instruction <
Decode
Data control Fetch operands
— '
Operations Execute op, Execute op, Execute op, Execute HALT

.

Data control Store the result @

10

The Machine Language of an AM

Given and Abstract machine M, the machine language L,, of M
— includes all programs which can be executed by the interpreter of M

Programs are particular data on which the interpreter can act

The components of M correspond to components of L,,, eg:
— Primitive data types
— Control structures
— Parameter passing and value return
— Memory management

Every Abstract Machine has a unique Machine Language
A programming language can have several Abstact Machines

An example the Hardware Machine

e e e e e e e e e e e e e e e e e e e -

The language? Main memory
The memory?
The interpreter?
Operations and Data Structures for:

* Primitive Data processing?

 Sequence control?

* Data Transfer control?

e Memory management? 12

Implementing an Abstract Machine

Each abstract machine can be implemented in hardware or in
firmware, but if it is high-level this is not convenient in general

An abstract machine M can be implemented over a host
machine Mg, which we assume is already implemented

The components of M are realized using data structures and
algorithms implemented in the machine language of M,

Two main cases:
— The interpreter of M coincides with the interpreter of Mg
* M is an extension of M,
e other components of the machines can differ
— The interpreter of M is different from the interpreter of M,
* Mis interpreted over M,
e other components of the machines may coincide

Hierarchies of Abstract Machines

* |Implementation of an AM with another can be
iterated, leading to a hierarchy (onion skin model)

e Example:

E-Business machine (on-line commerce applications)

Web Service machine (languages for web services)

Web machine (browser etc.)

HL machine (Java)

Intermediate machine (Java Bytecode)

Operating System machine

Firmware machine

[Hardware machine J

Implementing a
Programming Language

L high level programming language
M, abstract machine forL

M, host machine

Pure Interpretation

— M| is interpreted over M,

— Not very efficient, mainly because of the interpreter (fetch-decode
phases)

Pure Compilation

— Programs written in L are translated into equivalent programs
written in Ly, the machine language of M,

— The translated programs can be executed directly on M,
* M, is not realized at all
— Execution more efficient, but the produced code is larger

Two limit cases that almost never exist in reality

Pure Interpretation
* Program P in L as a partial function on D:
PP - P P
e Setof programsinL: Prog

Program in L

\ —————————————————

Inte.rprete.r for L Output data i

written in LO | .

: ———————————————— l/' —————————————————
Input data : lExecution on MO

MO

* The interpreter defines a function

f:’go ; (@rog‘g X 9)— % such that fgo(ﬁg, Input) = P (Input)

Pure [cross] Compilation

A compiler from L to LO defines a function
Cr Lo ,@rog”gf — erogiﬂo

such that if
Cp.p0(PZL)= Pc?,

then for every Input we have @< (Input) = P2cZ°(Input)

i Input data :
I________________I
Program Compiler Program ! .
—> E— Output dat |
written in L from L to LO written in LO : Hipt e .
lExecution on M A lExecution MO

Abstract macchine M A Host macchine MO

Compilers versus Interpreters

Compilers efficiently fix decisions that can be taken at compile
time to avoid to generate code that makes this decision at run
time

— Type checking at compile time vs. runtime

— Static allocation

— Static linking

— Code optimization

Compilation leads to better performance in general

— Allocation of variables without variable lookup at run time

— Aggressive code optimization to exploit hardware features

Interpretation facilitates interactive debugging and testing

— Interpretation leads to better diagnostics of a programming
problem

— Procedures can be invoked from command line by a user
— Variable values can be inspected and modified by a user

Compilation + Interpretation

e All implementations of programming languages
use both. At least:

— Compilation (= translation) from external to internal
representation

— Interpretation for I/O operations (runtime support)

* Can be modeled by identifying an Intermediate
Abstract Machine M, with language L,
— A program in L is compiled to a program in L,
— The program in L, is executed by an interpreter for M,

Compilation + Interpretation
with Intermediate Abstract Machine

I
I
I
I
I

P‘rogre}m Compiler ' Progrgm '
written in L from L to Li written in L7

I
|
|

TN Interpreter for L¢ |
written — Output data
o in Lo or RTS L
Rrogrgm Compiler . I'Drogr?lm '
written in L from L to Li written in Lz)
Execution on MO
lCompilation on M A
MA MO

* The “pure” schemes as limit cases
* Let us sketch some typical implementation schemes...

Virtual Machines as Intermediate
Abstract Machines

* Several language implementations adopt a compilation
+ interpretation schema, where the Intermediate
Abstract Machine is called Virtual Machine

 Adopted by Pascal, Java, Smalltalk-80, C#, functional
and logic languages, and some scripting languages

— Pascal compilers generate P-code that can be interpreted
or compiled into object code

— Java compilers generate bytecode that is interpreted by
the Java virtual machine (JVM)

— The JVM may translate bytecode into machine code by
just-in-time (JIT) compilation

Compilation and Execution on
Virtual Machines

 Compiler generates intermediate program

e Virtual machine interprets the intermediate
program

Source o Intermediate
ompiler
Program Program

Compile on X Run on VM

Virtual
 Portability! mmpur “ Output

RunonX,Y, Z, .

Pure Compilation and Static Linking

* Adopted by the typical Fortran systems

* Library routines are separately linked
(merged) with the object code of the program

Source ‘ o ‘ Incomplete
ompiler
Program Ob]ect Code

extern printf();

—?;_;i‘;tf Static Library ‘ e ‘ Binary
“fscan | Object Code Executable

Compilation, Assembly, and
Static Linking

* Facilitates debugging of the compiler

Source c Assembly
ompiler
Program Program

extern printf (),

Assembler

- =

_printf

—:gi:n Static Library ‘
- Object Code

Binary
Executable

24

Compilation, Assembly, and
Dynamic Linking

* Dynamic libraries (DLL, .so, .dylib) are linked at
run-time by the OS (via stubs in the executable)

Source o Assembly
ompiler
Program Program

extern printf (),

Shared Dynamic Libraries

_printf, fget, fscan, ..

Input

- =

‘ Incomplete
“ .

25

Preprocessing

Most C and C++ compilers use a preprocessor
to import header files and expand macros

Source
Preprocessor
Program

Modified Source
Program

#include <stdio.h>
#define N 99

for (i=0; i<99; i++)

for (i=0; i<N; i++)

Assembly or
Compiler Object Code

26

The CPP Preprocessor

* Early C++ compilers used the CPP preprocessor
to generated C code for compilation

C++ CS
Cot ource
Source ‘ Preprocessor ‘ Code
Code
Assembly or
C Compiler Object Code

Compilers

The Analysis-Synthesis
Model of Compilation

* Compilers translate programs written in a
language into equivalent programs in another

language
* There are two parts to compilation:

— Analysis determines the operations implied by the
source program which are recorded in a tree
structure

— Synthesis takes the tree structure and translates
the operations therein into the target program

Other Tools that Use the Analysis-
Synthesis Model

* Editors (syntax highlighting)

* Pretty printers (e.g. Doxygen)

e Static checkers (e.g. Lint and Splint)

* |Interpreters

* Text formatters (e.g. TeX and LaTeX)

* Silicon compilers (e.g. VHDL)

* Query interpreters/compilers (Databases)

Several compilation techniques are used in
other kinds of systems

Compilation Phases and Passes

 Compilation of a program proceeds through a
fixed series of phases

e A pass is one phase or a sequence of phases that
starts from a representation of the program and
produces another representation of it

e Passes can be serialized, phases not necessarily

— Pascal, FORTRAN, C languages designed for one-pass
compilation, which explains the need for function
prototypes

— Single-pass compilers need less memory to operate
— Java and ADA are multi-pass

The Many Phases of a Compiler

Source Proiram

' Lexical analyzer)
A
2 Syntax Analyzer Analyses
] AN
3 Semantic Analyzer K
Intermediate
Symbol-table 4 Code Generator — 1 Error Handler
Manager

|~

A

\

5 Code Optimizer

>‘ Syntheses

6 Code Generator

\

7 Peephole Optimization
1,2,3,4: Front-End l
5,6, 7 : Back-End Target Program

