Principles of Programming Languages [PLP-2014]
Homework on Compiler Front-End - March 13, 2015

The present homework is optional: no student will be penalized in the final evaluation
of the course for not having solved it.

Deadline: Wednesday, April 1
Submission: Send all the files which compose the project, together with
instructions for using them, by email to the lecturer

For any question write an email to andrea@di.unipi.it.

Goal: Generating an NFA which recognizes the language of a given Regular
Expression

Instructions and constraints:

Design a top-down parsable grammar Ggre for generating Regular Expressions.
The grammars should not be ambiguous.

Define an L-attributed Syntax-Directed Translation Scheme based on the
grammar Grg to generate the NFA associated with a regular expression using
Thompson’s algorithm.

The output NFA has to be generated using the dot language as Intermediate
Representation [see http://www.graphviz.org/content/dot-language]

Implement the Syntax-Directed Translation Scheme using yacc or bison. As the
lexical analysis is trivial, you can either use lex/flex or simply a function yylex to
be defined in the third section of the yacc/bison specification.

Use dot to compile the resulting file into pdf (or other format)

Some hints

* To play with lex/flex and yacc/bison, download (from the course pages) and study
files calc.l and calc.y, defining lexer and scanner of a command line calculator

* You may use the following commands (or similar, depending on your system) to
generate the executable:

yacc -o parser.c calc.y
flex -o scanner.c calc.1l
gcc -o calc parser.c

* The dot notation is simple: an example is parser.dot

