Principles of Programming Languages [PLP-2014] Exercises on Lexical Analysis - December 1, 2014

- 1. Write a regular expression that describes all integers x, such that x > 15.
- 2. In words, describe the languages denoted by the following regular expressions:
 - (a) 0*10*10*10*
 - (b) $(0 \mid 1) 1 (0 \mid 1) * 0 (0 \mid 1)$
- 3. Depict the DFA that accepts the language that includes all strings of 0's and 1's with an even number of 0's and an odd number of 1's.
- 4. Consider the following Lex specification

```
digit [0-9]
integer {digit}({integer}|"")
%%
{integer} { printf("integer: %s\n", yytext); }
%%
```

Show what is wrong with the regular definitions in this specification. Fix the specification so that it correctly scans integer literals.

- 5. Use Thompson's algorithm to build an NFA for the regular expression $((a|\varepsilon)b)^*$
- 6. Given the NFA with $S = \{1,2,3,4,5\}$, $\Sigma = \{a,b\}$, $s_0 = 1$, $F = \{5\}$ and the transition graph shown below, convert the NFA to a DFA using the subset construction algorithm (do not attempt to minimize the DFA). Express your answer as a transition graph and identify the start and final states.

7. Consider the following state transition table of a DFA with $S = \{0, 1, 2, 3, 4\}, \Sigma = \{a, b\}, s_0 = 0, F = \{3, 4\}.$

State	a	b
0	1	2
1	3	4
2	1	2
3	4	-
4	3	-

- (a) Draw the transition graph.
- (b) Minimize the DFA using the algorithm illustrated in class. Identify the start and final states of the minimized DFA.
- (c) Write an equivalent regular expression that represents the same language as defined by the (minimized) DFA.