Corso di Laurea in Informatica A.A. 2009/2010 Logica per la Programmazione Primo Compitino del 4 novembre 2009 Soluzioni proposte dai docenti

Si provi che le seguenti formule proposizionali sono tautologie:

1.
$$((P \Rightarrow Q) \lor (R \Rightarrow S)) \equiv ((P \Rightarrow S) \lor (R \Rightarrow Q))$$

$$(P \Rightarrow Q) \lor (R \Rightarrow S)$$

$$\equiv \{Elim-\Rightarrow, 2 \text{ volte}\}$$

$$(\sim P \lor Q) \lor (\sim R \lor S)$$

$$\equiv \{Assoc-\lor, Comm-\lor\}$$

$$(\sim P \lor S) \lor (\sim R \lor Q)$$

$$\equiv \{Elim-\Rightarrow, 2 \text{ volte}\}$$

$$(P \Rightarrow S) \lor (R \Rightarrow Q)$$

Quindi abbiamo dimostrato
$$((P \Rightarrow Q) \lor (R \Rightarrow S)) \equiv ((P \Rightarrow S) \lor (R \Rightarrow Q))$$

2.
$$(P \land Q) \land (\neg Q \Rightarrow R) \Rightarrow (P \lor R)$$

$$(P \land Q) \land (\neg Q \Rightarrow R)$$

 $\Rightarrow \{Simpl-\land, Modus Ponens\}$
 $(P \land Q)$
 $\Rightarrow \{Simpl-\land, Modus Ponens\}$
 P
 $\Rightarrow \{Intro-\lor, Modus Ponens\}$
 $P \lor R$

Quindi abbiamo dimostrato $(P \land Q) \land (\neg Q \Rightarrow R) \Rightarrow P \lor R$

$$(P \land Q) \land (\neg Q \Rightarrow R) \Rightarrow P \lor F$$

Usando come ipotesi b)

$$(P \land Q) \Rightarrow R \quad e \quad R \Rightarrow S,$$

dimostrare per casi su Q che vale

$$(P \Rightarrow \neg Q \lor S)$$

Caso
$$Q \equiv T$$

P

 $\equiv \{Ip: Q \equiv T, unita'\}$
 $P \land Q$
 $\Rightarrow \{Ip: (P \land Q) \Rightarrow R, Modus Ponens\}$

R

 $\Rightarrow \{Ip: R \Rightarrow S, Modus Ponens\}$

S

 $\Rightarrow \{Intro-\lor, Modus Ponens\}$
 $\sim Q \lor S$

Quindi, nell'ipotesi che $Q \equiv T$, abbiamo dimostrato

$$(((P \land Q) \Rightarrow R) \land (R \Rightarrow S)) \Rightarrow (P \Rightarrow \neg Q \lor S).$$

Caso $Q \equiv F$

$$\begin{array}{ll} \mathsf{P} \Rightarrow \mathsf{\sim} \mathsf{Q} & \vee \, \mathsf{S} \\ \equiv & \{\mathsf{Ip} \colon \mathsf{Q} \equiv \mathsf{F}, \, \mathsf{T} \colon \!\!\!\! \mathsf{F} \} \\ \mathsf{P} \Rightarrow \mathsf{T} \vee \, \mathsf{S} \\ \equiv & \{\mathsf{Zero}\} \\ \mathsf{P} \Rightarrow \mathsf{T} \\ \equiv & \{\mathsf{Elim} \text{--} \Rightarrow, \, \mathsf{Zero}\} \\ \mathsf{T} \end{array}$$

Quindi, nell'ipotesi che $Q \equiv F$, abbiamo dimostrato $P \Rightarrow \neg Q \lor S$. Complessivamente, abbiamo dimostrato che

$$(((P \land Q) \Rightarrow R) \land (R \Rightarrow S)) \Rightarrow (P \Rightarrow \neg Q \lor S).$$

- c) Utilizzando il calcolo del primo ordine si formalizzino i seguenti enunciati dichiarativi, indicando esplicitamente l'interpretazione intesa:
 - 1. Piove, ma non fa freddo se ci si copre

Piove()
$$\land$$
 (CiSiCopre() \Rightarrow \sim FaFreddo())

Interpretazione:

Piove(), CiSiCopre() e FaFreddo() sono predicati senza argomenti.

(Equivalentemente possono essere visti come variabili proposizionali, scrivendoli senza parentesi, e considerando la formula nel Calcolo Proposizionale.)

Non essendoci variabili, non c'e' bisogno di fissare *un dominio* di interpretazione. I predicati possono essere interpretati nel modo ovvio: Piove() \equiv "sta piovendo", CiSiCopre() = "ci si copre" e FaFreddo = "si ha freddo".

La formula esplicita il significato delle congiunzioni "ma" e "se" dell'asserzione.

2. Il doppio di un numero naturale è sempre pari

$$(\forall x. \ Pari(Doppio(x))$$

 $(\forall x. \ (\exists \ y. \ x = Doppio(y)) \Rightarrow Pari(x))$

Interpretazione:

Dominio: numeri naturali

Doppio(x): funzione unaria: restituisce "il doppio di x"

Pari(x): predicato unario: "x e' un numero pari"

3. Due persone sono parenti se hanno un antenato comune

$$(\forall x, y. (\exists z. Antenato(z,x) \land Antenato(z,y)) \Rightarrow Parenti(x,y))$$

 $(\forall x, y, z. Antenato(z,x) \land Antenato(z,y) \Rightarrow Parenti(x,y))$

Interpretazione:

Dominio: persone

Antenato(x,y): predicato binario: "x e' antenato di y" Parenti(x,y): predicato binario: "x e y sono parenti"