301AA - Advanced Programming

Lecturer: Andrea Corradini
andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-18: Laziness, Algebraic Datatypes and Higher Order Functions
Laziness

• Haskell is a **lazy** language
• Functions and data constructors (also user-defined ones) don’t evaluate their arguments until they need them

```
cond True  t e = t
cond False t e = e
cond :: Bool -> a -> a -> a

cond True [] [1..] => []
```

• Programmers can write control-flow operators that have to be built-in in eager languages

```
(||) :: Bool -> Bool -> Bool
True  || x = True
False || x = x
```

Short-circuiting “or”
List Comprehensions

• Notation for constructing new lists from old ones:

```plaintext
myData = [1,2,3,4,5,6,7]
twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]
twiceEvenData = [2 * x | x <- myData, x `mod` 2 == 0]
-- [4,8,12]
```

• Similar to “set comprehension”

\[\{ x | x \in A \land x > 6 \} \]
More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] -- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] -- more lists

length xs = sum [1 | _ <- xs] -- anonymous (don’t care) var

-- strings are lists...
removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]

Datatype Declarations

• Examples

```
data Color = Red | Yellow | Blue
    elements are Red, Yellow, Blue
```

```
data Atom = Atom String | Number Int
    elements are Atom “A”, Atom “B”, ..., Number 0, ...
```

```
data List    = Nil  |   Cons (Atom, List)
    elements are Nil, Cons(Atom “A”, Nil), ...
    Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...
```

• General form

```
data <name> = <clause> | ... | <clause>
    <clause> ::= <constructor> | <constructor> <type>
```

– Type name and constructors must be Capitalized.
Datatypes and Pattern Matching

• Recursively defined data structure

```haskell
data Tree = Leaf Int | Node (Int, Tree, Tree)
```

```haskell
Node(4, Node(3, Leaf 1, Leaf 2),
    Node(5, Leaf 6, Leaf 7))
```

• Constructors can be used in Pattern Matching

• Recursive function

```haskell
sum (Leaf n) = n
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)
```
Case Expression

• Datatype

```haskell
data Exp = Var Int | Const Int | Plus (Exp, Exp)
```

• Case expression

```haskell
case e of
  Var n -> ...
  Const n -> ...
  Plus(e1,e2) -> ...
```

– Indentation matters in case statements in Haskell.
Function Types in Haskell

In Haskell, \(f :: A \rightarrow B \) means for every \(x \in A \),

\[
f(x) = \begin{cases}
\text{some element } y = f(x) \in B \\
\text{run forever}
\end{cases}
\]

In words, “if \(f(x) \) terminates, then \(f(x) \in B \).”

In ML, functions with type \(A \rightarrow B \) can throw an exception or have other effects, but not in Haskell.

Prelude> :t not -- type of some predefined functions
not :: Bool \rightarrow Bool
Prelude> :t (+)
(+) :: Num a \Rightarrow a \rightarrow a \rightarrow a
Prelude> :t (:)
(:) :: a \rightarrow [a] \rightarrow [a]
Prelude> :t elem
elem :: Eq a \Rightarrow a \rightarrow [a] \rightarrow Bool

Note: if \(f \) is a standard binary function, `\f` is its infix version
If \(x \) is an infix (binary) operator, \((x) \) is its prefix version.
From loops to recursion

• In functional programming, **for** and **while** loops are replaced by using **recursion**

• **Recursion**: subroutines call themselves directly or indirectly (mutual recursion)

```haskell
length' [] = 0
length' (x:s) = 1 + length'(s)

// definition using guards and pattern matching
take' :: (Num i, Ord i) => i -> [a] -> [a]
take' n _ |
  | n <= 0 = []
take' _ [] = []
take' n (x:xs) = x : take' (n-1) xs
```
Higher-Order Functions

• Functions that take other functions as arguments or return a function as a result are **higher-order functions**.

• Pervasive in functional programming

```haskell
applyTo5 :: Num t1 => (t1 -> t2) -> t2 -- function as arg
applyTo5 f = f 5
> applyTo5 succ ==> 6
> applyTo5 (7 +) ==> 12

applyTwice :: (a -> a) -> a -> a -- function as arg and res
applyTwice f x = f (f x)
> applyTwice (+3) 10 ==> 16
> applyTwice (++ " HAHA") "HEY" ==> "HEY HAHA HAHA"
> applyTwice (3:) [1] ==> [3,3,1]
```
Higher-Order Functions

• Can be used to support alternative syntax
• Example: From functional to stream-like

\[(|>) :: t1 \to (t1 \to t2) \to t2\]
\[(|>) a f = f a\]

> \text{length} (\text{tail} (\text{reverse} [1,2,3])) \Rightarrow 2

> [1,2,3] |> \text{reverse} |> \text{tail} |> \text{length} \Rightarrow 2
Higher-Order Functions... everywhere

• Any curried function with more than one argument is higher-order: applied to one argument it returns a function

```
(+) :: Num a => a -> a -> a
> let f = (+) 5           // partial application
> :t f   ==>  f :: Num a => a -> a
> f 4    ==>  9

elem :: (Eq a, Foldable t) => a -> t a -> Bool
> let isUpper = (`elem` ['A'..'Z'])
> :t isUpper  ==>  isUpper :: Char -> Bool
> isUpper 'A' ==>  True
> isUpper '0' ==>  False
```
Higher-Order Functions: the map combinator

map: applies argument function to each element in a collection.

\[
\text{map} :: (a -> b) -> [a] -> [b]
\]

\[
\text{map _ _ [] = []}
\]

\[
\text{map _ f (x:xs) = f x : map f xs}
\]

\[
> \text{map (+3) [1,5,3,1,6]}
\]
\[
[4,8,6,4,9]
\]

\[
> \text{map (++ "!")} ["BIFF", "BANG", "POW"]
\]
\[
["BIFF!","BANG!","POW!"]
\]

\[
> \text{map (replicate 3) [3..6]}
\]
\[
[[3,3,3],[4,4,4],[5,5,5],[6,6,6]]
\]

\[
> \text{map (map (\^2)) [[1,2],[3,4,5,6],[7,8]]}
\]
\[
[[1,4],[9,16,25,36],[49,64]]
\]

\[
> \text{map _ fst [(1,2),(3,5),(6,3),(2,6),(2,5)]}
\]
\[
[1,3,6,2,2]
\]
Higher-Order Functions:
the filter combinator

filter: takes a collection and a boolean predicate, and returns the collection of the elements satisfying the predicate

```
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
    | p x    = x : filter p xs
    | otherwise = filter p xs

> filter (>3) [1,5,3,2,1,6,4,3,2,1]
[5,6,4]
> filter (==3) [1,2,3,4,5]
[3]
> filter even [1..10]
[2,4,6,8,10]
> let notNull x = not (null x)
in filter notNull [[1,2,3],[],[],[3,4,5],[2,2],[],[],[],[]]
[[1,2,3],[3,4,5],[2,2]]
```
Higher-Order Functions: the reduce combinator

reduce (foldl, foldr): takes a collection, an initial value, and a function, and combines the elements in the collection according to the function.

```haskell
-- folds values from end to beginning of list
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

-- variants for non-empty lists
foldr1 :: Foldable t => (a -> a -> a) -> t a -> a
foldl1 :: Foldable t => (a -> a -> a) -> t a -> a
```
Examples

\[
\text{sum'} :: (\text{Num } a) \Rightarrow [a] \rightarrow a
\]
\[
\text{sum'} \; \text{xs} = \text{foldl} \; (\lambda \text{acc} \; x \rightarrow \text{acc} + x) \; 0 \; \text{xs}
\]

\[
\text{maximum'} :: (\text{Ord } a) \Rightarrow [a] \rightarrow a
\]
\[
\text{maximum'} = \text{foldr1} \; (\lambda x \; \text{acc} \rightarrow \text{if } x > \text{acc} \; \text{then } x \; \text{else } \text{acc})
\]

\[
\text{reverse'} :: [a] \rightarrow [a]
\]
\[
\text{reverse'} = \text{foldl} \; (\lambda \text{acc} \; x \rightarrow x : \text{acc}) \; []
\]

\[
\text{product'} :: (\text{Num } a) \Rightarrow [a] \rightarrow a
\]
\[
\text{product'} = \text{foldr1} \; (*)
\]

\[
\text{filter'} :: (a \rightarrow \text{Bool}) \rightarrow [a] \rightarrow [a]
\]
\[
\text{filter'} \; p = \text{foldr} \; (\lambda x \; \text{acc} > \text{if } p \; x \; \text{then } x : \text{acc} \; \text{else } \text{acc}) \; []
\]

\[
\text{head'} :: [a] \rightarrow a
\]
\[
\text{head'} = \text{foldr1} \; (\lambda x _ \rightarrow x)
\]

\[
\text{last'} :: [a] \rightarrow a
\]
\[
\text{last'} = \text{foldl1} \; (_ \; x \rightarrow x)
\]
The next slides were not presented during the course. They are included in this document for the interested reader, but are not part of the syllabus of the course.
On efficiency

• **Iteration** and **recursion** are equally powerful in theoretical sense: Iteration can be expressed by recursion and vice versa

• Recursion is the natural solution when the solution of a problem is defined in terms of simpler versions of the same problem, as for **tree traversal**

• In general a procedure call is *much more expensive* than a conditional branch

• Thus recursion is in general less efficient, but good compilers for functional languages can perform good code optimization

• Use of **combinators**, like *map, reduce (foldl, foldr), filter, foreach,*... strongly encouraged, because they are highly optimized by the compiler.
Tail-Recursive Functions

• **Tail-recursive functions** are functions in which no operations follow the recursive call(s) in the function, thus the function returns immediately after the recursive call:

 \[
 \text{tail-recursive} \quad \quad \text{not tail-recursive}
 \]

 int trfun() { ...
 return trfun(); }

 int rfun() { ...
 return 1+rfun(); }

• A tail-recursive call could *reuse* the subroutine's frame on the run-time stack, since the current subroutine state is no longer needed
 – Simply eliminating the push (and pop) of the next frame will do

• In addition, we can do more for **tail-recursion optimization**: the compiler replaces tail-recursive calls by jumps to the beginning of the function
Tail-Recursion Optimization: Example

```c
int gcd(int a, int b) // tail recursive
{
    if (a==b) return a;
    else if (a>b) return gcd(a-b, b);
    else return gcd(a, b-a);
}
```

```c
int gcd(int a, int b) // possible optimization
{
    start:
    if (a==b) return a;
    else if (a>b) { a = a-b; goto start; }
    else { b = b-a; goto start; }
}
```

```c
int gcd(int a, int b) // comparable efficiency
{
    while (a!=b)
        if (a>b) a = a-b;
        else b = b-a;
    return a;
}
```
Tail-Call Optimization

- **Tail-call**: a function returns calling another function, not necessarily itself
- Optimization still possible, reusing the stack frame
- Note: Number/size of parameters can differ

Traditional stack frame layout

```
z=f(x_1,..,x_m)
function f(x_1,..,x_m) {
  ...
  return g(y_1,..,y_n)
}  
function g(y_1,..,y_n) {  
  ...
  return   
}
```

Stack with tail-call optimization

```
z=f(x_1,..,x_m)
function f(x_1,..,x_m) {
  ...
  return g(y_1,..,y_n)
} 
function g(y_1,..,y_n) {
  ...
  return
}
```

- The return value of `f`
- The return value of `g`
- Common variables between current and parent frames
Converting Recursive Functions to Tail-Recursive Functions

- Remove the work after the recursive call and include it in some other form as a computation that is passed to the recursive call
- For example

```haskell
reverse [] = [] -- quadratic
reverse (x:xs) = (reverse xs) ++ [x]
```

can be rewritten into a tail-recursive function:

```haskell
reverse xs = -- linear, tail recursive
    let rev ( [], acc ) = acc
        rev ( y:ys, acc ) = rev ( ys, y:acc )
    in rev ( xs, [] )
```

Equivalently, using the `where` syntax:

```haskell
reverse xs = -- linear, tail recursive
    rev ( xs, [] )
    where rev ( [], acc ) = acc
        rev ( y:ys, acc ) = rev ( ys, y:acc )
```
Converting Recursive Functions to Tail-Recursive Functions

• Another example: the non-tail-recursive function computing \[\sum_{n=low}^{high} f(n) \]

\[
\text{summation} = \ \lambda (f, \text{low}, \text{high}) \rightarrow \\
\quad \text{if (low == high) then (f low)} \\
\quad \text{else (f low) + summation (f, low + 1, high)}
\]

can be rewritten into a tail-recursive function:

\[
\text{summationTR} = \ \lambda (f, \text{low}, \text{high}, \text{subtotal}) \rightarrow \\
\quad \text{if (low == high) } \\
\quad \qquad \text{then subtotal + (f low)} \\
\quad \text{else summationTR (f, low + 1, high, subtotal + (f low))}
\]
Converting recursion into tail recursion: Fibonacci

• The Fibonacci function implemented as a recursive function is very inefficient as it takes exponential time to compute:

```haskell
fib = \n -> if  n == 0 then 1
    
    else if n == 1 then 1
    
    else fib (n - 1) + fib (n - 2)
```

with a tail-recursive helper function, we can run it in O(n) time:

```haskell
fibTR = \n -> let fibhelper (f1, f2, i) =
    
    if (n == i) then f2
    
    else fibhelper (f2, f1 + f2, i + 1)
    
    in fibhelper (0,1,0)
```
Comparing foldl and foldr

-- folds values from end to beginning of list
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

• foldl is tail-recursive, foldr is not. But because of laziness Haskell has no tail-recursion optimization.
• foldl' is a variant of foldl where f is evaluated strictly. It is more efficient.

See
https://wiki.haskell.org/Foldr_Foldl_Foldl'
static int indexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex) {

 char first = target[targetOffset];
 int max = sourceOffset + (sourceCount - targetCount);

 for (int i = sourceOffset + fromIndex; i <= max; i++) {
 /* Look for first character. */
 if (source[i] != first) {
 while (++i <= max && source[i] != first);
 }

 /* Found first character, now look at the rest of v2 */
 if (i <= max) {
 int j = i + 1;
 int end = j + targetCount - 1;
 for (int k = targetOffset + 1; j < end && source[j] == target[k]; j++, k++);

 if (j == end) {
 /* Found whole string. */
 return i - sourceOffset;
 }
 }
 }

 return -1;
}
Searching a Substring: Exploiting Laziness

isSubString :: [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isSubString [] x = True
isSubString (y:ys) [] = False
isSubString (y:ys) (x:xs) =
 if (x == y) then isSubString ys xs else False

suffixes :: [a] -> [[a]]
-- All suffixes of s
suffixes [] = [[]]
suffixes (x:xs) = (x:xs) : suffixes xs

or :: [Bool] -> Bool
-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs) = b || or bs

isPrefixOf :: Eq a => [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys) (x:xs) =
 if (x == y) then isPrefixOf ys xs else False