301AA - Advanced Programming

Lecturer: Andrea Corradini

andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-20: Type Classes in Haskell
Core Haskell

• Basic Types
 – Unit
 – Booleans
 – Integers
 – Strings
 – Reals
 – Tuples
 – Lists
 – Records

• Patterns
• Declarations
• Functions
• Polymorphism
• Type declarations
 • Type Classes
 • Monads
 • Exceptions
Polymorphism in Haskell

Polymorphism

Universal

Parametric

Inclusion

Coercion

Type Inference

Implicit

Explicit

Bounded

Covariant

Invariant

Contravariant

Ad hoc

Overriding

Overloading

Type classes
Ad hoc polymorphism: **overloading**

- Present in all languages, at least for built-in arithmetic operators: +, *, -, ...
- Sometimes supported for user defined functions (Java, C++, ...)
- C++, Haskell allow overloading of primitive operators
- The code to execute is determined by the type of the arguments, thus
 - **early binding** in statically typed languages
 - **late binding** in dynamically typed languages
Overloading: an example

• Function for squaring a number:
 \[
 \text{sqr}(x) \{ \text{return} \ x \ast \ x; \}
 \]
• Typed version (like in C):
 \[
 \text{int} \ \text{sqr} (\text{int} \ x) \{ \text{return} \ x \ast \ x; \}
 \]
• Multiple versions for different types:
 \[
 \text{int} \ \text{sqrInt} (\text{int} \ x) \{ \text{return} \ x \ast \ x; \}
 \]
 \[
 \text{double} \ \text{sqrDouble} (\text{double} \ x) \{ \text{return} \ x \ast \ x; \}
 \]
• Overloading (Java, C++):
 \[
 \text{int} \ \text{sqr} (\text{int} \ x) \{ \text{return} \ x \ast \ x; \}
 \]
 \[
 \text{double} \ \text{sqr} (\text{double} \ x) \{ \text{return} \ x \ast \ x; \}
 \]
• But which type can be inferred by ML/Haskell?
 \[
 > \ \text{sqr} \ x = \ x \ast \ x
 \]
Overloading besides arithmetic

• Some functions are "fully polymorphic"

 \texttt{length} :: [\textit{w}] \to \text{Int}

• Many useful functions are less polymorphic

 \texttt{member} :: [\textit{w}] \to \textit{w} \to \text{Bool}

• Can list membership work for any type?
 – No! Only for types \textit{w} that support equality.

 \texttt{sort} :: [\textit{w}] \to [\textit{w}]

• Can list sorting work for any type?
 – No! Only for types \textit{w} that support ordering.
Overloading Arithmetic, Take 1

• Allow functions containing overloaded symbols to define multiple functions:

```
square x = x * x          -- legal
   -- Defines two versions:
   -- Int -> Int and Float -> Float
```

• But consider:

```
squares (x,y,z) =
   (square x, square y, square z)
   -- There are 8 possible versions!
```

• Approach not widely used because of exponential growth in number of versions.
Overloading Arithmetic, Take 2

• Basic operations such as + and * can be overloaded, but not functions defined from them.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Legal Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 * 3</td>
<td>legal</td>
</tr>
<tr>
<td>3.14 * 3.14</td>
<td>legal</td>
</tr>
<tr>
<td>square x = x * x</td>
<td>Int -> Int</td>
</tr>
<tr>
<td>square 3</td>
<td>legal</td>
</tr>
<tr>
<td>square 3.14</td>
<td>illegal</td>
</tr>
</tbody>
</table>

• **Standard ML** uses this approach.
• Not satisfactory: Programmer cannot define functions that implementation might support.
Overloading Equality, Take 1

- Equality defined only for types that admit equality: types not containing function or abstract types.

\[
\begin{align*}
3 \times 3 &= 9 & \text{-- legal} \\
'a' &= 'b' & \text{-- legal} \\
\lambda x \to x &= \lambda y \to y+1 & \text{-- illegal}
\end{align*}
\]

- Overload equality like arithmetic ops + and * in SML.
- But then we can’t define functions using ‘==’:

```haskell
member [] y = False
member (x:xs) y = (x==y) || member xs y

member [1,2,3] 3 -- ok if default is Int
member "Haskell" 'k' -- illegal
```

- Approach adopted in first version of SML.
Overloading Equality, Take 2

• Make type of equality fully polymorphic

\[(==) :: a \rightarrow a \rightarrow \text{Bool}\]

• Type of list membership function

\[\text{member} :: [a] \rightarrow a \rightarrow \text{Bool}\]

• **Miranda** used this approach.
 – Equality applied to a **function** yields a runtime error
 – Equality applied to an **abstract type** compares the underlying representation, which violates abstraction principles
Overloading Equality, Take 3

• Make equality polymorphic **in a limited way**:

\[
(\texttt{==}) \, : \, \texttt{a(==)} \rightarrow \texttt{a(==)} \rightarrow \texttt{Bool}
\]

where \texttt{a(==)} is type variable restricted to **types with equality**

• Now we can type the member function:

```
member :: \texttt{a(==)} \rightarrow \texttt{[a(==)]} \rightarrow \texttt{Bool}
member 4 [2,3] :: Bool
member ‘c’ [‘a’, ‘b’, ‘c’] :: Bool
member (\texttt{\(y \rightarrow y*2\)}) [\\texttt{\(x \rightarrow x, x \rightarrow x+2\)}] -- type error
```

• Approach used in SML today, where the type \texttt{a(==)} is called an **eqtype variable** and is written "\texttt{a}" (while normal type variables are written "\texttt{a}\)
Type Classes

• Type classes solve these problems
 – Provide concise types to describe overloaded functions, so no exponential blow-up
 – Allow users to define functions using overloaded operations, eg, `square`, `squares`, and `member`
 – Allow users to declare new collections of overloaded functions: equality and arithmetic operators are not privileged built-ins
 – Generalize ML’s eqtypes to arbitrary types
 – Fit within type inference framework
Intuition

• A function to sort lists can be passed a comparison operator as an argument:

```haskell
qsort:: (a -> a -> Bool) -> [a] -> [a]
qsort cmp [] = []
qsort cmp (x:xs) = qsort cmp (filter (cmp x) xs)
    ++ [x] ++
    qsort cmp (filter (not cmp x) xs)
```

– This allows the function to be parametric

• We can built on this idea ...
Intuition (continued)

• Consider the “overloaded” parabola function

 \[\text{parabola } x = (x \times x) + x \]

• We can rewrite the function to take the operators it contains as an argument

 \[\text{parabola}' \ (\text{plus, times}) \ x = \text{plus} \ (\text{times} \ x \ x) \ x \]

 – The extra parameter is a “dictionary” that provides implementations for the overloaded ops.
 – We have to rewrite all calls to pass appropriate implementations for plus and times:

 \[y = \text{parabola}' \ (\text{intPlus}, \text{intTimes}) \ 10 \]
 \[z = \text{parabola}' \ (\text{floatPlus}, \text{floatTimes}) \ 3.14 \]
Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Accessor functions
get_plus :: MathDict a -> (a->a->a)
get_plus (MkMathDict p t) = p

get_times :: MathDict a -> (a->a->a)
get_times (MkMathDict p t) = t

-- “Dictionary-passing style”
parabola :: MathDict a -> a -> a
parabola dict x = let plus = get_plus dict
times = get_times dict
 in plus (times x x) x

Type class declarations will generate Dictionary type and selector functions
Systematic programming style

-- Dictionary type
data MathDict a = MkMathDict (a->a->a) (a->a->a)

-- Dictionary construction
intDict = MkMathDict intPlus intTimes
floatDict = MkMathDict floatPlus floatTimes

-- Passing dictionaries
y = parabola intDict 10
z = parabola floatDict 3.14

Type class instance declarations produce instances of the Dictionary

Compiler will add a dictionary parameter and rewrite the body as necessary
Type Class Design Overview

- **Type class declarations**
 - Define a set of operations, give the set a name
 - Example: `Eq a` type class
 - operations `==` and `\=` with `type a -> a -> Bool`

- **Type class instance declarations**
 - Specify the implementations for a particular type
 - For `Int` instance, `==` is defined to be integer equality

- **Qualified types (or Type Constraints)**
 - Concisely express the operations required on otherwise polymorphic type

```
member :: Eq w => w -> [w] -> Bool
```
Qualified Types

“If a function works for every type with particular properties, the type of the function says just that:

```
Member :: Eq w => w -> [w] -> Bool
```

Otherwise, it must work for any type

```
sort :: Ord a => [a] -> [a]
serialise :: Show a => a -> String
square :: Num n => n -> n
squares :: (Num t, Num t1, Num t2) => (t, t1, t2) -> (t, t1, t2)
```

“for all types w that support the Eq operations”

```
reverse :: [a] -> [a]
filter :: (a -> Bool) -> [a] -> [a]
```
Type Classes

square :: Num n => n -> n
square x = x*x

class Num a where
 (+) :: a -> a -> a
 (*) :: a -> a -> a
 negate :: a -> a
 ...etc...

instance Num Int where
 a + b = intPlus a b
 a * b = intTimes a b
 negate a = intNeg a
 ...etc...

The class declaration says what the Num operations are.

Works for any type 'n' that supports the Num operations.

An instance declaration for a type T says how the Num operations are implemented on T's

intPlus :: Int -> Int -> Int
intTimes :: Int -> Int -> Int
etc, defined as primitives.
Compiling Overloaded Functions

When you write this...

```haskell
square :: Num n => n -> n
square x = x*x
```

...the compiler generates this

```haskell
square :: Num n -> n -> n
square d x = (*) d x x
```

The “Num n =>” turns into an extra value argument to the function. It is a value of data type Num n and it represents a dictionary of the required operations.

A value of type (Num n) is a dictionary of the Num operations for type n
Compiling Type Classes

When you write this...

```haskell
square :: Num n => n -> n
square x = x*x
```

...the compiler generates this

```haskell
square :: Num n -> n -> n
square d x = (*) d x x
```

The class decl translates to:

A data type decl for Num
A selector function for each class operation

```
class Num n where
  (+) :: n -> n -> n
  (*) :: n -> n -> n
  negate :: n -> n
  ...etc...
```

```
data Num n
  = MkNum (n -> n -> n)
    (n -> n -> n)
    (n -> n)
    ...etc...

  ...
  (*) :: Num n -> n -> n -> n
  (*) (MkNum _ m _ ...) = m
```

A value of type (Num n) is a dictionary of the Num operations for type n
Compiling Instance Declarations

When you write this...

```haskell
square :: Num n => n -> n
square x = x*x
```

...the compiler generates this

```haskell
square :: Num n -> n -> n
square d x = (*) d x x
```

```haskell
instance Num Int where
  a + b = intPlus a b
  a * b = intTimes a b
  negate a = intNeg a
  ...etc...
```

```
instance Num Int where
  a + b = intPlus a b
  a * b = intTimes a b
  negate a = intNeg a
  ...etc...
```

A value of type (Num n) is a dictionary of the Num operations for type n.
Implementation Summary

• The compiler translates each function that uses an overloaded symbol into a function with an extra parameter: the dictionary.
• References to overloaded symbols are rewritten by the compiler to lookup the symbol in the dictionary.
• The compiler converts each type class declaration into a dictionary type declaration and a set of selector functions.
• The compiler converts each instance declaration into a dictionary of the appropriate type.
• The compiler rewrites calls to overloaded functions to pass a dictionary. It uses the static, qualified type of the function to select the dictionary.
Functions with Multiple Dictionaries

squares :: (Num a, Num b, Num c) => (a, b, c) -> (a, b, c)
squares(x,y,z) = (square x, square y, square z)

Note the concise type for the squares function!

squares :: (Num a, Num b, Num c) -> (a, b, c) -> (a, b, c)
squares (da,db,dc) (x, y, z) =
 (square da x, square db y, square dc z)

Pass appropriate dictionary on to each square function.
Compositionality

Overloaded functions can be defined from other overloaded functions:

\[
\text{sumSq} :: \text{Num } n \Rightarrow n \rightarrow n \rightarrow n
\]

\[
\text{sumSq } x \ y = \text{square } x + \text{square } y
\]

Extract addition operation from d

Pass on d to square

\[
\text{sumSq} :: \text{Num } n \Rightarrow n \rightarrow n \rightarrow n
\]

\[
\text{sumSq } d \ x \ y = (+) \ d \ (\text{square } d \ x) \ (\text{square } d \ y)
\]
Compositionality

Build compound instances from simpler ones:

```haskell
class Eq a where
  (==) :: a -> a -> Bool

instance Eq Int where
  (==) = intEq -- intEq primitive equality

instance (Eq a, Eq b) => Eq (a, b) where
  (u,v) == (x,y) = (u == x) && (v == y)

instance Eq a => Eq [a] where
  (==) []     []     = True
  (==) (x:xs) (y:ys) = x==y && xs == ys
  (==) _       _       = False
```
Compound Translation

Build compound instances from simpler ones.

class Eq a where
 (==) :: a -> a -> Bool
instance Eq a => Eq [a] where
 (==) [] [] = True
 (==) (x:xs) (y:ys) = x==y && xs == ys
 (==) _ _ = False

data Eq = MkEq (a->a->Bool) -- Dictionary type
 (==) (MkEq eq) = eq
 dEqList :: Eq a -> Eq [a] -- Selector
 dEqList d = MkEq eql
 where
 eql [] [] = True
 eql (x:xs) (y:ys) = (==) d x y && eql xs ys
 eql _ _ = False

Build compound instances from simpler ones.
Many Type Classes

- **Eq**: equality
- **Ord**: comparison
- **Num**: numerical operations
- **Show**: convert to string
- **Read**: convert from string
- **Testable, Arbitrary**: testing.
- **Enum**: ops on sequentially ordered types
- **Bounded**: upper and lower values of a type
- Generic programming, reflection, monads, ...
- And many more.
Subclasses

• We could treat the Eq and Num type classes separately

```
memsq :: (Eq a, Num a) => a -> [a] -> Bool
memsq x xs = member (square x) xs
```

 – But we expect any type supporting Num to also support Eq

• A subclass declaration expresses this relationship:

```
class Eq a => Num a where
  (+) :: a -> a -> a
  (*) :: a -> a -> a
```

• With that declaration, we can simplify the type of the function

```
memsq :: Num a => a -> [a] -> Bool
memsq x xs = member (square x) xs
```
Default Methods

• Type classes can define “default methods”

```haskell
-- Minimal complete definition: 
-- (==) or (/=)
class Eq a where
    (==) :: a -> a -> Bool
    x == y  =  not (x /= y)
    (/=) :: a -> a -> Bool
    x /= y  =  not (x == y)
```

• Instance declarations can override default by providing a more specific definition.
Deriving

- For **Read, Show, Bounded, Enum, Eq, and Ord**, the compiler can generate instance declarations automatically.

```haskell
data Color = Red | Green | Blue
           deriving (Show, Read, Eq, Ord)
```

- **Ad hoc**: derivations apply only to types where derivation code works.
class **Num** a where
 (+) :: a -> a -> a
 (-) :: a -> a -> a
 fromInteger :: Integer -> a
 ...

inc :: Num a => a -> a
inc x = x + 1

Advantages:
- Numeric literals can be interpreted as values of any appropriate numeric type
- Example: 1 can be an Integer or a Float or a user-defined numeric type.
Type Inference with overloading

• In presence of overloading (Type Classes), type inference infers a \textit{qualified type} \(Q \rightarrow T \)

 – \(T \) is a Hindley Milner type, inferred as usual

 – \(Q \) is set of type class predicates, called a \textit{constraint}

• Consider the example function:

```haskell
example z xs =
  case xs of
    []     -> False
    (y:ys) -> y > z || (y==z && ys == [z])
```

 – Type \(T \) is \(\text{a} \rightarrow [\text{a}] \rightarrow \text{Bool} \)

 – Constraint \(Q \) is \{ \text{Ord a}, \text{Eq a}, \text{Eq [a]} \}

\[\begin{align}
\text{Ord a} & \quad \text{because} \quad y > z \\
\text{Eq a} & \quad \text{because} \quad y == z \\
\text{Eq [a]} & \quad \text{because} \quad ys == [z]
\end{align}\]
Simplifying Type Constraints

• Constraint sets Q can be simplified:
 – Eliminate duplicates
 • (Eq a, Eq a) simplifies to Eq a
 – Use an **instance declaration**
 • If we have instance Eq a => Eq [a],
 then (Eq a, Eq [a]) simplifies to Eq a
 – Use a **class declaration**
 • If we have class Eq a => Ord a where ...,
 then (Ord a, Eq a) simplifies to Ord a

• Applying these rules,
 – (Ord a, Eq a, Eq[a]) simplifies to Ord a
Type Inference with overloading

• Putting it all together:

```haskell
eexample z xs =
  case xs of
    []    -> False
    (y:ys) -> y > z || (y==z && ys ==[z])
```

- \(T = a \rightarrow [a] \rightarrow \text{Bool} \)
- \(Q = (\text{Ord } a, \text{Eq } a, \text{Eq } [a]) \)
- \(Q \) simplifies to \(\text{Ord } a \)
- example :: Ord a => a -> [a] -> Bool
Detecting Errors

- Errors are detected when predicates are known not to hold:

\[
\text{Prelude} \triangleright \ 'a' + 1 \\
\text{<interactive>}:33:1: \text{error:}
\begin{itemize}
 \item No instance for (Num Char) arising from a use of `+' \\
 \item In the expression: 1 + 'a'
\end{itemize}
\text{In an equation for `it': it = 1 + 'a'}
\]

\[
\text{Prelude} \triangleright (\backslash x \to x) \\
\text{<interactive>}:34:1: \text{error:}
\begin{itemize}
 \item No instance for (Show (p0 -> p0)) arising from a use of `print' (maybe you haven't applied a function to enough arguments?) \\
 \item In a stmt of an interactive GHCi command: print it
\end{itemize}
\]