301AA - Advanced Programming

Lecturer: Andrea Corradini

andrea@di.unipi.it
http://pages.di.unipi.it/corradini/

AP-19: Laziness, Algebraic Datatypes and Higher Order Functions
Laziness

• Haskell is a lazy language

• Functions and data constructors (also user-defined ones) don’t evaluate their arguments until they need them

```haskell
cond True  t  e = t
cond False t  e = e
cond :: Bool -> a -> a -> a

cond True  []  [1..]  =>  []
```

• Programmers can write control-flow operators that have to be built-in in eager languages

```haskell
(||) :: Bool -> Bool -> Bool
True  || x = True
False || x = x
```

Short-circuiting “or”
List Comprehensions

• Notation for constructing new lists from old ones:

```haskell
myData = [1,2,3,4,5,6,7]

twiceData = [2 * x | x <- myData]
-- [2,4,6,8,10,12,14]

twiceEvenData = [2 * x | x <- myData, x `mod` 2 == 0]
-- [4,8,12]
```

• Similar to “set comprehension”

\[
\{ x \mid x \in A \land x > 6 \}
\]
More on List Comprehensions

ghci> [x | x <- [10..20], x /= 13, x /= 15, x /= 19]
[10,11,12,14,16,17,18,20] -- more predicates

ghci> [x*y | x <- [2,5,10], y <- [8,10,11]]
[16,20,22,40,50,55,80,100,110] -- more lists

length xs = sum [1 | _ <- xs] -- anonymous (don’t care) var

-- strings are lists...
removeNonUppercase st = [c | c <- st, c `elem` ['A'..'Z']]
Datatype Declarations

• Examples

```
data Color = Red | Yellow | Blue
```

- elements are Red, Yellow, Blue

```
data Atom = Atom String | Number Int
```

- elements are Atom “A”, Atom “B”, …, Number 0, …

```
data List = Nil | Cons (Atom, List)
```

- elements are Nil, Cons(Atom “A”, Nil), ...
- Cons(Number 2, Cons(Atom(“Bill”), Nil)), ...

• General form

```
data <name> = <clause> | ... | <clause>
<clause> ::= <constructor> | <constructor> <type>
```

- Type name and constructors must be Capitalized.
Datatypes and Pattern Matching

- Recursively defined data structure

  ```haskell
data Tree = Leaf Int | Node (Int, Tree, Tree)
```

- Constructors can be used in Pattern Matching

- Recursive function

  ```haskell
sum (Leaf n) = n
sum (Node(n,t1,t2)) = n + sum(t1) + sum(t2)
```
Case Expression

• Datatype

\[
\text{data Exp} = \text{Var Int} \mid \text{Const Int} \mid \text{Plus (Exp, Exp)}
\]

• Case expression

\[
\text{case e of}
\begin{align*}
\text{Var n} & \rightarrow \ldots \\
\text{Const n} & \rightarrow \ldots \\
\text{Plus(e1,e2)} & \rightarrow \ldots
\end{align*}
\]

– Indentation matters in case statements in Haskell.
Function Types in Haskell

In Haskell, \(f :: A \rightarrow B \) means for every \(x \in A \),

\[
f(x) = \begin{cases}
\text{some element } y = f(x) \in B \\
\text{run forever}
\end{cases}
\]

In words, “if \(f(x) \) terminates, then \(f(x) \in B \).”

In ML, functions with type \(A \rightarrow B \) can throw an exception or have other effects, but not in Haskell.

```
Prelude> :t not -- type of some predefined functions
not :: Bool -> Bool
Prelude> :t (+)
(+) :: Num a => a -> a -> a
Prelude> :t (:)
(:) :: a -> [a] -> [a]
Prelude> :t elem
elem :: Eq a => a -> [a] -> Bool
```

Note: if \(f \) is a standard binary function, \(\preceq f \) is its infix version.
If \(x \) is an infix (binary) operator, \((x) \) is its prefix version.
From loops to recursion

• In functional programming, **for** and **while** loops are replaced by using **recursion**

• **Recursion**: subroutines call themselves directly or indirectly (mutual recursion)

```haskell
length' [] = 0
length' (x:s) = 1 + length'(s)

// definition using guards and pattern matching
take' :: (Num i, Ord i) => i -> [a] -> [a]
take' n _     | n <= 0     = []
take' _ []    = []
take' n (x:xs) = x : take' (n-1) xs
```
Higher-Order Functions

• Functions that take other functions as arguments or return a function as a result are **higher-order functions**.

• Pervasive in functional programming

```haskell
applyTo5 :: Num t1 => (t1 -> t2) -> t2 -- function as arg
applyTo5 f = f 5
> applyTo5 succ => 6
> applyTo5 (7 +) => 12

applyTwice :: (a -> a) -> a -> a -- function as arg and res
applyTwice f x = f (f x)
> applyTwice (+3) 10 => 16
> applyTwice (++ " HAHA") "HEY" => "HEY HAHA HAHA"
> applyTwice (3:) [1] => [3,3,1]
```
Higher-Order Functions

• Can be used to support alternative syntax
• Example: From functional to stream-like

\[(|>) :: t1 \rightarrow (t1 \rightarrow t2) \rightarrow t2\]
\[(|>) a f = f a\]

> length (tail (reverse [1,2,3])) \Rightarrow 2

> [1,2,3] |> reverse |> tail |> length \Rightarrow 2
Higher-Order Functions... everywhere

• Any curried function with more than one argument is higher-order: applied to one argument it returns a function

\[
(+) :: \text{Num } a \Rightarrow a \rightarrow a \rightarrow a
\]

\[
> \text{let } f = (+) 5 \quad \quad \quad \quad \quad \quad \quad \text{// partial application}
\]

\[
>:t f \quad \Rightarrow \quad f :: \text{Num } a \Rightarrow a \rightarrow a
\]

\[
> f 4 \quad \Rightarrow \quad 9
\]

\[
\text{elem} :: (\text{Eq } a, \text{Foldable } t) \Rightarrow a \rightarrow t \rightarrow \text{a} \rightarrow \text{Bool}
\]

\[
> \text{let } \text{isUpper} = (\text{`elem` ['A'..'Z']})
\]

\[
>:t \text{isUpper} \quad \Rightarrow \quad \text{isUpper} :: \text{Char} \rightarrow \text{Bool}
\]

\[
> \text{isUpper } 'A' \quad \Rightarrow \quad \text{True}
\]

\[
> \text{isUpper } '0' \quad \Rightarrow \quad \text{False}
\]
Higher-Order Functions:
the map combinator

map: applies argument function to each element in a collection.

```haskell
map :: (a -> b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs
```

```haskell
> map (+3) [1,5,3,1,6] [4,8,6,4,9]
> map (++ "!") ["BIFF", "BANG", "POW"] ["BIFF!", "BANG!", "POW!"]
> map (replicate 3) [3..6] [[3,3,3],[4,4,4],[5,5,5],[6,6,6]]
> map (map (^2)) [[1,2],[3,4,5,6],[7,8]] [[1,4],[9,16,25,36],[49,64]]
> map fst [(1,2),(3,5),(6,3),(2,6),(2,5)] [1,3,6,2,2]
```
Higher-Order Functions: the filter combinator

filter: takes a collection and a boolean predicate, and returns the collection of the elements satisfying the predicate

```haskell
filter :: (a -> Bool) -> [a] -> [a]
filter _ [] = []
filter p (x:xs)
    | p x    = x : filter p xs
    | otherwise = filter p xs

> filter (>3) [1,5,3,2,1,6,4,3,2,1] [5,6,4]
> filter (==3) [1,2,3,4,5] [3]
> filter even [1..10] [2,4,6,8,10]
> let notNull x = not (null x)
in filter notNull [[1,2,3],[],[3,4,5],[2,2],[],[],[],[]] [[1,2,3],[3,4,5],[2,2]]```
Higher-Order Functions: the reduce combinator

**reduce** (*foldl, foldr*): takes a collection, an initial value, and a function, and combines the elements in the collection according to the function.

```haskell
-- folds values from end to beginning of list
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

-- folds values from beginning to end of list
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs

-- variants for non-empty lists
foldr1 :: Foldable t => (a -> a -> a) -> t a -> a
foldl1 :: Foldable t => (a -> a -> a) -> t a -> a
```

Binary function

Initial value

List/collection
Examples

```haskell
sum' :: (Num a) => [a] -> a
sum' xs = foldl (\acc x -> acc + x) 0 xs

maximum' :: (Ord a) => [a] -> a
maximum' = foldr1 (\x acc -> if x > acc then x else acc)

reverse' :: [a] -> [a]
reverse' = foldl (\acc x -> x : acc) []

product' :: (Num a) => [a] -> a
product' = foldr1 (*)

filter' :: (a -> Bool) -> [a] -> [a]
filter' p = foldr (\x acc > if p x then x : acc else acc) []

head' :: [a] -> a
head' = foldr1 (\x _ -> x)

last' :: [a] -> a
last' = foldl1 (_ x -> x)
```
On efficiency

- **Iteration** and **recursion** are equally powerful in theoretical sense: Iteration can be expressed by recursion and vice versa.
- Recursion is the natural solution when the solution of a problem is defined in terms of simpler versions of the same problem, as for **tree traversal**.
- In general, a procedure call is **much more expensive** than a conditional branch.
- Thus, recursion is in general less efficient, but good compilers for functional languages can perform good code optimization.
- Use of **combinators**, like `map`, `reduce` (`foldl`, `foldr`), `filter`, `foreach`,... strongly encouraged, because they are highly optimized by the compiler.
Tail-Recursive Functions

- **Tail-recursive functions** are functions in which no operations follow the recursive call(s) in the function, thus the function returns immediately after the recursive call:
  
  ```
 tail-recursive not tail-recursive
 int trfun() int rfun()
 { … } { … }
 return trfun(); return 1+rfun();
 }
  ```

- A tail-recursive call could *reuse* the subroutine's frame on the run-time stack, since the current subroutine state is no longer needed
  - Simply eliminating the push (and pop) of the next frame will do

- In addition, we can do more for *tail-recursion optimization*: the compiler replaces tail-recursive calls by jumps to the beginning of the function
Tail-Recursion Optimization: Example

```c
int gcd(int a, int b) // tail recursive
 { if (a==b) return a;
 else if (a>b) return gcd(a-b, b);
 else return gcd(a, b-a);
 }

int gcd(int a, int b) // possible optimization
 { start:
 if (a==b) return a;
 else if (a>b) { a = a-b; goto start; }
 else { b = b-a; goto start; }
 }

int gcd(int a, int b) // comparable efficiency
 { while (a!=b)
 if (a>b) a = a-b;
 else b = b-a;
 return a;
 }
```
Tail-Call Optimization

- **Tail-call**: a function returns calling another function, not necessarily itself
- Optimization still possible, reusing the stack frame
- Note: Number/size of parameters can differ
Converting Recursive Functions to Tail-Recursive Functions

• Remove the work after the recursive call and include it in some other form as a computation that is passed to the recursive call
• For example

```plaintext
reverse [] = [] -- quadratic
reverse (x:xs) = (reverse xs) ++ [x]
```

can be rewritten into a tail-recursive function:

```plaintext
reverse xs = -- linear, tail recursive
 let rev ([], accum) = accum
 where rev ([], accum) = accum
 rev (y:ys, accum) = rev (ys, y:accum)
 in rev (xs, [])
```

Equivalently, using the `where` syntax:

```plaintext
reverse xs = -- linear, tail recursive
 rev (xs, [])
 where rev ([], accum) = accum
 rev (y:ys, accum) = rev (ys, y:accum)
```
Converting Recursive Functions to Tail-Recursive Functions

- Another example: the non-tail-recursive function computing $\sum_{n=low}^{high} f(n)$

```plaintext
summation = \((f, low, high) \rightarrow \\
\quad \text{if } (low == high) \text{ then } (f \ low) \\
\quad \text{else } (f \ low) + \text{summation} (f, low + 1, high) \)
```

can be rewritten into a tail-recursive function:

```plaintext
summationTR = \((f, low, high, subtotal) \rightarrow \\
\quad \text{if } (low == high) \\
\quad \quad \text{then } subtotal + (f \ low) \\
\quad \text{else } summationTR (f, low + 1, high, subtotal + (f \ low)) \)
```
Converting recursion into tail recursion: Fibonacci

- The Fibonacci function implemented as a recursive function is very inefficient as it takes exponential time to compute:

```haskell
fib = \n -> if n == 0 then 1
 else if n == 1 then 1
 else fib (n - 1) + fib (n - 2)
```

with a tail-recursive helper function, we can run it in O(n) time:

```haskell
fibTR = \n -> let fibhelper (f1, f2, i) =
 if (n == i) then f2
 else fibhelper (f2, f1 + f2, i + 1)
 in fibhelper(0,1,0)
```
Comparing `foldl` and `foldr`

-- folds values from end to beginning of list

```haskell
foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b
foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)
```

-- folds values from beginning to end of list

```haskell
foldl :: Foldable t => (b -> a -> b) -> b -> t a -> b
foldl f z [] = z
foldl f z (x:xs) = foldl f (f z x) xs
```

- `foldl` is tail-recursive, `foldr` is not. But because of laziness Haskell has no tail-recursion optimization.
- `foldl'` is a variant of `foldl` where `f` is evaluated strictly. It is more efficient.

See

https://wiki.haskell.org/Foldr_Foldl_Foldl'
static int indexOf(char[] source, int sourceOffset, int sourceCount, char[] target, int targetOffset, int targetCount, int fromIndex) {

    char first = target[targetOffset];
    int max = sourceOffset + (sourceCount - targetCount);

    for (int i = sourceOffset + fromIndex; i <= max; i++) {
        /* Look for first character. */
        if (source[i] != first) {
            while (++i <= max && source[i] != first);
        }

        /* Found first character, now look at the rest of v2 */
        if (i <= max) {
            int j = i + 1;
            int end = j + targetCount - 1;
            for (int k = targetOffset + 1; j < end && source[j] == target[k]; j++, k++) {
                if (j == end) {
                    /* Found whole string. */
                    return i - sourceOffset;
                }
            }
        }
    }

    return -1;
}
Searching a Substring: Exploiting Laziness

```haskell
isPrefixOf :: Eq a => [a] -> [a] -> Bool
-- returns True if first list is prefix of the second
isPrefixOf [] x = True
isPrefixOf (y:ys) [] = False
isPrefixOf (y:ys) (x:xs) =
 if (x == y) then isPrefixOf ys xs else False

suffixes :: [a] -> [[a]]
-- All suffixes of s
suffixes [] = [[]]
suffixes (x:xs) = (x:xs) : suffixes xs

or :: [Bool] -> Bool
-- (or bs) returns True if any of the bs is True
or [] = False
or (b:bs) = b || or bs

isSubString :: [a] -> [a] -> Bool
x `isSubString` s = or [x `isPrefixOf` t
 | t <- suffixes s]
```