301AA - Advanced Programming [AP-2017]

Lecturer: Andrea Corradini andrea@di.unipi.it
Assistant: Lillo Galletta galletta@di.unipi.it

Department of Computer Science, Pisa
Academic Year 2017/18

AP-2017-02: Motivations and Introduction
Software is Everywhere
Software as Competitive Advantage

Most Admired Companies Making IT a Competitive Advantage (Forbes)

- Accenture
- Amazon
- Apple
- Cleveland Clinic
- General Electric
- Goldman Sachs
- Google
- Hospital Corporation of America
- IBM
- Intermountain Healthcare
- JP Morgan Chase
- Kaiser Permanente
- Mayo Clinic
- Microsoft
- Nestle
- Procter & Gamble
- Progressive Insurance
- Schlumberger
- Target
- Toyota
- Wells Fargo
Programming in the 21 century

• Software as complex as ever
• Command line interface not enough
• Data comes from multiple sources: structured (DB) and unstructured
• Single computer not enough
• Software development is a group activity
• Deployment on Web or mobile devices
Complexity Prompts for Innovation

- Object-Oriented Programming allows ever larger applications to be built
- But limited support for reuse
- OS + libraries not enough
- Reusable components are needed
- Multi-tier applications development increases the choices on how to build applications
Key Ingredients for Complex Software

• **Advanced features** extending programming languages

• **Component models** to ensure reusability

• **Frameworks** to support efficient development of (component based) applications

• **Execution environments** providing runtime support for ever dynamic software systems
The Software Architect

• A new role is needed: **Software Architect**
• to create, define or choose an **application framework**
• to create the component design according to a **component model**
• to structure a complex application into pieces
• to understand the interactions and dependencies among components
• to select the **execution environment / platform** based on cost/performance criteria
• to organize and supervise the development process
What are Frameworks?

• **Software Framework**: A collection of *common code* providing *generic functionality* that can be *selectively overridden* or specialized by user code providing *specific functionality*

• **Application Framework**: A software framework used to implement the *standard structure* of an application for a *specific development environment*
Framework Features

- Frameworks, like *software libraries*, provide *reusable abstractions* of code wrapped in a well-defined API.
- But: **Inversion of control**
 - Unlike in libraries, the overall program's flow of control is not dictated by the caller, but by the framework.
- Helps solving recurring design problems.
- Drives solution
 - Provides a default behavior.
 - Dictates how to fill-in-the-blanks.
- Non-modifiable framework code
 - Extensibility: usually by selective overriding.
Object-oriented programming frameworks consist of a *set of abstract classes*

- An application can be built simply inheriting from pre-existing classes in the framework.
- Instantiation of a framework consists of composing and subclassing the existing classes.
Examples of Frameworks

• General software frameworks
 – .NET – Windows platform. Provides language interoperability
 – Android SDK – Supports development of apps in Java (but does not use a JVM!)
 – Spring – Cross-platform, for Java applications
 – Cocoa – Apple’s native OO API for macOS. Includes C standard library and the Objective-C runtime.
 – Eclipse – Cross-platform, easily extensible IDE with plugins
Examples of Frameworks

• Frameworks for Application with GUI
 – **Gnome** – Written in C; mainly for Linux
 – **Qt** - Cross-platform; written in C++
Examples of Frameworks

- Web Application Frameworks [based on Model-View-Controller design pattern]
 - **ASP.NET** by Microsoft for web sites, web applications and web services
 - **GWT** - Google Web Toolkit (GWT)
 - **Rails** - Written in Ruby - Provides default structures for databases, web services and web pages.
Examples of Frameworks

• Concurrency
 – **Hadoop Map/Reduce** - software framework for applications which process big amounts of data in-parallel on large clusters (thousands of nodes) in a fault-tolerant manner.
 • **Map**: Takes input data and converts it into a set of tuples (key/value pairs).
 • **Reduce**: Takes the output from Map and combines the data tuples into a smaller set of tuples.
Framework Design

• Intellectual Challenging Task
• Requires a deep understanding of the problem domain
• Requires mastering of software (design) patterns, OO methods and polymorphism in particular
Design Patterns

• *General conceptual solutions to recurrent design problems*

• *More abstract than frameworks*
 – Frameworks can be embodied in code, but only *examples* of patterns can be embodied in code
 – Design patterns explain the intent, trade-offs, and consequences of a design

• *Smaller architectural elements than frameworks*
 – A typical framework contains several design patterns but the reverse is never true.

• *Less specialized than frameworks*
 – Frameworks always have a particular application domain
 – Design patterns can be used in nearly any kind of application
The 23 Design Patterns of the Gang of Four
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Design Patterns: Elements of Reusable Object-Oriented Software [1995]
Course objectives and Syllabus
Course Objectives

• Understand programming language technology:
 – Execution Models
 – Run-time
• Analyze programming metaphors:
 – Objects
 – Components
 – Patterns
• Learn advanced programming techniques
• Present state-of-the-art frameworks incorporating these techniques
• Practice with all these concepts through small projects
Run-time Systems

• Virtual Execution Environment
 – Memory Management
 – Thread Management
 – Exception Handling
 – Security
 – Debugging Support
 – AOT and JIT Compilation
 – Dynamic Link/Load
 – Reflection
 – Verification

• A concrete example: the JVM
Selected Advanced Concepts in Programming Language

• Overloading and Type Classes in Haskell
• Lambda expressions and Streams in Java 8
• Closures vs Delegates in CLI
• Algebraic data types and Active patterns in F#
• Associative arrays in scripting languages
• Extensions in Swift
Advanced Programming Techniques

• Generic Programming
 – Java Generics
 – C++ templates
 – C# Generics
 – Scala generics
• Generative Programming
 – Metaprogramming
 – Reflection
 – Template
 – Generators
• Actor based programming
 – Scala and Akka
Component Models and Frameworks

- Component-oriented Programming
- JavaBeans and NetBeans
- Spring and Spring Beans
- COM
- CLR and .NET
- OSGi and Eclipse
- Hadoop Map/Reduce
IEEE Spectrum Ranking 2017-2014

<table>
<thead>
<tr>
<th>Language Rank</th>
<th>Language</th>
<th>Types</th>
<th>Spectrum Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Python</td>
<td> </td>
<td>100.0</td>
</tr>
<tr>
<td>2.</td>
<td>C</td>
<td> </td>
<td>100.0</td>
</tr>
<tr>
<td>3.</td>
<td>Java</td>
<td> </td>
<td>99.4</td>
</tr>
<tr>
<td>4.</td>
<td>C++</td>
<td> </td>
<td>96.9</td>
</tr>
<tr>
<td>5.</td>
<td>C#</td>
<td> </td>
<td>88.6</td>
</tr>
<tr>
<td>6.</td>
<td>R</td>
<td></td>
<td>88.1</td>
</tr>
<tr>
<td>7.</td>
<td>JavaScript</td>
<td> </td>
<td>85.3</td>
</tr>
<tr>
<td>8.</td>
<td>PHP</td>
<td></td>
<td>81.1</td>
</tr>
<tr>
<td>9.</td>
<td>Go</td>
<td> </td>
<td>75.7</td>
</tr>
<tr>
<td>10.</td>
<td>Swift</td>
<td> </td>
<td>74.3</td>
</tr>
<tr>
<td>11.</td>
<td>Arduino</td>
<td> </td>
<td>72.4</td>
</tr>
<tr>
<td>12.</td>
<td>Ruby</td>
<td> </td>
<td>72.0</td>
</tr>
<tr>
<td>13.</td>
<td>Assembly</td>
<td> </td>
<td>71.7</td>
</tr>
<tr>
<td>14.</td>
<td>Matlab</td>
<td></td>
<td>68.6</td>
</tr>
<tr>
<td>15.</td>
<td>Scala</td>
<td> </td>
<td>68.0</td>
</tr>
</tbody>
</table>
Most Popular Coding Languages of 2016

- Python: 26.7%
- C++: 9.9%
- C#: 9.4%
- C: 7.37%
- JS: 6.9%
- Ruby: 5.9%
- Java: 22.6%
- PHP: 3.8%
- Go: 1.27%
- Scala: 1.04%
- Perl: 0.9%
- Obj-C: 0.8%
- TCL: 0.06%
- Clojure: 0.14%
- Lua: 0.19%
- R: 0.37%
- VB-NET: 0.37%
- Bash: 0.4%
- Haskell: 1.8%
<table>
<thead>
<tr>
<th>2015 Rank</th>
<th>2015</th>
<th>Change%</th>
<th>2014</th>
<th>Change%</th>
<th>2013</th>
<th>Change%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Python</td>
<td>26.67%</td>
<td>14.64%</td>
<td>31.24%</td>
<td>3.10%</td>
<td>5.21%</td>
</tr>
<tr>
<td>2</td>
<td>Java</td>
<td>22.58%</td>
<td>15.37%</td>
<td>19.57%</td>
<td>-11.85%</td>
<td>22.20%</td>
</tr>
<tr>
<td>3</td>
<td>C++</td>
<td>9.96%</td>
<td>1.76%</td>
<td>9.79%</td>
<td>-24.70%</td>
<td>13.00%</td>
</tr>
<tr>
<td>4</td>
<td>C#</td>
<td>9.39%</td>
<td>27.37%</td>
<td>7.37%</td>
<td>47.37%</td>
<td>5.00%</td>
</tr>
<tr>
<td>5</td>
<td>C</td>
<td>7.37%</td>
<td>21.37%</td>
<td>6.07%</td>
<td>48.14%</td>
<td>4.10%</td>
</tr>
<tr>
<td>6</td>
<td>JavaScript</td>
<td>6.88%</td>
<td>6.09%</td>
<td>6.48%</td>
<td>24.66%</td>
<td>5.20%</td>
</tr>
<tr>
<td>7</td>
<td>Ruby</td>
<td>5.88%</td>
<td>-17.27%</td>
<td>7.11%</td>
<td>-32.90%</td>
<td>10.60%</td>
</tr>
<tr>
<td>8</td>
<td>PHP</td>
<td>3.82%</td>
<td>5.45%</td>
<td>3.62%</td>
<td>9.84%</td>
<td>3.30%</td>
</tr>
<tr>
<td>9</td>
<td>Haskell</td>
<td>1.77%</td>
<td>17.24%</td>
<td>1.51%</td>
<td>25.83%</td>
<td>1.20%</td>
</tr>
<tr>
<td>10</td>
<td>Go</td>
<td>1.27%</td>
<td>-44.00%</td>
<td>2.26%</td>
<td>50.67%</td>
<td>1.50%</td>
</tr>
<tr>
<td>11</td>
<td>Scala</td>
<td>1.04%</td>
<td>-17.80%</td>
<td>1.27%</td>
<td>27.00%</td>
<td>1.00%</td>
</tr>
<tr>
<td>12</td>
<td>Perl</td>
<td>0.95%</td>
<td>-37.33%</td>
<td>1.52%</td>
<td>-6.17%</td>
<td>1.62%</td>
</tr>
<tr>
<td>13</td>
<td>Objective-C</td>
<td>0.82%</td>
<td>-17.62%</td>
<td>1.00%</td>
<td>265.76%</td>
<td>0.27%</td>
</tr>
<tr>
<td>14</td>
<td>Bash</td>
<td>0.46%</td>
<td>7.21%</td>
<td>0.43%</td>
<td>290.91%</td>
<td>0.11%</td>
</tr>
<tr>
<td>15</td>
<td>R</td>
<td>0.37%</td>
<td>165.71%</td>
<td>0.14%</td>
<td>-30.00%</td>
<td>0.20%</td>
</tr>
<tr>
<td>16</td>
<td>Visual Basic.NET</td>
<td>0.37%</td>
<td>825.50%</td>
<td>0.04%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Lua</td>
<td>0.19%</td>
<td>-44.51%</td>
<td>0.35%</td>
<td>337.50%</td>
<td>0.08%</td>
</tr>
<tr>
<td>18</td>
<td>Clojure</td>
<td>0.14%</td>
<td>-8.53%</td>
<td>0.15%</td>
<td>-48.28%</td>
<td>0.29%</td>
</tr>
<tr>
<td>19</td>
<td>Tcl</td>
<td>0.06%</td>
<td>-8.57%</td>
<td>0.07%</td>
<td>133.33%</td>
<td>0.03%</td>
</tr>
</tbody>
</table>
Top 10 Frameworks/Libraries

$1B+ VC-Backed Private Companies, by % of company usage

Git 70%
Jquery 63%
Hadoop 63%
Jenkins 43%
AJAX 37%
Prototype 37%
Backbone 37%
Selenium 27%
Spring 23%
Node.js 20%