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ABSTRACT
Voice over IP (VoIP) deployment is increasing at fast pace.
Due to the expected decrease of cost for call initiations with
VoIP and the risk of infected devices, Spam over IP Tele-
phony (SPIT) is likely to be a serious threat for VoIP ser-
vice architectures in the near future. Since SPIT is a very
personal matter, users must be able to express the level of
intrusiveness acceptable to them when receiving calls, i.e.,
the degree to which a callee is willing to be disturbed by po-
tentially unsolicited calls. Further, companies have a need
to enforce role-based and status-based SPIT protection poli-
cies in order to allow, e.g., a higher level of intrusiveness
for a secretary during the day than for the CEO on his/her
mobile at night.

In this paper, we derive requirements for a protection sys-
tem that enables personalized and role-based SPIT preven-
tion. We examine existing solutions and show that they
are insufficient to meet these requirements. Based on this
comparison, we design a framework for personalized SPIT
prevention. To demonstrate that our framework is capable
of meeting the requirements, we give examples that show
how important use cases can be addressed with this frame-
work. Finally, we report on our prototypical implementation
of the framework in a SIP PBX.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Gen-
eral—Security and protection; K.6.5 [Management of
Computing and Information Systems]: Security and
Protection

General Terms
Security

Keywords
Personalization, Authorization policies, Spam Over IP Tele-
phony (SPIT), VoIP Security
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1. INTRODUCTION
Voice over IP (VoIP) is slowly replacing the Public

Switched Telephony Network (PSTN). While this new tech-
nology offers cost savings and other advantages such as easy
integration with web-services, security for VoIP remains a
concern. Since the cost for each call initiation is expected
to decrease with VoIP compared to the PSTN, this tech-
nology is likely to attract spammers. Further, since VoIP
entities are by definition IP-based devices, VoIP terminals
and servers are vulnerable to many attacks common in to-
day’s Internet [1]. This makes VoIP an even more attractive
target for spammers because it enables for spam to be sent
from trojanized devices (e.g., infected VoIP terminals be-
longing to a botnet controlled by a spammer). Therefore,
Spam over IP Telephony (SPIT) is to be considered a serious
threat for VoIP service architectures.

While email spam is a well-known threat in today’s Inter-
net, SPIT is relatively new and has some key differences to
email spam. For instance, a SPIT-call immediately disturbs
the user with a ringing phone. Further, content filtering
(which is very successful in filtering email-spam) of real-time
VoIP calls is computationally very hard and not much help
against SPIT since there is no content available until the
call has already been accepted by the callee. Thus, there is a
need for new approaches for protection against this threat.

Researchers have started to address this problem and pro-
posed various mechanisms which strive to detect unsolicited
VoIP calls. So-called non-intrusive anti-SPIT mechanisms
analyze the messages transmitted during a VoIP call with-
out interacting with the caller nor the callee. Examples for
such methods are blacklisting, whitelisting, as well as anal-
ysis of call patterns, call rates, or similar statistical values
[2]. Mechanisms interacting with the caller impose a certain
challenge to the initiator of a call that needs to be solved in
order to reach the callee. Examples for such mechanisms are
hash-cash [8] (where the calling entity can be requested to
compute a computationally expensive function in order to
reach the callee), voice-energy level comparison [12] (where
the caller is greeted with a message and it is measured if
the caller is quiet during this greeting message), or more
generally CAPTCHA-tests1 [18]. In addition, researchers
have proposed mechanisms that interact with the callee of
a call. For instance, in [13] consent-based communications
have been proposed, where the callee of a VoIP call can
decide to accept a call based on the identity of the caller.
Another example for a SPIT protection method interacting

1Completely Automated Public Turing Test to Tell Com-
puters and Humans Apart



with the callee is feedback from the callee [10], where the
callee can press a special hang-up button on its phone to
signal to its proxy that the last call received was SPIT. In
[11], a holistic approach has been presented for combining
the various techniques against SPIT in an overall SPIT pro-
tection system. [11] uses the concept of a SPIT score (see
also [21]): multiple protection mechanisms (e.g., statistical
tests) contribute to an overall SPIT score, whereby high
scores represent a high level of probability of the call being
unsolicited.

In summary, a variety of SPIT prevention mechanism as
well as approaches for combining the various methods into
an overall protection system exist. It is, however, important
to realize that SPIT is of a very personal and subjective na-
ture: Some users may actually want to receive certain calls
like advertisements while others may regard the same type of
calls as annoying. Thus, each callee has its own acceptable
level of intrusiveness, demanding for personalized protection
settings. In addition, each user might want to have different
protection settings depending on the time of day or pres-
ence status. Consider a manager who might want his/her
SPIT protection system to be aligned with his/her outlook
calendar, allowing for a very low level of intrusiveness dur-
ing meetings and a reasonable level of intrusiveness other-
wise. Hence, each user needs a flexible way of expressing
his/her personal level of intrusiveness regarding incoming
SPIT calls.

Another reason why a single, global SPIT prevention set-
ting is of little value is the fact that in many real-world
scenarios (e.g., in companies) users have different roles, and
a single user can have several different roles with potentially
conflicting policies. A company might enforce different SPIT
protection policies for users in different groups (i.e., with
different roles). Similar to access control, this demands for
role-based policies for SPIT protection. We argue that any
real-world SPIT protection system must be able to express
role-based policies and in addition must be capable of resolv-
ing conflicting policies (e.g., if a user is member of a several
groups, or if the user has set additional, personalized SPIT
protection attributes).

In this paper, we address the issues raised above. Our goal
is the design of a framework for SPIT prevention policies
which enables to specify personalized and role-based SPIT
prevention. By using such a policy framework, users and
administrators can express the desired handling of incom-
ing VoIP calls with respect to SPIT. The resulting policies
are used to authorize specific VoIP entities (e.g., a SIP ser-
vice provider or a local IP PBX in a company) to handle
incoming calls accordingly. We derive requirements for a
parametrizable (i.e., combining different protection mecha-
nisms with different settings), role-based (i.e., allowing for
different levels of intrusiveness depending on the role of a
user), and personalized (i.e., allowing each user to specify
the individually desired level of intrusiveness) SPIT preven-
tion policy framework. We show that existing approaches
are insufficient to meet these requirements. Consequently,
we present the design of a role-based personalization frame-
work for SPIT prevention, reusing existing approaches when
possible. We have implemented this framework and give
some examples on how important use cases can be addressed
with our framework.

The rest of this paper is organized as follows. In sec-
tion 2 we derive requirements for a SPIT prevention policy

framework. We survey existing approaches in section 3 and
compare these approaches with our requirements, showing
where they are insufficient. In section 4 we present and de-
scribe in detail our proposed SPIT prevention policy frame-
work. Further, we give examples how important use cases
can be addressed with our approach. Finally, we report on
our prototypical implementation of our proposed framework
in section 5. We conclude the paper with a summary and
an outlook on future work in section 6.

2. REQUIREMENTS FOR A SPIT PRE-
VENTION POLICY FRAMEWORK

To derive requirements for a policy framework2, we con-
sider the following real-world scenario: A company would
like to deploy a SPIT prevention system for its VoIP in-
frastructure. With respect to employees, the company has
defined certain roles (e.g., ’internship-student’, ’secretary’,
’manager’, ’member of the board’, ...) which are already
expressed in the company’s access control policies (e.g., us-
ing Role-Based Access Control, RBAC [7]). Similarly, the
company would like to have SPIT protection so that the
probability of an employee being disturbed by unsolicited
calls depends on the employee’s role in the company. For
instance, a sales office is likely to accept some SPIT calls
rather than risking to miss an important customer call. In
comparison, a back-office employer needs a higher level of
protection against unsolicited calls so that he/she can con-
centrate on his/her work and is not disturbed frequently.

The reason why different levels of protection are neces-
sary for different roles is that there is a tradeoff inherent in
any kind of SPIT protection: Researchers agree that most
probably there will be no SPIT prevention system which can
guarantee a 0-percent false positive rate (i.e., never falsely
marking a legitimate call as SPIT) and at the same time offer
a 0-percent false negative rate3 (i.e., never falsely marking
a SPIT call as legitimate) [15]. In other words, any kind
of system needs to be configured (e.g., by combining algo-
rithms and through input parameters) to achieve the desired
level of intrusiveness for its users. In general, different levels
of intrusiveness are desired for different types of employees.
Thus, depending on the telephony use case of the employee,
different protection settings (and consequently different set-
tings and combinations of SPIT-protection algorithms) are
suitable for different roles.

Moreover, it shall be possible for individual employees to

2Requirements for authorization policies to be used for pre-
venting SPIT have also been presented in [17]. In principle,
the requirements in [17] are similar to our requirements but
on a more detailed, fine-grained level. In contrast, our re-
quirements are rather high-level in order to highlight the
general capabilities necessary for a SPIT prevention policy
framework. In addition, we deduce our requirements from a
real-world scenario to motivate them for readers not familiar
with research in the field of SPIT prevention, and to make
this paper self-contained.
3The fact that there is no 100-percent protection against
SPIT has also legal implications. In most countries providers
are only allowed to automatically filter out calls which they
can clearly identify as malicious. Thus, they are legally not
allowed to automatically filter potential SPIT calls with-
out the callee’s permission. This is another reason why au-
thorization policies are needed: These policies can be used
to explicitly have the callee permit VoIP entities (e.g., the
callee’s VoIP provider) to block certain types of calls.



specify personal and status-based demands. For example, a
manager can direct a higher percentage of suspicious calls to
his/her mailbox during important meetings than on average.
Similarly, a marketing department may want to whitelist
certain identities in order to receive advertisements calls and
analyze phone marketing strategies of competitors. How-
ever, when such personal settings are in a conflicting state
with role-based policies, these conflicts must be resolved.
For instance, some company-wide policies may be manda-
tory and it shall not be possible to circumvent (overwrite)
these with personal user settings. Other role-based poli-
cies may simply be default settings which can be changed
by individual employees. The system must be capable of
expressing both cases, i.e., mandatory as well as standard,
changeable settings.

To allow for flexible and extensible protection against
SPIT, the company envisions a solution which can combine
different SPIT protection algorithms, where each of these
algorithms can be configured with (potentially) several pa-
rameters. This is a key requirement with respect to policies
because, depending on the desired level of intrusiveness for
a certain user (or group of users), certain protection mod-
ules with certain settings might be necessary while others
may not be. For instance, some users may want an au-
dio CAPTCHA to be executed in English on all incoming
calls while others may want to have an audio CAPTCHA
to be executed in German but only on calls with certain
statistics. In other words, the possibility to express indi-
vidual levels of intrusiveness requires a flexible, parametriz-
able SPIT prevention solution where the multiple different
protection modules can be selected, parametrized, and com-
bined through policies.

Furthermore, it can be assumed that some anti-
SPIT mechanisms return not only a single test re-
sult but instead a set of result values. For instance,
a voice CAPTCHA might return “type=CAPTCHA, re-

sult=passed, numberOfRetries=0, language=en” mean-
ing that the CAPTCHA was passed upon the first try and
that the message was played in English. In general, a policy
framework must therefore enable to take more than a single
test result value into account for fine grained customization.

In conclusion, within a single enterprise network many dif-
ferent users may prefer different individual SPIT protection
settings. Additionally, various use cases for SPIT preven-
tion arise due to the different roles of employees within a
company. At the same time, company policies (enforced
settings) must not be violated. Therefore, the key require-
ments that can be identified for a policy framework for SPIT
prevention are the following:

• Personalization: The framework must be capable of
keeping per-user settings with respect to SPIT preven-
tion so that users can express their individually desired
levels of intrusiveness.

• Parametrizable Solution: The framework must be
able to support the combination and parametrization
of different SPIT protection methods and it must be
extensible so that new techniques (against newly ap-
pearing attack types) can be integrated. Only by
parametrizing and combining different algorithms it is
possible to reach different levels of intrusiveness as de-
manded by users.

• Context-based Protection: Users must be able to
not only set individual settings but additionally to
specify different SPIT protection settings depending
on the current context or status.

• Role-based Policies: Multiple policy levels based on
roles must be supported so that an administrator is
able to set default and mandatory settings for certain
roles.

• Handling multi-valued test results: The frame-
work must be able to take into account multi-valued
results from SPIT protection algorithms which pro-
duce more than one result value.

• Resolving Policy Conflicts: The framework must
be able to resolve potentially conflicting policies. It
must be able to specify which policies are mandatory
and therefore must be enforced.

3. BACKGROUND AND EXISTING AP-
PROACHES

Various policy languages have been proposed in the con-
text of computer security, mostly for access control (see [4]
or [6] for an overview). In this section we focus on survey-
ing existing approaches for policies in the context of SPIT
prevention. We describe such related work and discuss why
it cannot satisfactorily fulfill our requirements.

The authors of [16] present a policy-based approach for
SPIT prevention. The purpose of this approach is to pre-
cisely specify vulnerabilities in order to detect attacks on
VoIP networks. This is a completely different use-case as the
one we envision: Our goal is to enable personalized execution
of different SPIT protection methods. In other words, [16]
describes a single protection mechanism whereas we specif-
ically consider the customized combination of multiple pro-
tection algorithms.

3.1 Common Policy (RFC 4745)
RFC 4745 [14] defines an authorization policy framework

for controlling access to application-specific data. The ac-
tual policies are specified using XML. The framework is very
general and only defines very basic elements. However, it is
designed to support domain specific extension. A policy is
specified using a set of rules. Each rule consists of con-
ditions and actions (which are executed if the conditions
match). One very important concept of the framework is
that all rules within a policy are treated equally, i.e., no
rule takes precedence over another rule. The conditions of
all rules are evaluated simultaneously, and all actions of all
matching rules are executed. Since this can potentially lead
to conflicting actions, the framework defines how these con-
flicts are resolved, i.e., how different actions are combined
(see section 10.2 of RFC 4745 and section 4.2.3 of this pa-
per). As a general rule, RFC 4745 [14] suggests to always
execute the least restrictive action.

A policy according to Common Policy can be specified
using an XML document (see listing 1). Each XML docu-
ment contains a set of rules (<rule>) within a <ruleset>

element. Each rule consists of conditions (within a <condi-

tions> element), actions (within a <actions> element), and
transformations (within a <transformations> element).
<conditions> elements are used to specify which condi-

tions must be met before the actions and transformations



<r u l e s e t>
<r u l e id=”ru l e1 ”>
<cond i t i on s>

. . .
</ cond i t i on s>
<a c t i on s>

. . .
</ a c t i on s>
<t rans f o rmat i ons>

. . .
</ t rans f o rmat i ons>

</ ru l e>
<r u l e id=”ru l e2 ”>
<cond i t i on s>

. . .
</ cond i t i on s>
<a c t i on s />
<t rans f o rmat i ons />

</ ru l e>
</ r u l e s e t>

Listing 1: Syntax of Common Policy (RFC 4745)

can be executed. Each type of condition specifies when it is
met, i.e., when it evaluates to TRUE. A rule belongs to the
matching rule set only if all its conditions evaluate to TRUE.

While the conditions describe the if -part of a rule, the
actions and transformations define its then-part, i.e., the
operations to be executed once all conditions are met. Each
type of action or transformation specifies which operation is
to be executed. Transformations are used when the accessed
data must be modified; actions are used for all other types
of operations.

The standard itself only specifies very basic conditions.
These include methods for checking the identity of a user
(<identity>) or for specifying the time period in which a
rule should be valid in (validity). The standard does not
specify any actions or transformations. However, rules are
specified to combine multiple “permissions”, i.e., actions or
transformations, with each other:

Each type of permission is combined across all
matching rules. Each type of action or transfor-
mation is combined separately and independently.
The combining rules generate a combined per-
mission. The combining rules depend only on
the data type of permission. [. . .] For integer [. . .]
permissions, the resulting permission is the max-
imum value across the permission values in the
matching set of rules.

Thus, considering two integer-type actions <ac-

tion>1</action> and <action>2</action> the resulting
action would be <action>2</action> since max(1, 2) = 2.

3.2 SPIT Authorization Policy Extensions
In [19] the authors propose extensions to RFC 4745 [14]

specifically targeted at SPIT prevention. The goal of this
work is to include SPIT protection methods in the policy
format to allow personalized SPIT protection. The work
defines the following new extensions:

• Conditions

– <spit-handling> and <challenge> subcondi-
tion: Used to evaluate the result of previously ex-

ecuted SPIT protection mechanisms. The <spit-
handling> condition evaluates to TRUE if at least
one of the <challenge> subconditions evaluates
to TRUE.

– <sphere>: Allows evaluating the current sphere
of the user, e.g., “Office” or “Home”

– <presence-status>: allows evaluating the cur-
rent presence status of the user, e.g., “available,
“busy” or “in-meeting”

– <time-period>: This element is an extension of
the <validity> condition (see [14]) which allows
making decisions depending on the time, date and
timezone.

• Actions

– <execute>: Used for executing a specific SPIT
protection method.

– <forward-to>: Used to forward a call to a differ-
ent location.

The proposed extension is still in an early stage. It is
therefore still quite inconsistent and has some shortcomings
(see section 3.4).

3.3 Call Processing Language (CPL)
The Call Processing Language (CPL), defined by RFC

3880 [9], allows users to specify how incoming (or outgo-
ing) calls should be processed using and XML document.
In contrast to the rule evaluation of Common Policy [14],
where each rule is evaluated independently of each other and
the results are merged, the processing of a document with
CPL is similar to the processing in a regular programming
language. When compared to a full-fledged programming
language, the features of CPL are, however, very limited.
For instance, loops and jumps are not supported. These
limitations were introduced on purpose to make sure that a
CPL program will always terminate and will thus only use
a limited amount of computing capacity on the servers.

Each CPL program represents an if-then-tree. The nodes
of this tree represent the actions, e.g., the redirection of a
call; the tree edges represent the evaluation of certain condi-
tions, e.g., the time-of-day or the identity of the caller. This
tree can efficiently be processed by computers and is easy to
understand for humans.

3.4 Shortcomings of Existing Approaches
Since CPL was specifically designed for personalized call

routing, which is quite similar to applying different SPIT
protection mechanisms, it is very related to our work. Ex-
tensions for applying and evaluating SPIT protection mech-
anisms could easily be added. However, the tree-nature of
CPL renders it less useful for our purposes. One of our re-
quirements (see section 2) is the support of role-based poli-
cies. In other words, we must be able to merge the policy
documents of different roles in a consistent and determinis-
tic manner. In the context of CPL we would have to merge
multiple if-then-trees, which is an extremely difficult if not
impossible task. Hence, we decided not to consider CPL as
a possible basis for our envisioned framework.

Common Policy [14] is a good basis for our work because
it provides the base primitives for the policy framework we
envision. However, it is a general specification that does not



define any actions or transformations. Moreover, it is not
directly targeted at SPIT prevention.

The Internet-Draft [19] proposes extensions to Common
Policy which are closely related to our work. In principle, the
extensions proposed in [19] can achieve personalized SPIT
prevention and the work provides initial solutions to the
problem. However, the draft is in an early stage and there
are still some inconsistencies within the specification (e.g.,
inconsistent naming of XML elements). Furthermore, in its
current state, the proposal does not sufficiently define how
possible action conflicts are solved (see section 4.2.3 for de-
tails). The authors of [19] also assume that each SPIT pro-
tection mechanism only returns a single result value, which
is a strong (and probably unrealistic) restriction, contradict-
ing with our requirements (see section 2). Finally, role-based
policies – one of our key requirements – are not taken into
account.

Nevertheless, whenever possible we reuse the concepts
proposed in draft-tschofenig-sipping-spit-policy [19] in our
framework. More specifically, we allow the usage of all con-
ditions listed in section 3.2, with the exception of the <chal-
lenge> subcondition of <spit-handling>. We redefine this
subcondition in section 4.2.2. The actions defined in [19]
do not fulfill our requirements and are thus either dropped
(<forward-to>) or redefined (<execute>, see section 4.2.3).

In summary, while there are existing approaches for per-
sonalized SPIT prevention, these are not sufficient to meet
our requirements and they cannot address all use-cases for
customizable SPIT prevention we assume to be realistic. In
the following, we therefore present new Common Policy ex-
tensions (which enable to satisfy our requirements), reusing
previous extensions when applicable.

4. PROPROSED FRAMEWORK
In this section we describe the design of our framework.

Our approach is using and extending the basic elements of
RFC 4745 [14]. Since [19] already suggests some extensions
for personal SPIT policies based on RFC 4745, we re-use
some of these extensions when applicable. For the use-cases
and the requirements where [19] does not provide a solution
(see section 3.4) we define new extensions. For distinction of
the source of the different policy elements, in the remainder
of this document we use XML namespaces as follows:

• <cp:...>: This element is defined in RFC 4745[14],

• <spit:...>: This element is defined in [19],

• <spf:...>: This element (spf for SPIT Policy Frame-
work) has not been defined previously. It is a new
element we use for our proposed extensions.

4.1 Introductory Example
The best way to quickly understand the concept of the

proposed policy format is by looking at an example. Listing
2 shows such an example, containing two different rules. The
example assumes that the call already has been analyzed
by some SPIT rating mechanisms and has been assigned a
SPIT-score. According to the concepts of RFC 4745 all rules
are applied simultaneously and the actions for the matching
rule set are executed. The first rule (“allowLowScored”)
of Listing 2 matches only if there is a SPIT test result
with name “spitScore” available which has an attribute
“totalScore” whose value is less than (“lt”) 5. Upon a

<c p : r u l e s e t xmlns:cp=” . . . ”
xmlns : sp f=” . . . ”
xmln s : sp i t=” . . . ”>

<c p : r u l e id=”allowLowScored ”>
<cp : c ond i t i o n s>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e r e f=”sp i t S c o r e ”>
< s p f : l t name=”to t a l S c o r e ”>5</ s p f : l t>

</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e>a l low</ s p f : e x e c u t e>

</ cp : a c t i o n s>
<cp : t r an s f o rmat i on s />

</ c p : r u l e>

<c p : r u l e id=”blockOthers ”>
<cp : c ond i t i o n s />
<c p : a c t i o n s>
<s p f : e x e c u t e>block</ s p f : e x e c u t e>

</ cp : a c t i o n s>
<cp : t r an s f o rmat i on s />

</ c p : r u l e>

</ c p : r u l e s e t>

Listing 2: Introductory Example

match, the action “allow” is executed, i.e., the call is for-
warded to the user. The second rule (“blockOthers”) always
matches since it has no conditions. The specified “block”
action is thus executed for every call. In consequence, for
every call with a SPIT score of less than 5 both actions, i.e.,
“allow”and“block”, are active. The action merging rules of
RFC 4745 specify that in case of such an action conflict, the
least restrictive action should be applied if no other merging
rule is specified (see section 4.2.3 for an exact definition of
the merging rules for our <spf:execute> action). In our ex-
ample the “allow” action is, from the callers point of view,
the less restrictive one (compared to blocking the call) and
would thus be the resulting action. In general, the applica-
tion enforcing a policy must have knowledge of the restric-
tiveness for all types of actions (e.g., by having an ordered
list of possible actions for action type <spf:execute>). In
summary, the policy defined in listing 2 forwards all calls
with a SPIT score of less than 5 and blocks all other calls.

4.2 New Extensions
In order to fulfill the requirements described in section

2, we introduce two new concepts: rule levels and action
priorities. Rule levels enable to specify the order in which
rules are evaluated. This allows setting mandatory poli-
cies for certain roles. Rule leves are realized with the new
<spf:rule-level> condition. Action priorities enable to
overwrite certain default settings.

In addition, we introduce the new <spf:challenge> con-
dition which has a similar function as the <spit:challenge>
condition defined in [19], but which is capable to process
multiple return values per executed SPIT test. Finally, we
specify a new <spf:set> transformation which enables to
set individual parameters for executed actions.

4.2.1 Rule Level condition
To support the combination of policies for different user

roles we introduce the new concept of rule levels.



<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>5</ s p f : r u l e −l e v e l>

</ cp : c ond i t i o n s>

Listing 3: Rule level example

The basic idea is to assign a certain numerical level to each
rule. When evaluating the ruleset, rules with higher levels
are taken into account only if the rules with lower levels did
not result in a final action. This can be used to evaluate
different sets of rules separately from each other (e.g., first
evaluating company wide rules before personal settings are
taken into account). System administrators could assign a
certain range of rule levels to be used by the users, while
other rule levels can only be used by the administration.

For specifying a rule level, we introduce the <spf:rule-

level> condition. It evaluates to TRUE if the rule level
which is currently beeing evaluated corresponds to the value
given in the element’s body. The policy decision point (PDP,
see [20]) will start with evaluating the rules of level 1 only.
If no final action can be determined, the level is increased
by one and the rules are re-evaluated. The exact definition
of what a final action is application specific. We assume
that any <spf:execute> action (see section 4.2.3) is a final
action. Listing 3 shows an example of a condition with rule
level 5.

Note that, since the assignment of a certain level to a
rule is done using a condition, the absence of this condition
means that the rule will always be evaluated, i.e., if no rule
level is explicitly specified, the rule belongs to all levels.

4.2.2 Challenge condition
A method is needed to evaluate the results of the SPIT

protection procedures that have been applied.
draft-tschofenig-sipping-spit-policy [19] defines

the <spit:spit-handling> condition and its
<spit:challenge> sub-condition exactly for this pur-
pose, i.e., to check the return value of a previously executed
SPIT protection method. The <spit:challenge> element
allows specifying only a test name (given as a test URI)
and the expected result. Note that only a single test result
is expected per SPIT test. Since our assumption is that
a SPIT test might return more than one result value,
<spit:challenge> does not meet our requirements.

We assume that each SPIT test can return a set of
attribute-value pairs. Within the policy framework, we must
be able to make decisions depending on any of the returned
attribute-value pairs. The <spit:challenge> condition, as
defined in draft-tschofenig-sipping-spit-policy [19], however,
allows only checking a single value. We therefore redefine
and extend the <spit:challenge> condition and define our
new condition <spf:challenge> as follows:

The <spf:challenge> condition searches through the
available SPIT test results using the subconditions (see be-
low) specified within the condition’s body. An attribute
resultOnMatch with values “true” or “false” may be spec-
ified. The default value for the resultOnMatch attribute is
“true”. Furthermore, an optional ref attribute can be used
to explicitly define which of the SPIT test results should be
evaluated. Figure 1 shows a graphical representation of the
evaluation process for the <spf:challenge> condition.

The ref attribute corresponds to the id attribute of a

Figure 1: Evaluation procedure for the
<spf:challenge> condition

<spf:execute> action (see section 4.2.3).

• If there is a value specified for the ref attribute, only
the SPIT test result with an id (see section 4.2.3) equal
to the ref value is evaluated.

• If there is no value specified for the ref attribute, all
SPIT test results are evaluated.

Depending on the resultOnMatch attribute, the
<spf:challenge> condition behaves as follows:

• If resultOnMatch is “true”: <spf:challenge> evalu-
ates to TRUE if there is any SPIT test result matching
all subconditions; If there is no result matching all sub-
conditions, <spf:challenge> evaluates to FALSE.

• If resultOnMatch is “false”: <spf:challenge> evalu-
ates to FALSE if there is any SPIT test result matching
all subconditions; If there is no result matching all sub-
conditions, <spf:challenge> evaluates to TRUE.

In other words: if all subconditions of the <spf:challenge>

match, its result is equal to the value specified in the re-

sultOnMatch attribute.
The conditions, which must be met for a SPIT test result

to match, are specified using subconditions within the body
of the <spf:challenge> element. We define the following
subconditions: <spf:eq>, <spf:gt>, <spf:lt>, <spf:geq>,
<spf:leq>, <spf:notSet>, and <spf:regEx>. Of course, the
framework can be extended by further subconditions.

Each of the subconditions expects a mandatory name at-
tribute specifying the name of a SPIT test result value.



<c p : a c t i o n s>
<s p f : e x e c u t e p r i o r i t y=”2 ” id=”captcha ”>

s ip :d tmf@tes t . com
</ s p f : e x e c u t e>

</ cp : a c t i o n s>

Listing 4: Execute action example

• eq (neq): Evaluates to TRUE if the return value of the
SPIT test result value specified in the name attribute
is (not) equal to the specified content.

• gt (lt): Evaluates to TRUE if the return value of the
SPIT test result value specified in the name attribute
is greater (less) than the specified content.

• geq (leq): Evaluates to TRUE if the return value of the
SPIT test result value specified in the name attribute
is greater (less) than or equal to the specified content.

• notSet: Evaluates to TRUE if the SPIT test did not
return a value with the name specified in the name

attribute.

• regEx: Evaluates to TRUE if the return value of the
SPIT test result value specified in the name attribute
matches the regular expression specified in the ele-
ment’s body.

Policy examples showing the usage of the <spf:challenge>

condition and its subconditions are presented in section 4.3.

4.2.3 Execute action and action priorities
The <spf:challenge> condition defined in section 4.2.2

evaluates the results of previously executed SPIT protec-
tion mechanisms. To actually execute these mechanisms,
we define the new <spf:execute> action.

Our new <spf:execute> action, is similar to the
<spit:execute> action defined in [19]. However, compared
to <spit:execute> we add two new attributes: priority

and id. A minimal example is shown in listing 4. The
<spf:execute> action is used to execute SPIT protection
mechanisms, such as forwarding a call to a different loca-
tion, accepting a call, blocking a call, applying call scoring
tests [11] or applying a voice CAPTCHA [12].

The new priority attribute is optional. This attribute
is used to allow for personalized rules which overwrite the
default action. Its default value must be specified by the
application. Within this paper we assume a default priority
of 5. The new id attribute is also optional and specifies
the name of the variable that is used to store the set of
attribute-value pairs returned by the test.

Within the body of the <spf:execute> tag, the following
values are allowed:

1. Block: The call should be blocked. (Integer value: 1)

2. URI : The SPIT protection method specified by the
URI should be executed. In general, any URI accord-
ing to RFC 3986 [3] can be specified. It is up to the ap-
plication to correctly execute the corresponding SPIT
test. The URI could, e.g., specify a SIP URI of a voice
CAPTCHA or the SIP address of the user’s voicemail
system, in which case the application would have to

transfer the call. For a HTTP URI, the application
could, e.g., execute a Web Service. (Integer value: 2)

3. Allow: The call should be forwarded to its original
destination. (Integer value: 3)

According to RFC 4745 [14] the combining rules for each
action must be defined. For the <spf:execute> action we
define the combining rules as follows:

• If two <spf:execute> actions are combined, the com-
bined value is equal to the value of the <spf:execute>

element with the lower value of the priority attribute.
(The lower the value of the priority attribute, the more
important the action. E.g., an action with priority=1

is more important than one with priority=2.)

• If the priority is equal for both elements the combining
rules for integer values, specified in section 10.2 or RFC
4745 [14], apply. The integer values are given in the
list above.

For integer [. . .] permissions, the resulting
permission is the maximum value across the
permission values in the matching set of
rules.

• When two <spf:execute> actions are combined, which
specify two different URIs and which have the same
priority, the application should choose the URI lead-
ing to the “least restrictive” action (choosing the least
restrictive action is one of the general concepts of RFC
4745 [14]). E.g., a DTMF based CAPTCHA is more
restrictive than a Voice Energy CAPTCHA, which in
turn, is more restrictive than forwarding the call to
the user. In order to evaluate this rule, the application
must have knowledge about which action is executed
when a call is forwarded to a certain URI. In cases
where a clear decision cannot be taken, the applica-
tion shall choose one of the URIs randomly, whereby no
URI should be chosen more than once during the pro-
cessing of a single call. Latter avoids potential loops
in the policy processing.

The methods for combining rules are best explained using
an example. Table 1 shows the outcome of combining two
<spf:execute> actions with different values and priorities.

• In rows 1 to 4 no priority value is specified, i.e., the
default priority of 5 is used.

• In rows 1 to 5 the priority of the first <spf:execute>

action is equal to the priority of the second action.
Thus, the default combining rules for integer values
are used. These rules specify that for integer values,
the resulting value is the maximum of the input val-
ues, e.g., in row 2 the combination of block (integer
value 1) and allow (integer value 3) is allow, since
max(1, 3) = 3.

• In row 6 the priority of the first action is higher than
the priority of the second action. Thus the combined
value is equal to the value of the first action, i.e., block.

Note that the action priority mechanism defined in this
section is orthogonal to the rule level concept described in
section 4.2.1. Rule levels are used to prioritize which rules



Table 1: Examples for action combination with priorities
Row Execute 1 value Execute 1 priority Execute 2 value Execute 2 priority Result
#1 block block block
#2 block allow allow
#3 block URI URI
#4 URI allow allow
#5 block 2 allow 2 allow
#6 block 2 allow 7 block
#7 URI 2 allow URI

should be evaluated first. Action priorities are used to over-
ride the default scheme for combining rules. In combina-
tion, both mechanisms allow the consistent evaluation of
role-based policies. These mechanisms directly relate to our
requirements to support role-based policies, personalization,
and resolving policy conflicts (see section 2).

When compared with [19] we define only a single ac-
tion type (<spf:execute>) while [19] defines two dif-
ferent types (<spit:execute> and <spit:forward-to>).
We intentionally limit our framework to a single action
type because one otherwise risks unresolvable action con-
flicts. E.g.: With the action definitions as proposed
in [19] there are cases where two different types of ac-
tions can be active at the same time. In the exam-
ple in section 6.3 of [19] the two action <spit:forward-

to>sip:answering-machine@...</spit:forward-to> and
<spit:execute>block</spit:execute> can occur simulta-
neously. This means that the application would have to
block the call, i.e., reply with a “403 forbidden” message,
and forward the call to the answering machine, at the same
time. This is clearly impossible and the application would
thus have to choose one of the actions. This however is con-
flicting with the requirements of RFC 4745 [14] which states
that all actions must be executed.

4.2.4 Set transformation
The new <spf:set> transformation is used to set addi-

tional parameters for the executed actions. Examples for
such parameters are the preferred language of the message
played by a voice CAPTCHA or the number of allowed re-
tries before such a test is marked as failed.

The mandatory name attribute specifies the name of the
variable to be set, while the actual body of the transfor-
mation specifies the content of the variable. An optional
priority argument may be specified, which works similar
to the priority argument of the <spf:execute> action.

According to RFC 4745 [14] the combining rules for each
transformation must be defined. For the <spf:set> trans-
formation we define the combining rules as follows:

• If two <spf:set> transformations are combined, and if
the transformations have the same value for the name

attribute, the combined value is equal to the value of
the <spf:set> element with the higher priority (spec-
ified using the priority attribute; the lower the value
of the priority attribute, the highter the priority).

• Otherwise (i.e., the priority is equal for both elements,
or the elements have different name attributes) the
combining rules for set values, specified in section 10.2
or RFC 4745 [14], apply:

For sets [the resulting permission] is the

union of values across the permissions in the
matching rule set.

4.3 Policy Examples
Listings 5-7 show examples of rules which could be de-

ployed in an enterprise scenario. Listing 5 shows the rules
applied for every user, i.e., company-wide policies. Listings
6 and 7 show example rules for a single user and a“Manager”
role, respectively.

Listing 5 contains four different rules. Note that the first
three rules contain a <spf:rule-level> condition for rule-
level 1, i.e., they are amongst the first rules to be evaluated.
The first rule (“spitScore”) applies a SPIT scoring function
if no such function has been applied before. The second
rule (“highScore”) applies a second SPIT test “hashCash”
[8] when the SPIT score returned by the first test is larger
than 10. The result of this test is evaluated by the third
rule (“hashCashFailed”). If the test was failed, the call is
blocked. The last rule of listing 5 defines a default behavior.
As it has no conditions defined, except for the a rule level
of 10, this rule always belongs to the matching rule set for
level 10. Thus, if no other action was found until the 10th

rule level is reached, the call will be forwarded to the user.
The rules shown in listing 6 are additional rules for a single

user. As all these rules contain a <spf:rule-level> condi-
tion for level 2 they are only evaluated when the company-
wide rules of listing 5 did not result in any action. The
user configured two additional rules which, depending on the
SPIT score, either forward the call to his voicebox or block
the call directly. Note that for a total SPIT score greater
than 20 both rules, “voiceMail”and“blockVeryHighScore”,
belong to the matching rule set. Assume for a moment
the case that no priority attribute was specified for the
“blockVeryHighScore” rule. In this case, according to the
the action merging rules defined in section 4.2.3, the re-
sulting action would always be the forwarding to the voice-
mail. However, as there is a priority attribute specified,
the block action wins in the case of a total SPIT score larger
than 20.

The last rule example is listed in listing 7. This rule is
applied to all users in the Manager role. It makes sure
that calls are forwarded to the voicemail system if the called
person is currently in a meeting. The used <spit:presence-

status> is defined in [19]. Note that, due to the rule-level of
3, this rule is only evaluated when none of the SPIT related
rules matches.

5. PROTOYPE IMPLEMENTATION
We implemented a prototypical PDP (Policy Decision

Point) for the proposed framework and integrated it with
a NEC SIP PBX. The integration was performed by using



<c p : r u l e id=”sp i t S c o r e ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>1</ s p f : r u l e −l e v e l>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e resultOnMatch=” f a l s e ”>
<s p f : e q name=”method ”>s p i t S c o r e</ s p f : e q>

</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e>ht tp : // sp i t S c o r e</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

<c p : r u l e id=”highScore ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>1</ s p f : r u l e −l e v e l>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e>

<s p f : e q name=”method ”>s p i t S c o r e</ s p f : e q>

<s p f : g t name=”to ta l−s c o r e ”>10</ s p f : g t>
</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e

id=”hashCash ”>s ip :hashCash</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

<c p : r u l e id=”hashCashFailed ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>1</ s p f : r u l e −l e v e l>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e r e f=”hashCash ”>
<s p f : e q name=” r e s u l t ”> f a i l e d</ s p f : e q>

</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e p r i o r i t y=”1 ”>block</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

<c p : r u l e id=”de fau l tAl low ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>10</ s p f : r u l e − l e v e l>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e>a l low</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

Listing 5: Example – company wide rules

<c p : r u l e id=”vo iceMai l ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>2</ s p f : r u l e −l e v e l>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e>

<s p f : e q name=”method ”>s p i t S c o r e</ s p f : e q>

<s p f : g t name=”to ta l−s c o r e ”>10</ s p f : g t>
</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e>

s ip:voicemail@company
</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

<c p : r u l e id=”blockVeryHighScore ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>2</ s p f : r u l e −l e v e l>
<s p i t : s p i t −handl ing>

<s p f : c h a l l e n g e>

<s p f : e q name=”method ”>s p i t S c o r e</ s p f : e q>

<s p f : g t name=”to ta l−s c o r e ”>20</ s p f : g t>
</ s p f : c h a l l e n g e>

</ s p i t : s p i t −handl ing>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e p r i o r i t y=”1 ”>block</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

Listing 6: Example – Single user rules

<c p : r u l e id=”inMeeting ”>
<cp : c ond i t i o n s>
<s p f : r u l e −l e v e l>3</ s p f : r u l e −l e v e l>
<s p i t : p r e s e n c e −s t a tu s>

meeting
</ sp i t : p r e s e n c e −s t a tu s>

</ cp : c ond i t i o n s>
<c p : a c t i o n s>
<s p f : e x e c u t e>

s ip:voicemail@company
</ s p f : e x e c u t e>

</ cp : a c t i o n s>
</ c p : r u l e>

Listing 7: Example – Manager rule



Figure 2: Architecture of Prototypical Implementa-
tion

Figure 3: Message Flow in Prototype (simplified)

the web service interfaces offered by this COTS (Commer-
cial off-the-shelf) software. For the SPIT protection tests we
use the VoIP SEAL framework [5] which includes, amongst
others, a SPIT scoring function as well as different voice
CAPTCHAs. Figure 2 shows the functional entities of our
prototypical implementation and the communication inter-
faces between them.

In our implementation the PDP controls the PBX us-
ing the web service interface provided by the PBX. The
SPIT scoring test is also implemented as a web service and
is directly queried by the PDP when needed. The voice
CAPTCHA is realized as a separate SIP User Agent (UA)
which registers itself with the PBX.

A simplified message chart is depicted in figure 3. For
simplicity, many messages, such as SIP reply messages or
messages involved in the session transfers, are not shown.

When a new external call arrives at the PBX, the PBX
does not immediately forward the call to its intended des-
tination, but first queries the PDP to apply the SPIT poli-
cies. The call is put on hold in the meantime. The PDP
checks the policy store for applicable rules, evaluates them
and computes the merged action for the matching rule set.
The example shown in figure 3 assumes that, as a result of
the policy evaluation, the first action is to determine a SPIT
score for the incoming call. Thus the PDP has to query the

Figure 4: Call history screen of the Web GUI

SPIT score web service. After the calculated SPIT score
is returned to the PDP, the policies are re-evaluated, now
also taking into account the new input variables of the SPIT
score. We assume the outcome of the second policy evalu-
ation is to apply a voice CAPTCHA. In this case, the call
must to be transferred to the UA of the CAPTCHA. The
transfer is initiated using a web service request from the
PDP to the PBX. The PBX takes care of the signaling for the
actual call transfer. The CAPTCHA answers the call, per-
forms the test and returns the test results back to the PDP.
The results can, e.g., be included in the BYE message sent
by the CAPTCHA, or can be stored in a data store shared
by the PDP and the CAPTCHA. Assuming the CAPTCHA
was passed, the policies are evaluated a third time and the
call is – in this example – forwarded to the intended receiver,
i.e., the enterprise extension.

For managing policies and monitoring the system we de-
veloped a Web GUI. As an example, figure 4 shows the call
history screen. This screen contains the list of calls previ-
ously processed by the PDP and the corresponding policy
evaluation results. For the second call in figure 4 three differ-
ent actions have been executed. First, a SPIT scoring func-
tion was applied (within the VoIP SEAL framework we used
[5]“stage1”represents a SPIT scoring function). Afterwards,
the user was redirected to a voice CAPTCHA (“turingTest”)
located at the extension number 8912. Finally the call was
forwarded to the indented receiver (“allow”). Furthermore,
a transformation with the value “language=de” was active,
i.e., the CAPTCHA was played in German language.

6. CONCLUSION
Spam over IP Telephony (SPIT) is a serious threat for

VoIP service architectures. At the same time, SPIT is a very
personal and subjective matter because different users may
have different preferences with respect to unsolicited com-
munications. Since no solution can offer perfect SPIT pro-
tection (i.e., a 0-percent false positive rate and a 0-percent
false negative rate), a personalizable and parametrizable
SPIT protection solution is necessary.

In this paper, we present the design and implementation
of a policy framework which enables parametrizable, per-
sonalized, and role-based SPIT prevention. Our approach
allows the customized application of different SPIT protec-
tion mechanisms without making any assumptions on the
type of SPIT test applied to incoming messages nor on the
type of test results. The proposed framework is based on
Common Policy (RFC 4745 [14]) and reuses previous (but
insufficient) approaches of Common Policy extensions for
SPIT prevention [19] as much as possible. By introduc-
ing two new concepts, rule-levels and action priorities, we



enable the combination of multiple policies in a role-based
policy scenario. Further, we add extensions which provide
means to execute personalized SPIT protection mechanisms
as well as to make fine granular decisions, depending on the
results of individual SPIT tests.

As a proof of concept, we implemented our proposed
framework in a prototypical Policy Decision Point (PDP)
and integrated it with a commercial off-the-shelf SIP PBX.
We have implemented several use cases in this prototype,
demonstrating the feasibility of our approach. During the
process of integration and implementing certain scenarios
in practice, we learned the shortcomings of previous SPIT
policy extensions and derived the necessity for our new con-
cepts.

As future work in this area we consider the prototypical
implementation of a sophisticated graphical user interface.
Such an interface would allow administrators and users to
specify SPIT protection preferences for our framework in a
user-friendly way. In addition, we consider contributing our
findings to the IETF, most probably in cooperation with the
authors of [19] which we already contacted.
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