



# Network analysis for the integration of histone modification data to explain haematopoiesis

#### Federica Baccini

Dipartimento di Informatica, Università degli Studi di Pisa Institute of Informatics and Telematics of CNR, Pisa federica.baccini@phd.unipi.it

Pisa, March 23, 2020

# Outline

• Introduction to epigenetics and haematopoiesis

- Experimental analysis and methods:
  - Data description and processing
  - Hypothesis testing model

- Results
- Conclusions and further work

```
What is epigenetics?
```



**REGULATION OF GENE EXPRESSION THROUGH MODIFICATIONS** 



# Histone modifications

Nucleosome Histones Chromosome Chromatin United to the second sec



*Histones* are protein complexes around which DNA binds. They allow DNA to assume a compact structure (chromatin), and to finally organize into chromosomes. Histones and, predominantly, their N-tails, can be subject to chemical modifications that can act as promoters or inhibitors of gene expression.

### The process of haematopoiesis



# Challenges to the classical model

 Studies have highlighted that the myeloid potential is maintained in both the lymphoid and myeloid lineages.

#### **Questions:**

- Does Epigenetics play a role in the process of haematopoiesis?
- Is it possible to build a model for testing the classical hypothesis on the first hierarchical subdivision?



# Outline and dimensionality reduction



DATA DIMENSIONALITY REDUCTION

## Data collection and organization-1

|                          | Cell type                                                      | Lineage  |
|--------------------------|----------------------------------------------------------------|----------|
|                          | CD38–negative naive B cell                                     | Lymphoid |
|                          | CD4–positive, alpha–beta T cell                                | Lymphoid |
|                          | CD8–positive, alpha–beta T cell                                | Lymphoid |
|                          | Central memory CD4–positive, alpha–beta T cell                 | Lymphoid |
|                          | Class switched memory B cell                                   | Lymphoid |
|                          | Cytotoxic CD56–dim natural killer cell                         | Lymphoid |
|                          | Effector memory CD8–positive, alpha–beta T cell                | Lymphoid |
| # of cellular types : 24 | Endothelial cell of umbilical vein (proliferating)             | Lymphoid |
|                          | Endothelial cell of umbilical vein (resting)                   | Lymphoid |
| # lymphoid: 11           | Naive B cell                                                   | Lymphoid |
|                          | Plasma cell                                                    | Lymphoid |
| # myoloid: 12            | Alternatively activated macrophage                             | Myeloid  |
| # Inyelolu. 15           | Band form neutrophil                                           | Myeloid  |
|                          | CD14–positive, CD16–negative classical monocyte                | Myeloid  |
|                          | CD34–negative, CD41–positive, CD42–positive megakaryocyte cell | Myeloid  |
|                          | Erythroblast                                                   | Myeloid  |
|                          | Inflammatory macrophage                                        | Myeloid  |
|                          | Macrophage                                                     | Myeloid  |
|                          | Mature eosinophil                                              | Myeloid  |
|                          | Mature neutrophil                                              | Myeloid  |
|                          | Monocyte                                                       | Myeloid  |
|                          | Neutrophilic metamyelocyte                                     | Myeloid  |
|                          | Neutrophilic myelocyte                                         | Myeloid  |
|                          | Segmented neutrophil of bone marrow                            | Myeloid  |

## Data collection and organization-2

- Epigenomes record the intensity of 6 histone modifications:
  - H3K27ac

| • H3K2/me3 | Chromosome | Start | End   | Intensity |
|------------|------------|-------|-------|-----------|
| • H3K36me3 | chr1       | 16119 | 16122 | 0.9       |
| • H3K4me1  | chr1       | 16122 | 16126 | 0.8       |
|            | chr1       | 16126 | 16131 | 0.7       |
| • H3K4me3  | chr1       | 16131 | 16227 | 0.6       |
|            |            |       |       |           |

• H3K9me3

• Samples from diseased donors were filtered out.

#### Counting peaks per gene

- **Computation of peaks** of each histone modification in every epigenome.
- **Count of the number of peaks per gene**<sup>2</sup> in each sample (# genes considered: 21,987), for each modification.
- Construction of 6 matrices (one for each histone modification), where for a generic matrix M,  $M_{ij}$  = number of peaks of sample *i* in gene *j*.

### Data cleaning and construction of cell type matrices

n = #samplesm = #genes

| - <i>x</i> <sub>1,1</sub> | • • • | <i>x</i> <sub>1,<i>m</i></sub> ] |
|---------------------------|-------|----------------------------------|
| •<br>•                    | •.    | :                                |
| $x_{n,1}$                 | • • • | $x_{n,m}$                        |

average of samples from the same cell type

| [ x <sub>1,1</sub> | • • • | $x_{1,m}$  |
|--------------------|-------|------------|
| •                  | •.    | •          |
| $x_{24.1}$         | • • • | $x_{24.m}$ |

Elimination of «flat» genes using k-means clustering on genes profiles Construction of **6** matrices, by averaging the profiles of samples of the same cell type (dimension  $24 \times m$ )

#### Data cleaning: an example



## Similarity network analysis

• Similarity Network Fusion<sup>1</sup> is a tool that has the aim of aggregating multiple types of information collected on the same set of experimental units.

$$M_{1} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,m_{1}} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m_{1}} \end{bmatrix} \quad M_{2} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,m_{2}} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m_{2}} \end{bmatrix} \quad \dots \quad M_{l} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,m_{l}} \\ \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,m_{l}} \end{bmatrix}$$

<sup>1</sup> Wang, Bo & Mezlini, Aziz & Demir, Feyyaz & Fiume, Marc & Tu, Z. & Brudno, Michael & Haibe-Kains, Benjamin & Goldenberg, Anna. (2014). Similarity network fusion for aggregating data types on a genomic scale. *Nature methods*. 11. 10.1038/nmeth.2810.

# SNF

- For each count matrix, a **similarity matrix**, based on a *scaled exponential similarity kernel*, is constructed.
- The six matrices are fused through a **Cross Diffusion Process (CrDP)**.

General updating rule for the fusion of m networks:

$$P_{t+1}^{(\nu)} = S^{(\nu)} \times \left(\frac{\sum_{k \neq \nu} P_t^{(k)}}{m-1}\right) \times \left(S^{(\nu)}\right)^T$$

 $S \rightarrow$  local affinity matrix

 $P \rightarrow status matrix$ 





## Hypothesis testing: outline



#### Results

|        | Fusion   | H3K27ac | H3K27me3 | H3K36me3 | H3K4me1 | H3K4me3 | H3K9me3 |
|--------|----------|---------|----------|----------|---------|---------|---------|
| MinCut | 18.3693  | 4.7205  | 3.9532   | 4.5568   | 4.6055  | 6.0371  | 4.9149  |
| HypCut | 116.2447 | 52.7040 | 40.6759  | 47.0222  | 51.0412 | 61.4543 | 49.2257 |
| MaxCut | 126.4031 | 57.2360 | 43.9673  | 50.7000  | 54.1104 | 69.7612 | 52.8842 |
| Ratio  | 0.9060   | 0.9137  | 0.9177   | 0.9310   | 0.9380  | 0.8690  | 0.9237  |
|        |          |         |          |          |         |         |         |



#### Conclusions

- Histone modifications may have a role in the haematopoietic cell differentiation process.
- **SNF + hypothesis testing** strongly supports the hypothesis of differentiation into the myeloid and lymphoid lineages...
- ...but the similarity analysis suggests that a hybrid model could be more appropriate at higher differentiation level.

#### Further work

- Testing different hypotheses on haematopoiesis.
- Application of the model to network of diseased cells, and possible individuation of anomalies related to pathologies.

## References

Wang, Bo & Mezlini, Aziz & Demir, Feyyaz & Fiume, Marc & Tu, Z. & Brudno, Michael & Haibe-Kains, Benjamin & Goldenberg, Anna. (2014). Similarity network fusion for aggregating data types on a genomic scale. *Nature methods*. 11. 10.1038/nmeth.2810.

Bo Wang, Jiayan Jiang, Wei Wang, Zhi-Hua Zhou, and Z Tu. Unsupervised metric fusion by cross diffusion. *IEEE Conference on Computer Vision and Pattern Recognition*, pages 2997–3004, 06 2012.

Vikas Bansal and Vineet Bafna. Hapcut: An efficient and accurate algorithm for the haplotype assembly problem. *Bioinformatics* (Oxford, England), 24:i153–9, 09 2008.

Palshikar, Girish. Simple algorithms for peak detection in time-series. (2009). Proc. 1st Int. Conf. Advanced Data Analysis, Business Analytics and Intelligence. Vol. 122.

Xhemalce, B., Dawson, M. A., & Bannister, A. J. (2006). Histone modifications. *Reviews in Cell Biology and Molecular Medicine*.