Hebbian Learning Algorithms for Training Convolutional Neural Networks

Gabriele Lagani
Computer Science PhD
University of Pisa
Outline

• SGD vs Hebbian learning

• Hebbian learning variants

• Training CNNs with Hebbian + WTA approach on image classification tasks (CIFAR-10 dataset)

• Comparison with CNNs trained with SGD

• Results and conclusions
SGD vs Hebbian Learning

- SGD training requires forward and backward pass

$$x_1 \rightarrow y_1$$

$$x_2 \rightarrow y_2$$

Forward pass

Error/loss computation: $E(y, t)$

Gradient computation: $rac{\partial E}{\partial w_{i,j}}$
SGD vs Hebbian Learning

- SGD training requires forward and backward pass

\[
\frac{\partial E}{\partial w_{i,j}}
\]

Error/loss computation: \(E(y, t) \)

Gradient computation:

\[
\frac{\partial E}{\partial w_{i,j}}
\]
SGD vs Hebbian Learning

- Hebbian learning rule: \(\Delta w = \eta y(x, w) x \)
- Unique local forward pass
- Advantage: layer-wise parallelizable
Hebbian Learning Variants

- Weight decay:
 \[\Delta w = \eta y(x, w) x - \gamma(x, w) \]

- Taking \(\gamma(x, w) = \eta y(x, w) w \)
 \[\Delta w = \eta y(x, w) (x - w) \]
Lateral Interaction

- Competitive learning
 - Winner-Takes-All (WTA)
 - Self-Organizing Maps (SOM)
Convolutional Layers

- Sparse connectivity
- Shared weights
- Translation invariance

Update aggregation by averaging in order to maintain shared weights
Final Classification Layer

- Supervised Hebbian learning with teacher neuron
Experimental Setup

- Hebbian + WTA approach applied to **deep CNNs**
- Extension of Hebbian rules to convolutional layers with shared kernels: **update aggregation**
- **Teacher neuron** for supervised Hebbian learning
- **Hybrid** network architectures (Hebbian + SGD layers)
Network Architecture

Input

Layer 1
5x5 Conv, 96
ReLU
2x2 Max Pool
Batch Norm

Layer 2
3x3 Conv, 128
ReLU
Batch Norm

Layer 3
3x3 Conv, 192
ReLU
2x2 Max Pool
Batch Norm

Layer 4
3x3 Conv, 256
ReLU
Batch Norm

Layer 5
Flat

Layer 6
FC, 300
ReLU
Batch Norm
Dropout

Classifier
(FC, 10 outputs, 1 per class)
Different Configurations

(a) A classifier on top on the i-th layer of the network

(b) SGD layers on top of Hebbian-trained layers (and vice-versa)

(c) Hebbian trained layers in between SGD layers
Classifiers on top of Deep Layers

(a) A classifier on top on the i-th layer of the network

(b) SGD layers on top of Hebbian-trained layers (and vice-versa)

(c) Hebbian trained layers in between SGD layers
Classifiers on Deep Layers Trained with SGD

Considerations on Hebbian classifier:
- Pros: good on **high-level features**, fast training (1-2 epochs)
- Cons: bad on low-level features
Classifiers on Hebbian Deep Layers

Accuracy %

<table>
<thead>
<tr>
<th>Layer</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>63.92</td>
</tr>
<tr>
<td>Layer 2</td>
<td>63.81</td>
</tr>
<tr>
<td>Layer 3</td>
<td>58.28</td>
</tr>
<tr>
<td>Layer 4</td>
<td>52.99</td>
</tr>
<tr>
<td>Layer 5</td>
<td>41.78</td>
</tr>
</tbody>
</table>
Layer 1 Kernels

(a) Kernels obtained using Hebbian-WTA algorithm.

(b) Kernels obtained using a Self-Organizing Map.

(c) Kernels obtained using Gradient Descent.

(d) Kernels obtained using Hebbian-WTA algorithm with image whitening.
Hybrid Networks

(a) A classifier on top on the i-th layer of the network

(b) SGD layers on top of Hebbian-trained layers (and vice-versa)

(c) Hebbian trained layers in between SGD layers
Hybrid Networks: Bottom Hebb. - Top SGD

Accuracy %

- Full Gdes: 84.95%
- Layer 1: 84.93%
- Layer 2: 78.61%
- Layer 3: 67.87%
- Layer 4: 57.56%
- Layer 5: 41.78%
- Full Hebb: 28.59%
Hybrid Networks: Bottom SGD - Top Hebb.
Hybrid Networks: SGD - Hebb. - SGD

(a) A classifier on top on the i-th layer of the network
(b) SGD layers on top of Hebbian-trained layers (and vice-versa)
(c) Hebbian trained layers in between SGD layers
Hybrid Networks: SGD - Hebb. - SGD
Conclusions

- **Pros** of Hebbian + WTA:
 - Effective for low level feature extraction
 - Effective for training higher network layers, including a classifier on top of high-level features
 - Takes fewer epochs than SGD (2 vs 10) → useful for *transfer learning*

- **Cons** of Hebbian + WTA:
 - Not effective for training intermediate network layers
 - Not effective for training a classifier on top of low-level features.
Future Works

- Explore other Hebbian learning variants
 - **Hebbian PCA**
 - Can achieve distributed coding at intermediate layers
 - **Contrastive Hebbian Learning (CHL)**
 - Free phase + clamped phase
 - Update step: \(\Delta w = \eta (y^+ x^+ - y^- x^-) \)
 - Equivalent to Gradient Descent
Future Works

- Switch to **Spiking Neural Networks** (SNN)
 - Spike Time Dependent Plasticity (STDP)

\[
\Delta w = \begin{cases}
A_+e^{-(t_{out}-t_{in})/\tau_+} & \text{if } t_{out} > t_{in} \\
A_-e^{(t_{out}-t_{in})/\tau_-} & \text{if } t_{out} \leq t_{in}
\end{cases}
\]

- Higher biological plausibility
- Low power consumption
 - Good for neuromorphic hardware implementation
 - Ideal for applications on constrained devices
References

- S. Haykin; Neural Networks and Learning Machines (2009)