Exploiting Randomness in Neural Networks

Daniele Di Sarli

Mauriana Pesaresi seminars - 2020

Backpropagation
Through Time

PREDICTION

PATTERNS, INTERACTIONS

..., 3, 2, 1.5, 0.75, 1, -2.3, 4, ...

Reservoir

Readout

Reservoir

Readout

Echo State Network

State Space \mathbb{R}^{N_R}

(d)
$$2, 4, 3, 2, 0, 2, 0, 4, 2, 2, 3 \rightarrow$$

Cover's theorem

Echo State Property

$$\forall s_N(\mathbf{u}) = [\mathbf{u}(1), \dots, \mathbf{u}(N)] \in (\mathbb{R}^{N_U})^N,$$

$$\forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^{N_R} :$$

$$\|\hat{\tau}(s_N(\mathbf{u}), \mathbf{x}) - \hat{\tau}(s_N(\mathbf{u}), \mathbf{x}')\| \to 0 \text{ as } N \to \infty$$

Echo State Network starter pack

- 1. Randomly initialize the weights (sparse)
- 2. Rescale the weights to guarantee **contractivity** of the state transition function (=> ESP)
- 3. Feed data, collect states
- 4. Compute **optimal** linear regression parameters

$$\mathbf{W}_{out} = \bar{\mathbf{Y}} \mathbf{X}^T (\mathbf{X} \mathbf{X}^T + \lambda \mathbf{I})^{-1}$$

«RC [...] provides explanations of why biological brains can carry out accurate computations with an "inaccurate" and noisy physical substrate»

Lukoševičius et al.

In the **primary visual cortex**, «computations are performed by complex **dynamical systems** while information about results of these computations is read out by simple **linear classifiers**.»

Nikolić et al.

My work

Natural Language Processing

From Strubell, E., Ganesh, A., McCallum, A.:
Energy and Policy Considerations for Deep Learning in NLP
Proceedings of the 57th Conference of the Association for Computational Linguistics, 2019

Text Classification pipeline

Text Classification pipeline

Question Classification

What was the name of the first Russian astronaut to do a spacewalk? **HUMAN**

What's the tallest building in New York City?

LOCATION

... also ABBREVIATION, ENTITY, DESCRIPTION, and NUMERIC VALUE

Improvements are needed

- Bidirectional
- Attention
- Multi-ring

What's the tallest building in New York City?

Improvements are needed

- Bidirectional
- Attention
- Multi-ring

What's the tallest building in New York City?

Improvements are needed

- Bidirectional
- Attention
- Multi-ring

 $\hat{\mathbf{W}}$

Multi-ring reservoir units

Results

Results

How old was the youngest president of the United States?

When was Ulysses S. Grant born?

Who invented the instant Polaroid camera?

What is nepotism?

Where is the Mason/Dixon line?

What is the capital of Zimbabwe?

What are Canada 's two territories?

Wrap up

• A path towards efficient, effective ML models must be taken

 Heavier understanding/exploitation of the architectural properties of RNN models can help towards that goal

Analysis is preliminary, but WIP results are encouraging

References

- 1. Di Sarli, D., Gallicchio, C., & Micheli, A. (2019, November). **Question Classification with Untrained Recurrent Embeddings**. In *International Conference of the Italian Association for Artificial Intelligence*.
- 2. Jaeger, H., & Haas, H. (2004). Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. *Science*.
- 3. Lukoševičius, M., & Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review.
- 4. Nikolić, D., Haeusler, S., Singer, W., & Maass, W. (2007). **Temporal dynamics of information content carried by neurons in the primary visual cortex**. In *Advances in neural information processing systems*.