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Software Testing and Analysis



All software have bugs, we know that…

… and also the smallest vulnerability may trigger a domino effect!

Number of bugs per kLOC: 
Between 57.02 bugs/kLOC 
and 10.09 bugs/kLOC

Time to Fix:
Between 5 and 340 days

● Aljedaani, Wajdi, and Yasir Javed. "Bug Reports Evolution in Open Source Systems.”
● Xia, Xin, et al. "An empirical study of bugs in software build system."

Introduction



Goal of GrapPa

Design and implement a generic bug finder that uses 
machine learning to learn from buggy examples

• Static analysis
➢ from source code to graph

• Train graph-based classifier

• Classify graphs of previously unseen code



Buggy 
example

Non-Buggy 
example

What is “buggy”?



Buggy 
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Background

• Code Property graph (CPG)
➢ Merges classical graph representation into one data 

structure

• Contextual Graph Markov Model (CGMM)
➢ Neural network approach for processing graph data

• Multilayer Perceptron (MLP)
➢ Classical neural network model



Code example

Background - CPG



● Yamaguchi, Fabian, et al. "Modeling and discovering vulnerabilities with code property graphs." 
(2014).

Background - CPG



An unsupervised model able to encode graphs of varying size 
and topology to a fixed dimension vector

Edges

Flow of 
contextual 
information

State

● Bacciu Davide, Federico Errica, and Alessio Micheli. "Contextual Graph Markov Model: A Deep 
and Generative Approach to Graph Processing." (2018).

Background - CGMM



Feedforward artificial neural network.

Dropout 

The dropout layer 
randomly selects a 

fraction rate of input 
neurons that are 

ignored during training 

Background - MLP



Methodology

Approach steps

• Database of source code samples

• Static analysis and graph generation

• Graph vectorization

• Classification



Approach - The Dataset



Approach - The Dataset



 The major mutation framework - documentation. http://mutation-testing.org/

List of 
applied 

mutations

Approach - The Dataset



Approach - Generate CPGs



Dataset of a 
bug pattern

Dataset of 
unclassified 

graphs

  TRAINING

   VECTORIZE

Approach - Graphs vectorization



Approach presented by Gal Y. e Ghahramani Z. to calculate the 
uncertainty of the model predictions.

● Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing 
model uncertainty in deep learning." (2016).

Output for each sample:
➢ Prediction value in range [0,1]
➢ Uncertainty value in range [0,1.8)

Approach - Classification



Final step: removing graphs/vector: 

We define uncertainty as:

Approach - Classification



Model trained on a 
specific bug pattern

● Predictions and 
subset of methods

Approach - Classification



● Major: 
mutation 
framework

● Soot: 
analyzing 
Java 
applications

● CGMM tool: 
Github by 
Errica F. 
(@diningphil)

● Weka
● Keras
● Tensorflow

Implementation - GrapPa



● Classified by the model as: BUGGY
● Manual check classified as: BUGGY

Results - NPE Example #1



● Classified by the model as: BUGGY
● Manual check classified as: NON-BUGGY

Results - NPE Example #2



● Classified by the model as: BUGGY
● Manual check classified as: NON-BUGGY

Results - NPE Example #2



Novel and general approach
➢ Use of recent works
➢ Useful for developers in improving code security
➢ Not need prior-knowledge on code (neither on the bug 

pattern)

The tool GrapPa (https://github.com/Djack1010/GrapPa) 
➢ Three trained models available
➢ Easy to include more bug patterns

Simplified version of the CPG 

Three datasets of syntetich bugs available online
➢ https://github.com/Djack1010/BUG_DB

Take-home points for GrapPa

https://github.com/Djack1010/GrapPa
https://github.com/Djack1010/BUG_DB


Mobile Security



Motivation

• Mobile devices handle huge amount of sensitive data
➢ really lucrative and attractive for attackers

• Mobile malware abuse of the “weakest link” of security
➢ malware detection techniques to mitigate

• Banking malware are critical
➢ significant exposure to every infected device 
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Formal methods in a nutshell

➢ Formal Model  &   Temporal Logics

Calculus of 
Communicating Systems of Milner (CCS)

Modal mu-calculus (extended form)

doing_shopping = 
init ∧ empty_cart ∧ not_empty_cart

init = init.<start>empty_cart

empty_cart =  
empty_cart.<add_item>not_empty_cart

not_empty_cart =  
not_empty_cart.<add_item>not_empty_cart 
∨ not_empty_cart.<pay>true

empty_cart not_emtpy_cart

clear_cart

add_item

add_item

paystart
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The Method 

➢ Formal Model  &   Temporal Logics

● Java Bytecode-to-CCS transformation
➢ defined for each instruction

● Specify set of properties
➢ describing malware behaviours

.class files CCS 
specification

Transformation 
Function

App under analysis

Labelled Transition System

Manual inspection and 
current literature

Properties
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The Method
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Features and Pros of the Method

● Use of formal methods

● Inspection directly on Java Bytecode

● Capture of malicious behaviours at finer granularity

● Method independent of source programming language

● Identification payload without decompilation
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The Experiment on the Overlay family

1. Intercepting SMS messages

2. Stealing money in background

3. Password resetting

[1] Wei, Fengguo, et al. "Deep ground truth analysis of current android malware." International Conference on Detection of Intrusions and 
Malware, and Vulnerability Assessment. Springer, Cham, 2017.
[2] Han, Qian, et al. "DBank: Predictive Behavioral Analysis of Recent Android Banking Trojans." IEEE Transactions on Dependable and 
Secure Computing (2019).
[3] Wazid, Mohammad, Sherali Zeadally, and Ashok Kumar Das. "Mobile banking: evolution and threats: malware threats and security 
solutions." IEEE Consumer Electronics Magazine 8.2 (2019)
[4] Pan, Jordan “Fake Bank App Ramps Up Defensive Measures“ Available at: http://tiny.cc/xz209y  [Accessed: Oct ‘19]
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The Experiment on the Overlay family

Malicious Behaviour 
in Java Code

Malicious Behaviour in 
mu-calculus formulae
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The Experiment on the Overlay family

Malicious Behaviour 
in Java Code

Malicious Behaviour in 
mu-calculus formulae

Collecting 
User Info

Send Info to 
attackers
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The Experiment on the Overlay family

Collecting 
User Info

Send Info to 
attackers

Malicious Behaviour 
in Java Code

Malicious Behaviour in 
mu-calculus formulae

Collecting 
User Info

Send Info to 
attackers
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The Dataset

+ 75 malware Overlay family
+ 250 malware from Drebin [1]*
+ 50 trusted samples

= 375 real world samples

 

[1] ARP, Daniel, et al. Drebin: Effective and explainable detection of android malware in your pocket. In: Ndss. 2014. 

*25 randomly selected samples from each of 
the top 10 Drebin Malware Families
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Evaluation Result

True Positive False Positive False Negative True Negative

75 0 0 300
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Take-home points

Short experimental paper: applied known technique[1,2] 
on a specific malware classification problem 

● Methodology:
➢ model checking to detect Overlay malware

● Database:
➢ 350 real world applications

● Experiment result:
➢ achieved precision and recall values equal to 1

 
[1] Canfora, Gerardo, et al. "Leila: formal tool for identifying mobile malicious behaviour." IEEE Transactions on Software Engineering (2018)
[2] Cimitile, Aniello, et al. "Talos: no more ransomware victims with formal methods." International Journal of Information Security 17.6 (2018)
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Limitations and Future Works
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● Extend analysis to more malware (families)
➢ Image classification and Deep Learning

● Take into account obfuscation
➢ Check robustness model

● Using preliminary static analysis to automatize 
malicious behaviour extraction (GrapPa)



• Software Testing and Analysis
➢ Graph-based classification for detecting instances of 

bug patterns → Master’s degree thesis TU Darmstadt 

• Mobile Security (Android OS)
➢ Improving robustness and efficiency in malware 

classification → Work in progress with F. Mercaldo
➢ Formal Methods for Android Banking Malware 

Analysis and Detection → Published IOTSMS19

• Machine Learning (towards Adversarial Learning)
➢ Image-based Malware Family Detection: An 

Assessment between Feature Extraction and 
Classification Techniques  → submitted IoTBDS20

Research topics and publications



Thanks for the attention

Questions?
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JfreeChart project as test dataset (7555 methods)

Frequency of predictions without dropout (on the left) and 
the average of predictions with dropout (on the right).

Results GrapPa



● Selected 2675 methods out of 7555

Results GrapPa



Manually checked 80 methods of the 2675 selected by the 
tool

➢ 40 buggy predictions
➢ 40 non-buggy predictions

We agreed with the tool predictions in 70% of the cases.

PREDICTION AGREED 
with the model

NOT AGREED 
with the model

(1) Possible NPE 60%
23 cases

40%
17 cases

(0) NPE 
not-possible

80%
32 cases

20%
8 cases

Result manual check

Results GrapPa



Intercepting SMS messages behaviour
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Password resetting behaviour
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Why Formal Methods?

• The checking process is automatic, there is no need to 
construct a correctness proof

• The possibility of using the diagnostic counterexamples

• Temporal logic can easily and correctly express the 
behaviour of a malware

• Formal verification allows evaluating all possible 
scenarios, the entire state space all at once

Pesaresi Seminar – 16th Mar 2020 
 


