
Designing Robust Software Analysis and Artificial
Intelligence Approaches For Cybersecurity

Giacomo Iadarola
Research fellow (Assegnista di Ricerca) at IIT-CNR
PhD student at Department of Computer Science (University of Pisa)

TUTOR: Fabio Martinelli (IIT-CNR)

Interests: Software Testing and Analysis - Mobile Security
Machine Learning - Cryptography (Blockchain)

ToDo: Adversarial Learning - Explicable AI

Outline

• Introduction

• Let’s talk about:
➢ Software Testing and Analysis
➢ Mobile Security

• Future Works
➢ Adversarial Learning

• Conclusion

Pesaresi Seminar – 16th Mar 2020

Software Testing and Analysis

All software have bugs, we know that…

… and also the smallest vulnerability may trigger a domino effect!

Number of bugs per kLOC:
Between 57.02 bugs/kLOC
and 10.09 bugs/kLOC

Time to Fix:
Between 5 and 340 days

● Aljedaani, Wajdi, and Yasir Javed. "Bug Reports Evolution in Open Source Systems.”
● Xia, Xin, et al. "An empirical study of bugs in software build system."

Introduction

Goal of GrapPa

Design and implement a generic bug finder that uses
machine learning to learn from buggy examples

• Static analysis
➢ from source code to graph

• Train graph-based classifier

• Classify graphs of previously unseen code

Buggy
example

Non-Buggy
example

What is “buggy”?

Buggy
example

Non-Buggy
example

What is “buggy”?

Background

• Code Property graph (CPG)
➢ Merges classical graph representation into one data

structure

• Contextual Graph Markov Model (CGMM)
➢ Neural network approach for processing graph data

• Multilayer Perceptron (MLP)
➢ Classical neural network model

Code example

Background - CPG

● Yamaguchi, Fabian, et al. "Modeling and discovering vulnerabilities with code property graphs."
(2014).

Background - CPG

An unsupervised model able to encode graphs of varying size
and topology to a fixed dimension vector

Edges

Flow of
contextual
information

State

● Bacciu Davide, Federico Errica, and Alessio Micheli. "Contextual Graph Markov Model: A Deep
and Generative Approach to Graph Processing." (2018).

Background - CGMM

Feedforward artificial neural network.

Dropout

The dropout layer
randomly selects a

fraction rate of input
neurons that are

ignored during training

Background - MLP

Methodology

Approach steps

• Database of source code samples

• Static analysis and graph generation

• Graph vectorization

• Classification

Approach - The Dataset

Approach - The Dataset

 The major mutation framework - documentation. http://mutation-testing.org/

List of
applied

mutations

Approach - The Dataset

Approach - Generate CPGs

Dataset of a
bug pattern

Dataset of
unclassified

graphs

 TRAINING

 VECTORIZE

Approach - Graphs vectorization

Approach presented by Gal Y. e Ghahramani Z. to calculate the
uncertainty of the model predictions.

● Gal, Yarin, and Zoubin Ghahramani. "Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning." (2016).

Output for each sample:
➢ Prediction value in range [0,1]
➢ Uncertainty value in range [0,1.8)

Approach - Classification

Final step: removing graphs/vector:

We define uncertainty as:

Approach - Classification

Model trained on a
specific bug pattern

● Predictions and
subset of methods

Approach - Classification

● Major:
mutation
framework

● Soot:
analyzing
Java
applications

● CGMM tool:
Github by
Errica F.
(@diningphil)

● Weka
● Keras
● Tensorflow

Implementation - GrapPa

● Classified by the model as: BUGGY
● Manual check classified as: BUGGY

Results - NPE Example #1

● Classified by the model as: BUGGY
● Manual check classified as: NON-BUGGY

Results - NPE Example #2

● Classified by the model as: BUGGY
● Manual check classified as: NON-BUGGY

Results - NPE Example #2

Novel and general approach
➢ Use of recent works
➢ Useful for developers in improving code security
➢ Not need prior-knowledge on code (neither on the bug

pattern)

The tool GrapPa (https://github.com/Djack1010/GrapPa)
➢ Three trained models available
➢ Easy to include more bug patterns

Simplified version of the CPG

Three datasets of syntetich bugs available online
➢ https://github.com/Djack1010/BUG_DB

Take-home points for GrapPa

https://github.com/Djack1010/GrapPa
https://github.com/Djack1010/BUG_DB

Mobile Security

Motivation

• Mobile devices handle huge amount of sensitive data
➢ really lucrative and attractive for attackers

• Mobile malware abuse of the “weakest link” of security
➢ malware detection techniques to mitigate

• Banking malware are critical
➢ significant exposure to every infected device

Pesaresi Seminar – 16th Mar 2020

Formal methods in a nutshell

➢ Formal Model & Temporal Logics

Calculus of
Communicating Systems of Milner (CCS)

Modal mu-calculus (extended form)

doing_shopping =
init ∧ empty_cart ∧ not_empty_cart

init = init.<start>empty_cart

empty_cart =
empty_cart.<add_item>not_empty_cart

not_empty_cart =
not_empty_cart.<add_item>not_empty_cart
∨ not_empty_cart.<pay>true

empty_cart not_emtpy_cart

clear_cart

add_item

add_item

paystart

Pesaresi Seminar – 16th Mar 2020

The Method

➢ Formal Model & Temporal Logics

● Java Bytecode-to-CCS transformation
➢ defined for each instruction

● Specify set of properties
➢ describing malware behaviours

.class files CCS
specification

Transformation
Function

App under analysis

Labelled Transition System

Manual inspection and
current literature

Properties

Pesaresi Seminar – 16th Mar 2020

The Method

Pesaresi Seminar – 16th Mar 2020

Features and Pros of the Method

● Use of formal methods

● Inspection directly on Java Bytecode

● Capture of malicious behaviours at finer granularity

● Method independent of source programming language

● Identification payload without decompilation

Pesaresi Seminar – 16th Mar 2020

The Experiment on the Overlay family

1. Intercepting SMS messages

2. Stealing money in background

3. Password resetting

[1] Wei, Fengguo, et al. "Deep ground truth analysis of current android malware." International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Springer, Cham, 2017.
[2] Han, Qian, et al. "DBank: Predictive Behavioral Analysis of Recent Android Banking Trojans." IEEE Transactions on Dependable and
Secure Computing (2019).
[3] Wazid, Mohammad, Sherali Zeadally, and Ashok Kumar Das. "Mobile banking: evolution and threats: malware threats and security
solutions." IEEE Consumer Electronics Magazine 8.2 (2019)
[4] Pan, Jordan “Fake Bank App Ramps Up Defensive Measures“ Available at: http://tiny.cc/xz209y [Accessed: Oct ‘19]

Pesaresi Seminar – 16th Mar 2020

The Experiment on the Overlay family

Malicious Behaviour
in Java Code

Malicious Behaviour in
mu-calculus formulae

Pesaresi Seminar – 16th Mar 2020

The Experiment on the Overlay family

Malicious Behaviour
in Java Code

Malicious Behaviour in
mu-calculus formulae

Collecting
User Info

Send Info to
attackers

Pesaresi Seminar – 16th Mar 2020

The Experiment on the Overlay family

Collecting
User Info

Send Info to
attackers

Malicious Behaviour
in Java Code

Malicious Behaviour in
mu-calculus formulae

Collecting
User Info

Send Info to
attackers

Pesaresi Seminar – 16th Mar 2020

The Dataset

+ 75 malware Overlay family
+ 250 malware from Drebin [1]*
+ 50 trusted samples

= 375 real world samples

[1] ARP, Daniel, et al. Drebin: Effective and explainable detection of android malware in your pocket. In: Ndss. 2014.

*25 randomly selected samples from each of
the top 10 Drebin Malware Families

Pesaresi Seminar – 16th Mar 2020

Evaluation Result

True Positive False Positive False Negative True Negative

75 0 0 300

Pesaresi Seminar – 16th Mar 2020

Take-home points

Short experimental paper: applied known technique[1,2]
on a specific malware classification problem

● Methodology:
➢ model checking to detect Overlay malware

● Database:
➢ 350 real world applications

● Experiment result:
➢ achieved precision and recall values equal to 1

[1] Canfora, Gerardo, et al. "Leila: formal tool for identifying mobile malicious behaviour." IEEE Transactions on Software Engineering (2018)
[2] Cimitile, Aniello, et al. "Talos: no more ransomware victims with formal methods." International Journal of Information Security 17.6 (2018)

Pesaresi Seminar – 16th Mar 2020

Limitations and Future Works

Pesaresi Seminar – 16th Mar 2020

● Extend analysis to more malware (families)
➢ Image classification and Deep Learning

● Take into account obfuscation
➢ Check robustness model

● Using preliminary static analysis to automatize
malicious behaviour extraction (GrapPa)

• Software Testing and Analysis
➢ Graph-based classification for detecting instances of

bug patterns → Master’s degree thesis TU Darmstadt

• Mobile Security (Android OS)
➢ Improving robustness and efficiency in malware

classification → Work in progress with F. Mercaldo
➢ Formal Methods for Android Banking Malware

Analysis and Detection → Published IOTSMS19

• Machine Learning (towards Adversarial Learning)
➢ Image-based Malware Family Detection: An

Assessment between Feature Extraction and
Classification Techniques → submitted IoTBDS20

Research topics and publications

Thanks for the attention

Questions?

Pesaresi Seminar – 16th Mar 2020

References

Literature for specifying malware behaviours as logic property:
[1] Wei, Fengguo, et al. "Deep ground truth analysis of current android malware." International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment. Springer,
Cham, 2017.
[2] Han, Qian, et al. "DBank: Predictive Behavioral Analysis of Recent Android Banking Trojans."
IEEE Transactions on Dependable and Secure Computing (2019).
[3] Wazid, Mohammad, Sherali Zeadally, and Ashok Kumar Das. "Mobile banking: evolution and
threats: malware threats and security solutions." IEEE Consumer Electronics Magazine 8.2 (2019)
[4] Pan, Jordan “Fake Bank App Ramps Up Defensive Measures“ http://tiny.cc/xz209y

Applied techniques based on Formal Methods:
[5] Canfora, Gerardo, et al. "Leila: formal tool for identifying mobile malicious behaviour." IEEE
Transactions on Software Engineering (2018)
[6] Cimitile, Aniello, et al. "Talos: no more ransomware victims with formal methods." International
Journal of Information Security 17.6 (2018)

Database:
[7] ARP, Daniel, et al. Drebin: Effective and explainable detection of android malware in your
pocket. In: Ndss. 2014. p. 23-26.

Pesaresi Seminar – 16th Mar 2020

http://tiny.cc/xz209y

JfreeChart project as test dataset (7555 methods)

Frequency of predictions without dropout (on the left) and
the average of predictions with dropout (on the right).

Results GrapPa

● Selected 2675 methods out of 7555

Results GrapPa

Manually checked 80 methods of the 2675 selected by the
tool

➢ 40 buggy predictions
➢ 40 non-buggy predictions

We agreed with the tool predictions in 70% of the cases.

PREDICTION AGREED
with the model

NOT AGREED
with the model

(1) Possible NPE 60%
23 cases

40%
17 cases

(0) NPE
not-possible

80%
32 cases

20%
8 cases

Result manual check

Results GrapPa

Intercepting SMS messages behaviour

Pesaresi Seminar – 16th Mar 2020

Password resetting behaviour

Pesaresi Seminar – 16th Mar 2020

Why Formal Methods?

• The checking process is automatic, there is no need to
construct a correctness proof

• The possibility of using the diagnostic counterexamples

• Temporal logic can easily and correctly express the
behaviour of a malware

• Formal verification allows evaluating all possible
scenarios, the entire state space all at once

Pesaresi Seminar – 16th Mar 2020

