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Introduction
Strings and Graphs

a b a c b

Strings and Graphs are both ubiquitous in Computer Science.

Strings: most information is textual.

Graphs: essential to represent relationships and network structure.
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Introduction
Combining Strings and Graphs

Oftentimes, the two structures are combined:

I Bioinformatics: DNA sequences are represented with deBruijn graphs;

I Search Engines: textual information naturally linked with a graph structure;

I DFAs: graphs which correspond to regular languages.

↓

We will study one instance where a difficult string problem was solved using the
underlying graph structure: Maximal Common Subsequence Enumeration
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Introduction
Maximal Common Subsequences

Given an alphabet Σ, a string is a concatenation of any number of its characters.
A subsequence of a string X, denoted S ⊂ X, is a string obtained from X by
removing any number of not necessarily contiguous characters.

Definition

Given X,Y over Σ, a Longest Common Subsequence (LCS) between them is a
common subsequence of maximum length.

Definition (Sakai 2018)

Given X,Y over Σ, a string S is a Maximal Common Subsequence of X and
Y , denoted S ∈MCS(X,Y ), if

1. S ⊂ X and S ⊂ Y ;

2. S ⊂W with W ⊂ X, W ⊂ Y ⇒ S = W .
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Introduction
Maximal Common Subsequences

Example

Let Σ = {A, C, G, T} and consider

X = A T C AGG T

Y = G AC TA T

then:

1. S = ACT is a common subsequence of X and Y .
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Introduction
Maximal Common Subsequences

Example

Let Σ = {A, C, G, T} and consider

X = ATCAGGT

Y = GACTAT

then:

1. S = ACT is a common subsequence of X and Y ;

2. MCS(X,Y ) = {ACAT, ATAT, GT}.
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Introduction
MCS vs LCS

LCS: one of the main string comparison tools

↓

Limitation: LCS has a quadratic conditional lower bound (Abboud et al, 2015)

MCS are a natural generalization of LCS.

I One MCS can be found in O(n log log(n)) time (Sakai 2018)

I Might reveal alternative smaller alignments
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Our Aim: Efficient MCS Enumeration

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Problem (MCS Enumeration)

List all distinct maximal common subsequences S ∈MCS(X,Y ), for X,Y of
length O(n) over Σ of size σ, with polynomial delay.

Note that by distinct we mean as elements of the set MCS(X,Y ):
strings with multiple occurrences need to be output once.
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Our Aim: MCS Enumeration

Example (Enumeration)

X = TAAGCC

Y = TAGACT

Output:

I TAGC

I TAAC
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Our Aim: MCS Enumeration

Example (Enumeration)

X = TA A GC C

Y = TAG A C T

Output:

I TAGC

I TAAC
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Our Aim: MCS Enumeration

Example (Enumeration)

X = TA A G C C

Y = TAG A C T

Output:

I TAGC

I TAAC
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Pitfalls of MCS Enumeration

1.
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Pitfalls of MCS Enumeration

1. Using a divide and conquer approach
MCS do not naturally combine.

Example

X = AGA|TGA
Y = TAG|GAT

MCS(X,Y ) = {AGGA, AGAT, TGA}: the combination AGT of the two blue
submaximals is not maximal.
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Pitfalls of MCS Enumeration

1. Using a divide and conquer approach
MCS do not naturally combine.

2. Thinking that MCS are a small number
MCS can be exponential even for |Σ| = 2.

Example

The two strings
X = A ◦ (CCA)n; Y = A ◦ (CA)b

3n
2 c.

have an exponential number of MCS.
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Pitfalls of MCS Enumeration

1. Using a divide and conquer approach
MCS do not naturally combine.

2. Thinking that MCS are a small number
MCS can be exponential even for |Σ| = 2.

3. Using an incremental approach?
Let X and Y be any two strings; is it true that

MCS(X,Y ) ◦ c↔MCS(X,Y ◦ c)?
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Pitfalls of MCS Enumeration
Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Example

X =ACCACCACCA

Z =ACACACACA

Consider X and Y = Z ◦ Z, and we proceed incrementally over Y . Since X ⊂ Y ,
MCS(X,Y ) = {X} but when we are at half length, |MCS(X,Z)| is exponential.

−→ it leads to an exponential delay algorithm!
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Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Definition

P ⊂ X,Y is called a valid prefix if ∃W such that P ◦W ∈MCS(X,Y ).

If we have a characterization for valid prefixes, we can build increasingly long
prefixes of maximals by appending valid characters, until we generate all MCS.
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Unshiftable Edges
Bipartite String Graph

Definition (String Graphs and Mappings)

Given two strings X,Y , the corresponding Bipartite String Graph (BSG) is the
bipartite graph G(X,Y ) that has one vertex for each position of X and of Y , and
edge set E = {(i, j) | X[i] = Y [j]}. A mapping of a string graph is a subset of
the edges P ⊆ E such that ∀(i, j), (h, k) ∈ P we have i ≤ h ⇐⇒ j ≤ k.

Example

The BSG for the two strings X = CGATA and Y = GCTGA is given by
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Unshiftable Edges
Bipartite String Graph

Definition (String Graphs and Mappings)

Given two strings X,Y , the corresponding Bipartite String Graph (BSG) is the
bipartite graph G(X,Y ) that has one vertex for each position of X and of Y , and
edge set E = {(i, j) | X[i] = Y [j]}. A mapping of a string graph is a subset of
the edges P ⊆ E such that ∀(i, j), (h, k) ∈ P we have i ≤ h ⇐⇒ j ≤ k.

Example

The BSG for the two strings X = CGATA and Y = GCTGA is given by

C G A T A

G C T G A

A mapping of the graph is shown in blue.
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Unshiftable Edges
Maximal Mappings and MCS

Definition

A mapping P of a BSG is said to be maximal if adding any edge (i, j) to P no
longer yields a mapping.

Example (MCS 6= maximal mappings)

Every MCS corresponds to a maximal mapping, but the opposite does not hold.
Consider X = AGG and Y = AGAG:

A G G

A G A G

The blue mapping is maximal, but it does not correspond to any MCS.
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Unshiftable Edges
Definition

Definition

Let IX(i) be the substring X[i+ 1, ..., nextX(i)] (analogously for Y ).
An edge (i, j) is unshiftable ((i, j) ∈ U) if and only if either

I (Base case) It corresponds to the last pairwise occurrence in the strings of
character X[i] = Y [j].

I (Otherwise) There is at least one unshiftable edge in G(IX(i), IY (j)).

c
i

c

c
j

c

IX(i)

IY (j)
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Unshiftable Edges
Example

Intuition: every unshiftable belongs to a maximal mapping where it cannot be
“pushed further right” while spelling the same word.

Example
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Example

Intuition: every unshiftable belongs to a maximal mapping where it cannot be
“pushed further right” while spelling the same word.

Example

G A T A C A

A G G A T C A T
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Unshiftable Edges
Example
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Unshiftable Edges
Still not enough

Example (MCS 6= maximal unshiftable mappings)

Consider X = AAGAAG, Y = AAGA. In the corresponding graph, we have a
maximal rightmost unshiftable mapping for the string AAG:

A A G A A G

A A G A

even though this word is not maximal: the only MCS is the whole AAGA.
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Extending the Prefix
Candidate Extensions

P valid prefix → formally define ExtP set of candidate extensions: being a
candidate is necessary for having a valid extension.

Intuition: “first unshiftable edges after P”.

Example (The condition is not sufficient)

Consider X = AGAGC, Y = AAGCAG. We have MCS(X,Y ) = {AGAG, AAGC}.
Clearly, P = AG is a valid prefix.
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A A G C A G

The edge for C is in ExtP , but AGC is not a valid prefix.
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Correctness of Extension

Theorem (Correctness)

Let P be a valid prefix of some M ∈MCS(X,Y ).Then P ◦ c is still a valid prefix
if and only if the following two conditions hold:

1. ∃(i, j) ∈ ExtP corresponding to character c;

2. P ∈MCS(X<i, Y<j).

P

Y

X
i

j

c

Giulia Punzi MCS Enumeration Pesaresi Seminar – April 20th 2020 19 / 24



The Algorithm
Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we
get to singletons → obtain tree with every and only feasible solution as leaves

P ≡ having string P as a prefix.
↓

branching into possibly |Σ| partitions

Complexity: If the partition oracle takes polynomial time and the height of the
tree is polynomial, then the algorithm is polynomial delay.
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The EnumerateMCS Algorithm

1: procedure EnumerateMCS(X, Y , Σ)
2: U = FindUnshiftables((|X|, |Y |))
3: BinaryPartition(#, {(−1,−1)})
4: end procedure

5: procedure BinaryPartition(P , LP )
6: compute the set of extensions ExtP using U
7: if ExtP = ∅ then Output P
8: else
9: for (i, j) ∈ ExtP corresponding to some c ∈ Σ do

10: if P ∈MCS(X<i, Y<j) then
11: let (l,m) be the last edge of LP

12: find leftmost mapping edge (lc,mc) for c in G(X>l, Y>m)
13: BinaryPartition(P c, LP ∪ (lc,mc))
14: end if
15: end for
16: end if
17: end procedure
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1: procedure EnumerateMCS(X, Y , Σ)
2: U = FindUnshiftables((|X|, |Y |))
3: BinaryPartition(#, {(−1,−1)})
4: end procedure

5: procedure BinaryPartition(P , LP )
6: compute the set of extensions ExtP using U
7: if ExtP = ∅ then Output P
8: else
9: for (i, j) ∈ ExtP corresponding to some c ∈ Σ do

10: if P ∈MCS(X<i, Y<j) then
11: let (l,m) be the last edge of LP

12: find leftmost mapping edge (lc,mc) for c in G(X>l, Y>m)
13: BinaryPartition(P c, LP ∪ (lc,mc))
14: end if
15: end for
16: end if
17: end procedure

For each e ∈ U find previ-

ous pairwise occurrences of

every c ∈ Σ, then add edge

to U if not already present:

O(σn2 log(n)) time
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Parse unshiftable

edges: O(n2) time
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This can be done

in O(|P |) = O(n)

time (Sakai 2018)
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1: procedure EnumerateMCS(X, Y , Σ)
2: U = FindUnshiftables((|X|, |Y |))
3: BinaryPartition(#, {(−1,−1)})
4: end procedure

5: procedure BinaryPartition(P , LP )
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7: if ExtP = ∅ then Output P
8: else
9: for (i, j) ∈ ExtP corresponding to some c ∈ Σ do

10: if P ∈MCS(X<i, Y<j) then
11: let (l,m) be the last edge of LP

12: find leftmost mapping edge (lc,mc) for c in G(X>l, Y>m)
13: BinaryPartition(P c, LP ∪ (lc,mc))
14: end if
15: end for
16: end if
17: end procedure

Logarithmic in

length of strings:

O(log(n)) time
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The EnumerateMCS Algorithm

1: procedure EnumerateMCS(X, Y , Σ)
2: U = FindUnshiftables((|X|, |Y |))
3: BinaryPartition(#, {(−1,−1)})
4: end procedure

5: procedure BinaryPartition(P , LP )
6: compute the set of extensions ExtP using U
7: if ExtP = ∅ then Output P
8: else
9: for (i, j) ∈ ExtP corresponding to some c ∈ Σ do

10: if P ∈MCS(X<i, Y<j) then
11: let (l,m) be the last edge of LP

12: find leftmost mapping edge (lc,mc) for c in G(X>l, Y>m)
13: BinaryPartition(P c, LP ∪ (lc,mc))
14: end if
15: end for
16: end if
17: end procedure

Partition oracle: O(n2 + |ExtP |(n+ log(n))) = O(n2) time
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The EnumerateMCS Algorithm
Final Complexity

Height of the partition tree: O(n) (length of longest MCS)

⇒ O(n3) delay
O(σn2 log(n)) preprocessing time
O(n2) space.

Theorem

There is a O(nσ(σ + log n)) polynomial-delay enumeration algorithm for MCS
enumeration, with O(n2(σ + log n)) preprocessing time and O(n2) space.
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Conclusions and Future Work

I We investigated the string problem of enumerating MCS for the first time; it
turned out to be hard to approach with standard techniques.

I Changing our perspective by looking at the strings as a graph was crucial to
derive fundamental properties, and eventually solve the problem.

I MCS are just one of many string problems with interesting applications:
similar shift in perspective might help solve other difficult problems.

Future Work:

I Explore further connections between LCS and MCS.

I Find other applications of graph-theoretic tools to string problems.
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Thank you for your attention!

Any Questions?

Feel free to email me at giulia.punzi@phd.unipi.it
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Pitfalls of MCS
Incremental Approach

Let X and Y ′ be any two strings. Consider Y = Y ′ ◦ c;

MCS(X,Y ′) ◦ c↔MCS(X,Y )?

Example
I (Some MCS are not found) Let

X =AGCG

Y = ACG︸︷︷︸
Y ′

|C

MCS(X,Y ′) = {ACG}: AGC ∈MCS(X,Y ) was not found.

I (Some strings found are not MCS) Instead in

X =AAGACT

Y = AGCAG︸ ︷︷ ︸
Y ′

|C

we have AGC ∈MCS(X,Y ′), but AGC 6∈MCS(X,Y ).
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Extending the Prefix
The Cross

Let P be a prefix of some W ∈MCS(X,Y ). Given a character c ∈ Σ, we would
like to find a necessary and sufficient condition for P ◦ c to still be a valid prefix.

l e1 f1

m f2 e2

Definition (Cross)

Given an edge (l,m), its following cross χ(l,m) = {e, f} is given by (at most) two
edges such that:

I e = (e1, e2) ∈ U is such that e1 = min{h1 > l | ∃h2 > m : (h1, h2) ∈ U}.
I f = (f1, f2) ∈ U is such that f2 = min{h2 > m | ∃h1 > l : (h1, h2) ∈ U}.
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Extending the Prefix
Candidate Extensions

Definition
Let P be a prefix of some MCS, with its leftmost mapping LP ending at edge
l = (l,m), and let χ(l,m) = (e, f) be its cross. We define the set of the
“Mikado” edges after P as

MkP = {(i, j) ∈ U | e1 ≤ i ≤ f1 and f2 ≤ j ≤ e2}.

From these we extract the candidate extensions for P as follows

ExtP = {(i, j) ∈MkP | 6 ∃(h, k) ∈MkP \ (i, j) such that h ≤ i and k ≤ j}.

e1 f1

f2 e2

LP −→

e1 f1

f2 e2

LP

Figure: MkP set transformed into ExtP
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Correctness
findR procedure

Given (i, j) ∈ U , findR(i, j) returns a maximal mapping in G(X>i, Y>j).

Lemma 1

Let P be a valid prefix with leftmost mapping ending with edge (l,m), and let
(i, j) ∈ ExtP . Then, findR(i, j) returns a mapping whose corresponding
subsequence is M ∈MCS(X>l, Y>m).

LP

Y

X

findR(i, j)· · ·

l

m

i

j
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Correctness
MCS Combination

Theorem (MCS Combination)

Let P and C be common subsequences of X,Y . Let (l,m) be the last edge of the
leftmost mapping of P , and (i, j) be the first edge of the rightmost mapping of
C. Then:

P ◦ C ∈MCS(X,Y ) ⇐⇒ P ∈MCS(X<i, Y<j) and C ∈MCS(X>l, Y>m).

LP RC

Y

X
l

m

i

j
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Correctness
Correctness Theorem

Theorem (Correctness)

Let P be a valid prefix of some M ∈MCS(X,Y ), with leftmost mapping LP

ending with edge (l,m). Then P ◦ c is still a valid prefix if and only if the
following two conditions hold:

1. ∃(i, j) ∈ ExtP corresponding to character c;

2. P ∈MCS(X<i, Y<j).

Proof.
We have said that the conditions are necessary in the previous sections. We know
that findR(i, j) = C ∈MCS(X>l, Y>m). By hypothesis P ∈MCS(X<i, Y<j),
therefore by the MCS combination theorem we have P ◦ C ∈MCS(X,Y ). This
latter string starts with P ◦ c, which is therefore a good prefix.
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