Maximal Common Subsequence Enumeration®
How Graph Structure Helped Solve a String Problem

Giulia Punzi
PhD Student in Computer Science

UNIVERSITA
‘| DI P1SA

DEPARTMENT OF COMPUTER SCIENCE

Mauriana Pesaresi PhD Seminars — April 20th 2020

IA. Conte, R. Grossi, G. Punzi, T. Uno; “Maximal Common Subsequence Enumeration”,
SPIRE 2019.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 1/24

Introduction
Outline

—_

. Strings and Graphs

2. Our String Problem: Enumerating Maximal Common Subsequences

w

. Why is it hard?
4. A Change of Perspective: Graphs

5. Conclusions and Future Work

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 2/24

Introduction
Strings and Graphs

GBaEm 0 e

Strings and Graphs are both ubiquitous in Computer Science.

Strings: most information is textual.

Graphs: essential to represent relationships and network structure.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 3/24

Introduction
Combining Strings and Graphs

Oftentimes, the two structures are combined:

» Bioinformatics: DNA sequences are represented with deBruijn graphs;
» Search Engines: textual information naturally linked with a graph structure;

» DFAs: graphs which correspond to regular languages.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 4/24

Introduction
Combining Strings and Graphs

Oftentimes, the two structures are combined:

» Bioinformatics: DNA sequences are represented with deBruijn graphs;
P Search Engines: textual information naturally linked with a graph structure;

» DFAs: graphs which correspond to regular languages.

1

We will study one instance where a difficult string problem was solved using the
underlying graph structure: Maximal Common Subsequence Enumeration

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 4/24

Introduction

Maximal Common Subsequences

Given an alphabet ¥, a string is a concatenation of any number of its characters.
A subsequence of a string X, denoted S C X, is a string obtained from X by
removing any number of not necessarily contiguous characters.

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 5/24

Introduction

Maximal Common Subsequences

Given an alphabet ¥, a string is a concatenation of any number of its characters.
A subsequence of a string X, denoted S C X, is a string obtained from X by
removing any number of not necessarily contiguous characters.

Definition

Given X,Y over X, a Longest Common Subsequence (LCS) between them is a
common subsequence of maximum length.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 5/24

Introduction

Maximal Common Subsequences

Given an alphabet ¥, a string is a concatenation of any number of its characters.
A subsequence of a string X, denoted S C X, is a string obtained from X by
removing any number of not necessarily contiguous characters.

Definition

Given X,Y over X, a Longest Common Subsequence (LCS) between them is a
common subsequence of maximum length.

Definition (Sakai 2018)

Given X, Y over X, a string S is a Maximal Common Subsequence of X and
Y, denoted S € MCS(X,Y), if

1. SCcXand SCY;
2. SCcCWwithWecX, WcCcYy=5=W.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 5/24

Introduction

Maximal Common Subsequences

Example

Let ¥ = {A,C,G, T} and consider
X = [AJT{CIAGG[T]
Y = GIACITAT]

then:

1. § = ACT is a common subsequence of X and Y.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 6/24

Introduction

Maximal Common Subsequences

Example

Let ¥ = {A,C,G, T} and consider
X = ATCAGGT
Y = GACTAT

then:

1. S = ACT is a common subsequence of X and Y;
2. MCS(X,Y) = {ACAT, ATAT,GT}.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 6/24

Introduction
MCS vs LCS

LCS: one of the main string comparison tools

o = - = = vae
Giulia Punzi MCS Enumeration

Introduction
MCS vs LCS

LCS: one of the main string comparison tools

i}
Limitation: LCS has a quadratic conditional lower bound (Abboud et al, 2015)

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 7/24

Introduction
MCS vs LCS

LCS: one of the main string comparison tools

i}
Limitation: LCS has a quadratic conditional lower bound (Abboud et al, 2015)

MCS are a natural generalization of LCS.

» One MCS can be found in O(nloglog(n)) time (Sakai 2018)

» Might reveal alternative smaller alignments

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 7/24

Our Aim: Efficient MCS Enumeration

Enumeration algorithm: it lists every element of a given set exactly once.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 8/24

Our Aim: Efficient MCS Enumeration

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 8/24

Our Aim: Efficient MCS Enumeration

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Problem (MCS Enumeration)

List all distinct maximal common subsequences S € MCS(X,Y), for X,Y of
length O(n) over ¥ of size o, with polynomial delay.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 8/24

Our Aim: Efficient MCS Enumeration

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Problem (MCS Enumeration)

List all distinct maximal common subsequences S € MCS(X,Y), for X,Y of
length O(n) over ¥ of size o, with polynomial delay.

Note that by distinct we mean as elements of the set MCS(X,Y):
strings with multiple occurrences need to be output once.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 8/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = TAAGCC
Y = TAGACT

Output:

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = [TAAGCIc
Y = [TAGIA[CIT

Output:

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = [TJA[AGCIC
Y = [TAGACIT

Output:

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = [TJA[AG]
Y = [TAGJA[C]

Output:

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

Output:

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = TAAGCC
Y = TAGACT

Output:
» TAGC

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = [TAAG[Clc
Y = [TAG/ACIT

Output:
» TAGC

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = [TAAJGC[C]
Y = [TAG/ACIT

Output:
» TAGC

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Our Aim: MCS Enumeration

Example (Enumeration)

X = TAAGCC
Y = TAGACT
Output:
> TAGC
> TAAC

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 9/24

Pitfalls of MCS Enumeration

=] F = = = DaAe
Giulia Punzi MCS Enumeration

Pitfalls of MCS Enumeration

1. Using a divide and conquer approach

o = - = = vae
Giulia Punzi MCS Enumeration

Pitfalls of MCS Enumeration

1 Us i
MCS do not naturally combine.

Example
X = AGA|TGA
Y = TAG|GAT

MCS(X,Y) = {AGGA, AGAT, TGA}: the combination AGT of the two blue
submaximals is not maximal.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 10/24

Pitfalls of MCS Enumeration

1 Us o

MCS do not naturally combine.

2. Thinking that MCS are a small number

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 10/24

Pitfalls of MCS Enumeration

1 Us i
MCS do not naturally combine.

2. Fhinking-that- MCS-area—smal-number
MCS can be exponential even for |X| = 2.
Example
The two strings ,
X =Ao(CCA)"; Y =Ao(cA)lT]

have an exponential number of MCS.

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 10/24

Pitfalls of MCS Enumeration

1 Us i
MCS do not naturally combine.

2. Fhinking-that- MCS-area—smal-number
MCS can be exponential even for |X| = 2.

3. Using an incremental approach?
Let X and Y be any two strings; is it true that

MCS(X,Y)oc+ MCS(X,Y oc)?

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 10/24

Pitfalls of MCS Enumeration

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 11/24

Pitfalls of MCS Enumeration

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Example

X =ACCACCACCA
Z =ACACACACA

Consider X and Y = Z o Z, and we proceed incrementally over Y. Since X C Y,
MCS(X,Y) ={X} but when we are at half length, [MCS(X, Z)| is exponential.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 11/24

Pitfalls of MCS Enumeration

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Example

X =ACCACCACCA
Z =ACACACACA

Consider X and Y = Z o Z, and we proceed incrementally over Y. Since X C Y,
MCS(X,Y) ={X} but when we are at half length, [MCS(X, Z)| is exponential.

— it leads to an exponential delay algorithm!

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 11/24

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 12 /24

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 12 /24

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.
Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Definition
P C X,Y is called a valid prefix if 3W such that Po W € MCS(X,Y).

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 12 /24

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.
Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.
Definition

P C X,Y is called a valid prefix if 3W such that Po W € MCS(X,Y).

If we have a characterization for valid prefixes, we can build increasingly long
prefixes of maximals by appending valid characters, until we generate all MCS.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 12 /24

Unshiftable Edges

Bipartite String Graph

=] F = = = DaAe
Giulia Punzi MCS Enumeration

Unshiftable Edges

Bipartite String Graph

Definition (String Graphs and Mappings)

Given two strings X, Y, the corresponding Bipartite String Graph (BSG) is the
bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and
edge set E = {(4,7) | X[i] = Y[j]}. A mapping of a string graph is a subset of
the edges P C E such that V(4,7), (h,k) € P we have i < h < j <k.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 13/24

Unshiftable Edges

Bipartite String Graph

Definition (String Graphs and Mappings)

Given two strings X, Y, the corresponding Bipartite String Graph (BSG) is the
bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and
edge set E = {(4,7) | X[i] = Y[j]}. A mapping of a string graph is a subset of
the edges P C E such that V(4,7), (h,k) € P we have i < h < j <k.

Example
The BSG for the two strings X = CGATA and Y = GCTGA is given by

CGATA

%o ¥

GCTGA

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 13/24

Unshiftable Edges

Bipartite String Graph

Definition (String Graphs and Mappings)

Given two strings X, Y, the corresponding Bipartite String Graph (BSG) is the
bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and
edge set E = {(4,7) | X[i] = Y[j]}. A mapping of a string graph is a subset of
the edges P C E such that V(4,7), (h,k) € P we have i < h < j <k.

Example
The BSG for the two strings X = CGATA and Y = GCTGA is given by

CGATA

X%

GCTGA

A mapping of the graph is shown in blue.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 13/24

Unshiftable Edges

Maximal Mappings and MCS

Definition

A mapping P of a BSG is said to be maximal if adding any edge (i,) to P no
longer yields a mapping.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 14 /24

Unshiftable Edges

Maximal Mappings and MCS

Definition

A mapping P of a BSG is said to be maximal if adding any edge (i,) to P no
longer yields a mapping.

Example (MCS # maximal mappings)

Every MCS corresponds to a maximal mapping, but the opposite does not hold.
Consider X = AGG and Y = AGAG:

G
Q

| \
N

O
G

@«

1> O =
7/
O/\b
o,

=

G

The blue mapping is maximal, but it does not correspond to any MCS.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 14 /24

Unshiftable Edges

Definition

=] F = = = DaAe
Giulia Punzi MCS Enumeration

Unshiftable Edges

Definition

Definition

Let Zx (i) be the substring X[i + 1, ..., nextx (¢)] (analogously for Y).

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 15/24

Unshiftable Edges

Definition

Definition
Let Zx (i) be the substring X[i + 1, ..., nextx (¢)] (analogously for Y).
An edge (i,) is unshiftable ((,) € Ll) if and only if either

> (Base case) It corresponds to the last pairwise occurrence in the strings of
character X[i] = Yj].

> (Otherwise) There is at least one unshiftable edge in G(Zx (%), Zy (j)).

Ix(l
c —"—c

Y

Iy (5)

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 15/24

Unshiftable Edges

Example

Intuition: every unshiftable belongs to a maximal mapping where it cannot be
“pushed further right” while spelling the same word.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 16 /24

Unshiftable Edges

Example

Intuition: every unshiftable belongs to a maximal mapping where it cannot be
“pushed further right” while spelling the same word.

Example

G ATAZCA

NS

AGGATTCGCA AT

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 16 /24

Unshiftable Edges

Example

Intuition: every unshiftable belongs to a maximal mapping where it cannot be
“pushed further right” while spelling the same word.

Example

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 16 /24

Unshiftable Edges

Still not enough

Example (MCS # maximal unshiftable mappings)

oy <3 =» <= = Dac
Giulia Punzi MCS Enumeration

Unshiftable Edges

Still not enough

Example (MCS # maximal unshiftable mappings)

Consider X = AAGAAG, Y = AAGA. In the corresponding graph, we have a
maximal rightmost unshiftable mapping for the string AAG:

AAGAAG

AAGA

even though this word is not maximal: the only MCS is the whole AAGA.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 17 /24

Extending the Prefix

Candidate Extensions
P valid prefix — formally define Extp set of candidate extensions: being a
candidate is necessary for having a valid extension.

Intuition: “first unshiftable edges after P".

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 18 /24

Extending the Prefix

Candidate Extensions

P valid prefix — formally define Extp set of candidate extensions: being a
candidate is necessary for having a valid extension.

Intuition: “first unshiftable edges after P".

Example (The condition is not sufficient)

Consider X = AGAGC, Y = AAGCAG. We have MCS(X,Y) = {AGAG, AAGC}.
Clearly, P = AG is a valid prefix.

N
o =
oQ
Q

= O0—0 =

o
G

= O
@«
Q
= O

The edge for C is in Extp, but AGC is not a valid prefix.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 18 /24

Extending the Prefix

Candidate Extensions

P valid prefix — formally define Extp set of candidate extensions: being a
candidate is necessary for having a valid extension.

Intuition: “first unshiftable edges after P".

Example (The condition is not sufficient)

Consider X = AGAGC, Y = AAGCAG. We have MCS(X,Y) = {AGAG, AAGC}.
Clearly, P = AG is a valid prefix.

=
@«
Q

= 0—0 =

0O R
o’\D
g\o

o
G

=
@«
Q
=

The edge for C is in Extp, but AGC is not a valid prefix.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 18 /24

Correctness of Extension

Theorem (Correctness)

Let P be a valid prefix of some M € MCS(X,Y).Then P o c is still a valid prefix
if and only if the following two conditions hold:

1. 3(4,j) € Extp corresponding to character c;
2. P € MCS(X<“Y<]>

R/

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 19/24

The Algorithm

Binary Partition Paradigm

=] F = = = DaAe
Giulia Punzi MCS Enumeration

The Algorithm

Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we
get to singletons — obtain tree with every and only feasible solution as leaves

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 20/24

The Algorithm

Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we
get to singletons — obtain tree with every and only feasible solution as leaves

P = having string P as a prefix.
1
branching into possibly || partitions

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 20/24

The Algorithm

Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we
get to singletons — obtain tree with every and only feasible solution as leaves

P = having string P as a prefix.
+
branching into possibly || partitions

Complexity: If the partition oracle takes polynomial time and the height of the
tree is polynomial, then the algorithm is polynomial delay.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 20/24

The ENUMERATEMCS Algorithm

1. procedure ENUMERATEMCS(X, Y, ¥)
2: U = FINDUNSHIFTABLES((| X[, [Y]))
3: BINARYPARTITION(#, {(—1,—1)})
4: end procedure

5: procedure BINARYPARTITION(P, Lp)

6 compute the set of extensions Extp using U

7: if Extp = () then Output P

8: else

9: for (i,7) € Extp corresponding to some ¢ € ¥ do
10: if Pe MCS(X<;,Y<;) then

11: let (I,m) be the last edge of Lp

12; find leftmost mapping edge (I.,m.) for ¢ in G(X=;,Ysr,)
13: BINARYPARTITION(P ¢, Lp U (I, m.))

14: end if

15: end for

16: end if

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

1: procedure ENUMERATEMCS(X, Y, %) Re g @ E L il pred-
2 Z/{ — FindUnshiftables((|X|, |Y|)) ous paIrWISe occurrences Of
3. BINARYPARTITION(#, {(—1,—-1)}) every ¢ € 3, then add edge
4: end procedure to U if not already present:

O(on?log(n)) time

5. procedure BINARYPARTITION(P, Lp)
6 compute the set of extensions Extp using U
7: if Extp = () then Output P
8
9

else
for (i,7) € Extp corresponding to some ¢ € ¥ do

10: if Pe MCS(X<;,Y<;) then
11: let (I,m) be the last edge of Lp
12; find leftmost mapping edge (I.,m.) for ¢ in G(X=;,Ysr,)
13: BINARYPARTITION(P ¢, Lp U (I, m.))
14: end if
15: end for
16: end if

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

1. procedure ENUMERATEMCS(X, Y, ¥)
2: U = FINDUNSHIFTABLES((| X[, [Y]))
3: BINARYPARTITION(#, {(—1,—1)})
4: end procedure

5: procedure BINARYPARTITION(P, Lp) Parse unshiftable
6 compute the set of extensions Extp using U — | edges: O(n?) time
7: if Extp = () then Output P

8: else

9: for (i,7) € Extp corresponding to some ¢ € ¥ do

10: if Pe MCS(X<;,Y<;) then

11: let (I,m) be the last edge of Lp

12; find leftmost mapping edge (I.,m.) for ¢ in G(X=;,Ysr,)

13: BINARYPARTITION(P ¢, Lp U (I, m.))

14: end if

15: end for

16: end if

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

1. procedure ENUMERATEMCS(X, Y, ¥)
2: U = FINDUNSHIFTABLES((| X[, [Y]))
3: BINARYPARTITION(#, {(—1,—1)})
4: end procedure

5: procedure BINARYPARTITION(P, Lp)

6 compute the set of extensions Extp using U

7: if Extp = () then Output P

8: else

9: for (i,7) € Extp corresponding to some ¢ This can be done
10: if PeMCOS(X.;,Y;)then — | in O(P]) = O(n)
11: let (I,m) be the last edge of Lp s (Gelal 2Ule)
12 find leftmost mapping edge (I, m.)

13: BINARYPARTITION(P ¢, Lp U (I, m.))

14: end if

15: end for

16: end if

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

1. procedure ENUMERATEMCS(X, Y, ¥)
2: U = FINDUNSHIFTABLES((| X[, [Y]))
3: BINARYPARTITION(#, {(—1,—1)})
4: end procedure

5: procedure BINARYPARTITION(P, Lp)

6 compute the set of extensions Extp using U Logarithmic in
7: if Extp = 0 then Output P length of strings:
8: else O(log(n)) time

9: for (i,7) € Extp corresponding to some ¢ € ¥ do

10: if Pe MCS(X<;,Y<;) then

11: let (I,m) be the last edge of Lp T

12: find leftmost mapping edge (I, m.) for c in G(Xs;, Ys)
13: BINARYPARTITION(P ¢, Lp U (I, m.))

14: end if

15: end for

16: end if

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

1. procedure ENUMERATEMCS(X, Y, ¥)
2: U = FINDUNSHIFTABLES((| X[, [Y]))
3: BINARYPARTITION(#, {(—1,—1)})
4: end procedure

5: procedure BINARYPARTITION(P, Lp)

6 compute the set of extensions Extp using U

7: if Extp = () then Output P

8: else

9: for (i,7) € Extp corresponding to some ¢ € ¥ do

10: if Pe MCS(X<;,Y<;) then

11: let (I,m) be the last edge of Lp

12; find leftmost mapping edge (I.,m.) for ¢ in G(X=;,Ysr,)
13: BINARYPARTITION(P ¢, Lp U (I, m.))

14: end if

15: end for Partit _) o
16: end if artition oracle: O(n? + |Eztp|(n + log(n))) = O(n?) time

17: end procedure

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 21/24

The ENUMERATEMCS Algorithm

Final Complexity

Height of the partition tree: O(n) (length of longest MCS)
= O(n?) delay

O(on?log(n)) preprocessing time
O(n?) space.

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 22/24

The ENUMERATEMCS Algorithm

Final Complexity

Height of the partition tree: O(n) (length of longest MCS)
= O(n?) delay

O(on?log(n)) preprocessing time
O(n?) space.

Theorem

There is a O(no(o + logn)) polynomial-delay enumeration algorithm for MCS
enumeration, with O(n?(o + logn)) preprocessing time and O(n?) space.

Giulia Punzi MCS Enumeration

Pesaresi Seminar — April 20th 2020 22 /24

Conclusions and Future Work

=] F = = = DaAe
Giulia Punzi MCS Enumeration

Conclusions and Future Work

> We investigated the string problem of enumerating MCS for the first time; it
turned out to be hard to approach with standard techniques.

» Changing our perspective by looking at the strings as a graph was crucial to
derive fundamental properties, and eventually solve the problem.

» MCS are just one of many string problems with interesting applications:
similar shift in perspective might help solve other difficult problems.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 23 /24

Conclusions and Future Work

> We investigated the string problem of enumerating MCS for the first time; it
turned out to be hard to approach with standard techniques.

» Changing our perspective by looking at the strings as a graph was crucial to
derive fundamental properties, and eventually solve the problem.

» MCS are just one of many string problems with interesting applications:
similar shift in perspective might help solve other difficult problems.

Future Work:
» Explore further connections between LCS and MCS.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 23 /24

Conclusions and Future Work

> We investigated the string problem of enumerating MCS for the first time; it
turned out to be hard to approach with standard techniques.

» Changing our perspective by looking at the strings as a graph was crucial to
derive fundamental properties, and eventually solve the problem.

» MCS are just one of many string problems with interesting applications:

similar shift in perspective might help solve other difficult problems.

Future Work:
» Explore further connections between LCS and MCS.

» Find other applications of graph-theoretic tools to string problems.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 23 /24

Thank you for your attention!

Any Questions?

Feel free to email me at giulia.punzi@phd.unipi.it

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 24 /24

References

@ Y. Sakai, “Maximal Common Subsequence Algorithms”; in 29th Annual
Symposium on Combinatorial Pattern Matching, 1-10, 2018.

[@ A. Conte, R. Grossi, G. Punzi, T. Uno, (2019) “Polynomial-Delay
Enumeration of Maximal Common Subsequences”; in: Brisaboa N., Puglisi S.
(eds) String Processing and Information Retrieval (SPIRE 2019), Lecture
Notes in Computer Science, vol 11811, 20109.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 1/7

Pitfalls of MCS

Incremental Approach

Let X and Y’ be any two strings. Consider Y =Y o ¢;

MCS(X,Y") o MCS(X,Y)?

Example
> (Some MCS are not found) Let

X =AGCG
Y = ACG [C
-~
Y/
MCS(X,Y'’) = {ACG}: AGC € MCS(X,Y) was not found.
> (Some strings found are not MCS) Instead in

X =AAGACT
Y =AGCAG|C
~——

Y/

we have AGC € MCS(X,Y"), but AGC ¢ MCS(X,Y).

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020

2/7

Extending the Prefix
The Cross

Let P be a prefix of some W € MCS(X,Y). Given a character ¢ € 3, we would
like to find a necessary and sufficient condition for P o ¢ to still be a valid prefix.

[e f1

o (6]

mfy €2

Definition (Cross)

Given an edge (I,mm), its following cross x(;) = {e, f} is given by (at most) two
edges such that:

> e = (e1,e3) €U is such that e; = min{hy > 1| Jho > m : (hy, ha) € U}.
> f=(f1,f2) €U is such that fo = min{hy > m | Ihy >1: (hy,h2) €U}.

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 3/7

Extending the Prefix

Candidate Extensions
Definition

Let P be a prefix of some MCS, with its leftmost mapping Lp ending at edge

I = (I,m), and let x(;,m) = (e, f) be its cross. We define the set of the
“Mikado” edges after P as

Mkp={(i,j) €U | e1 <i< fiand fo <j < ez}
From these we extract the candidate extensions for P as follows

Eatp = {(i,§) € Mkp | A(h,k) € Mkp \ (i,) such that h < i and k < j}.

€1 f1 €1 fi
opo
& m—) ” %
o)
f2 €2 f2 €2
Figure: Mkp set transformed into FExtp

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 4/7

Correctness
FIND g procedure

Given (4,j) € U, FINDR(i, j) returns a maximal mapping in G(Xs;,Ys;).

Lemma 1

Let P be a valid prefix with leftmost mapping ending with edge (I, m), and let

(i,j) € Extp. Then, FINDR(i,j) returns a mapping whose corresponding
subsequence is M € MCS(Xsi,Ysm)-

X ! :
Lp§ f FIND (i, /)
% :
m J

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 5/7

Correctness
MCS Combination

Theorem (MCS Combination)

Let P and C' be common subsequences of X,Y . Let (I,m) be the last edge of the

leftmost mapping of P, and (i, j) be the first edge of the rightmost mapping of
C'. Then:

PoCeMCS(X,)Y) <= PeMCS(X<;,Y<;) and C € MCS(X5;,Ysm).
X 1\
Y

MCS Enumeration

S
7

Giulia Punzi Pesaresi Seminar — April 20th 2020 6/7

Correctness

Correctness Theorem

Theorem (Correctness)

Let P be a valid prefix of some M € MCS(X,Y), with leftmost mapping Lp
ending with edge (I,m). Then P o c is still a valid prefix if and only if the
following two conditions hold:

1. 3(4,j) € Extp corresponding to character c;

2. P € MCS(X<“Y<]>

Proof.

We have said that the conditions are necessary in the previous sections. We know
that FINDg(4,j) = C € MCS(X~,Y>pm). By hypothesis P € MCS(X<;,Y.;),
therefore by the MCS combination theorem we have Po C € MCS(X,Y). This
latter string starts with P o ¢, which is therefore a good prefix. O

Giulia Punzi MCS Enumeration Pesaresi Seminar — April 20th 2020 /7

	Appendix

