Maximal Common Subsequence Enumeration¹

How Graph Structure Helped Solve a String Problem

Giulia Punzi PhD Student in Computer Science

Mauriana Pesaresi PhD Seminars - April 20th 2020

1/24

¹A. Conte, R. Grossi, G. Punzi, T. Uno; "Maximal Common Subsequence Enumeration", SPIRE 2019.

Outline

- 1. Strings and Graphs
- 2. Our String Problem: Enumerating Maximal Common Subsequences
- 3. Why is it hard?
- 4. A Change of Perspective: Graphs
- 5. Conclusions and Future Work

Strings and Graphs

a b a c b

Strings and Graphs are both ubiquitous in Computer Science.

Strings: most information is textual.

Graphs: essential to represent relationships and network structure.

Combining Strings and Graphs

Oftentimes, the two structures are combined:

- ▶ Bioinformatics: DNA sequences are represented with deBruijn graphs;
- Search Engines: textual information naturally linked with a graph structure;
- DFAs: graphs which correspond to regular languages.

Combining Strings and Graphs

Oftentimes, the two structures are combined:

- Bioinformatics: DNA sequences are represented with deBruijn graphs;
- Search Engines: textual information naturally linked with a graph structure;
- ▶ DFAs: graphs which correspond to regular languages.

 \downarrow

We will study one instance where a difficult string problem was solved using the underlying graph structure: **Maximal Common Subsequence Enumeration**

Maximal Common Subsequences

Given an alphabet Σ , a **string** is a concatenation of any number of its characters. A **subsequence** of a string X, denoted $S \subset X$, is a string obtained from X by removing any number of not necessarily contiguous characters.

Maximal Common Subsequences

Given an alphabet Σ , a **string** is a concatenation of any number of its characters. A **subsequence** of a string X, denoted $S \subset X$, is a string obtained from X by removing any number of not necessarily contiguous characters.

Definition

Given X,Y over Σ , a **Longest Common Subsequence** (LCS) between them is a common subsequence of maximum length.

Maximal Common Subsequences

Given an alphabet Σ , a **string** is a concatenation of any number of its characters. A **subsequence** of a string X, denoted $S \subset X$, is a string obtained from X by removing any number of not necessarily contiguous characters.

Definition

Given X,Y over Σ , a **Longest Common Subsequence** (LCS) between them is a common subsequence of maximum length.

Definition (Sakai 2018)

Given X,Y over Σ , a string S is a **Maximal Common Subsequence** of X and Y, denoted $S\in MCS(X,Y)$, if

- 1. $S \subset X$ and $S \subset Y$;
- 2. $S \subset W$ with $W \subset X$, $W \subset Y \Rightarrow S = W$.

Maximal Common Subsequences

Example

Let $\Sigma = \{ {\tt A}, {\tt C}, {\tt G}, {\tt T} \}$ and consider

$$X = ATCAGGT$$

$$Y = \mathtt{G}\overline{\mathtt{AC}}\mathtt{TA}\overline{\mathtt{T}}$$

then:

1. S = ACT is a common subsequence of X and Y.

Maximal Common Subsequences

Example

Let $\Sigma = \{A, C, G, T\}$ and consider

$$X = \mathtt{ATCAGGT}$$

$$Y = \mathtt{GACTAT}$$

then:

- 1. S = ACT is a common subsequence of X and Y;
- 2. $MCS(X,Y) = \{ACAT, ATAT, GT\}.$

Introduction MCS vs LCS

LCS: one of the main string comparison tools

Introduction MCS vs LCS

LCS: one of the main string comparison tools

 \downarrow

Limitation: LCS has a quadratic conditional lower bound (Abboud et al, 2015)

Introduction MCS vs LCS

LCS: one of the main string comparison tools

ļ

Limitation: LCS has a quadratic conditional lower bound (Abboud et al, 2015)

MCS are a natural generalization of LCS.

- ▶ One MCS can be found in $O(n \log \log(n))$ time (Sakai 2018)
- Might reveal alternative smaller alignments

Enumeration algorithm: it lists every element of a given set exactly once.

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Problem (MCS Enumeration)

List all **distinct** maximal common subsequences $S \in MCS(X,Y)$, for X,Y of length O(n) over Σ of size σ , with polynomial delay.

Enumeration algorithm: it lists every element of a given set exactly once.

Polynomial-delay: delay between output of consecutive solutions is polynomial.

Problem (MCS Enumeration)

List all **distinct** maximal common subsequences $S \in MCS(X,Y)$, for X,Y of length O(n) over Σ of size σ , with polynomial delay.

Note that by distinct we mean as elements of the set MCS(X,Y): strings with multiple occurrences need to be output once.

Example (Enumeration)

 $X=\mathtt{TAAGCC}$

 $Y = \mathtt{TAGACT}$

Example (Enumeration)

$$X = \boxed{\mathtt{TA}} \mathtt{A} \boxed{\mathtt{GC}} \mathtt{C}$$

$$Y = \boxed{\mathtt{TAG}} \mathtt{A} \boxed{\mathtt{C}} \mathtt{T}$$

Example (Enumeration)

$$X = \mathbb{T} \mathbb{A} \overline{\mathbb{AGC}} \mathbb{C}$$

$$Y = \boxed{\texttt{TAG}} \texttt{A} \boxed{\texttt{C}} \texttt{T}$$

Example (Enumeration)

$$X = \mathbb{T}\mathbb{A}\mathbb{G}\mathbb{C}\mathbb{C}$$

$$Y = \boxed{\texttt{TAG}} \texttt{A} \boxed{\texttt{C}} \texttt{T}$$

Example (Enumeration)

$$X = \boxed{\mathtt{TA}} \mathtt{A} \boxed{\mathtt{G}} \mathtt{C} \boxed{\mathtt{C}}$$

$$Y = \boxed{\mathtt{TAG}} \mathtt{A} \boxed{\mathtt{C}} \mathtt{T}$$

Example (Enumeration)

 $X=\mathtt{TAAGCC}$

 $Y = \mathtt{TAGACT}$

Output:

► TAGC

Example (Enumeration)

$$X =$$
TAAGCC

$Y = \boxed{\mathtt{TA}} \mathbf{G} \boxed{\mathtt{AC}} \mathtt{T}$

Output:

► TAGC

Example (Enumeration)

$$X = \boxed{\mathtt{TAA}\mathtt{GC} \boxed{\mathtt{C}}}$$

$$Y = \boxed{\mathtt{TA}} \mathbf{G} \boxed{\mathtt{AC}} \mathtt{T}$$

Output:

► TAGC

Example (Enumeration)

$$X=\mathtt{TAAGCC}$$

$$Y=\mathtt{TAGACT}$$

- ► TAGC
- ► TAAC

1. Using a divide and conquer approach

1. Using a divide and conquer approach MCS do not naturally combine.

Example

$$X = \mathbf{AGA}|\mathbf{TGA}$$

$$Y = \mathsf{TAG}|\mathsf{GAT}|$$

 $MCS(X,Y) = \{ {\tt AGGA}, {\tt AGAT}, {\tt TGA} \} :$ the combination AGT of the two blue submaximals is not maximal.

- 1. Using a divide and conquer approach MCS do not naturally combine.
- 2. Thinking that MCS are a small number

- 1. Using a divide and conquer approach MCS do not naturally combine.
- 2. Thinking that MCS are a small number MCS can be exponential even for $|\Sigma|=2$.

Example

The two strings

$$X = A \circ (CCA)^n; \quad Y = A \circ (CA)^{\lfloor \frac{3n}{2} \rfloor}.$$

have an exponential number of MCS.

- 1. Using a divide and conquer approach MCS do not naturally combine.
- 2. Thinking that MCS are a small number MCS can be exponential even for $|\Sigma|=2$.
- 3. Using an incremental approach? Let X and Y be any two strings; is it true that

$$MCS(X,Y) \circ c \leftrightarrow MCS(X,Y \circ c)?$$

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Example

$$X = ACCACCACCA$$
 $Z = ACACACACA$

Consider X and $Y=Z\circ Z$, and we proceed incrementally over Y. Since $X\subset Y$, $MCS(X,Y)=\{X\}$ but when we are at half length, |MCS(X,Z)| is exponential.

Incremental Approach is Inefficient

Some incremental properties can be derived, but they are intrinsically inefficient.

Example

$$X = ACCACCACCA$$
 $Z = ACACACACA$

Consider X and $Y=Z\circ Z$, and we proceed incrementally over Y. Since $X\subset Y$, $MCS(X,Y)=\{X\}$ but when we are at half length, |MCS(X,Z)| is exponential.

→ it leads to an exponential delay algorithm!

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Definition

 $P \subset X, Y$ is called a **valid prefix** if $\exists W$ such that $P \circ W \in MCS(X, Y)$.

Challenge: Polynomial Delay?

Goal: Design of a polynomial delay enumeration algorithm for MCS.

Idea: Instead of finding maximals of the prefixes, we find prefixes of maximals.

Definition

 $P \subset X, Y$ is called a **valid prefix** if $\exists W$ such that $P \circ W \in MCS(X, Y)$.

If we have a characterization for valid prefixes, we can build increasingly long prefixes of maximals by appending valid characters, until we generate all MCS.

Definition (String Graphs and Mappings)

Given two strings X,Y, the corresponding **Bipartite String Graph** (BSG) is the bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and edge set $E=\{(i,j)\mid X[i]=Y[j]\}$. A **mapping** of a string graph is a subset of the edges $\mathcal{P}\subseteq E$ such that $\forall (i,j),\ (h,k)\in \mathcal{P}$ we have $i\leq h\iff j\leq k$.

Definition (String Graphs and Mappings)

Given two strings X,Y, the corresponding **Bipartite String Graph** (BSG) is the bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and edge set $E=\{(i,j)\mid X[i]=Y[j]\}$. A **mapping** of a string graph is a subset of the edges $\mathcal{P}\subseteq E$ such that $\forall (i,j),\ (h,k)\in \mathcal{P}$ we have $i\leq h\iff j\leq k$.

Example

The BSG for the two strings $X = \mathtt{CGATA}$ and $Y = \mathtt{GCTGA}$ is given by

Definition (String Graphs and Mappings)

Given two strings X,Y, the corresponding **Bipartite String Graph** (BSG) is the bipartite graph G(X,Y) that has one vertex for each position of X and of Y, and edge set $E=\{(i,j)\mid X[i]=Y[j]\}$. A **mapping** of a string graph is a subset of the edges $\mathcal{P}\subseteq E$ such that $\forall (i,j),\ (h,k)\in \mathcal{P}$ we have $i\leq h\iff j\leq k$.

Example

The BSG for the two strings X = CGATA and Y = GCTGA is given by

A mapping of the graph is shown in blue.

Unshiftable Edges

Maximal Mappings and MCS

Definition

A mapping $\mathcal P$ of a BSG is said to be **maximal** if adding any edge (i,j) to $\mathcal P$ no longer yields a mapping.

Unshiftable Edges

Maximal Mappings and MCS

Definition

A mapping $\mathcal P$ of a BSG is said to be **maximal** if adding any edge (i,j) to $\mathcal P$ no longer yields a mapping.

Example (MCS \neq maximal mappings)

Every MCS corresponds to a maximal mapping, but the opposite does not hold. Consider $X = \mathtt{AGG}$ and $Y = \mathtt{AGAG}$:

The blue mapping is maximal, but it does not correspond to any MCS.

Unshiftable Edges Definition

Unshiftable Edges Definition

Definition

Let $\mathcal{I}_X(i)$ be the substring $X[i+1,...,next_X(i)]$ (analogously for Y).

Unshiftable Edges

Definition

Definition

Let $\mathcal{I}_X(i)$ be the substring $X[i+1,...,next_X(i)]$ (analogously for Y). An edge (i,j) is **unshiftable** $((i,j) \in \mathcal{U})$ if and only if either

- ▶ (Base case) It corresponds to the last pairwise occurrence in the strings of character X[i] = Y[j].
- ▶ (Otherwise) There is at least one unshiftable edge in $G(\mathcal{I}_X(i), \mathcal{I}_Y(j))$.

Unshiftable Edges Example

<u>Intuition:</u> every unshiftable belongs to a maximal mapping where it cannot be "pushed further right" while spelling the same word.

Unshiftable Edges Example

<u>Intuition:</u> every unshiftable belongs to a maximal mapping where it cannot be "pushed further right" while spelling the same word.

Example

Unshiftable Edges Example

<u>Intuition:</u> every unshiftable belongs to a maximal mapping where it cannot be "pushed further right" while spelling the same word.

Example

Unshiftable Edges Still not enough

Example (MCS \neq maximal unshiftable mappings)

Unshiftable Edges Still not enough

Example (MCS \neq maximal unshiftable mappings)

Consider $X=\mathtt{AAGAAG},\ Y=\mathtt{AAGA}.$ In the corresponding graph, we have a maximal rightmost unshiftable mapping for the string AAG:

even though this word is not maximal: the only MCS is the whole AAGA.

Candidate Extensions

P valid prefix \to formally define Ext_P set of **candidate extensions**: being a candidate is necessary for having a valid extension.

Intuition: "first unshiftable edges after P".

Candidate Extensions

P valid prefix \rightarrow formally define Ext_P set of **candidate extensions**: being a candidate is necessary for having a valid extension.

Intuition: "first unshiftable edges after P".

Example (The condition is not sufficient)

Consider $X={\tt AGAGC},\ Y={\tt AAGCAG}.$ We have $MCS(X,Y)=\{{\tt AGAG},{\tt AAGC}\}.$ Clearly, $P={\tt AG}$ is a valid prefix.

The edge for C is in Ext_P , but AGC is not a valid prefix.

Candidate Extensions

P valid prefix \rightarrow formally define Ext_P set of **candidate extensions**: being a candidate is necessary for having a valid extension.

Intuition: "first unshiftable edges after P".

Example (The condition is not sufficient)

Consider $X={\tt AGAGC},\ Y={\tt AAGCAG}.$ We have $MCS(X,Y)=\{{\tt AGAG},{\tt AAGC}\}.$ Clearly, $P={\tt AG}$ is a valid prefix.

The edge for C is in Ext_P , but AGC is not a valid prefix.

Correctness of Extension

Theorem (Correctness)

Let P be a valid prefix of some $M \in MCS(X,Y)$. Then $P \circ c$ is still a valid prefix if and only if the following two conditions hold:

- 1. $\exists (i,j) \in Ext_P \text{ corresponding to character } c;$
- 2. $P \in MCS(X_{< i}, Y_{< j})$.

The Algorithm

Binary Partition Paradigm

The Algorithm Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we get to singletons \rightarrow obtain tree with every and only feasible solution as leaves

The Algorithm Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we get to singletons \rightarrow obtain tree with every and only feasible solution as leaves

 $\mathcal{P} \equiv \text{having string } P \text{ as a prefix.}$ \downarrow branching into possibly $|\Sigma|$ partitions

The Algorithm Binary Partition Paradigm

Binary partition: enumerative scheme based on iterative partitions of solutions.

Partition solutions into smaller sets characterized by disjoint properties, until we get to singletons \rightarrow obtain tree with every and only feasible solution as leaves

$$\mathcal{P} \equiv \text{having string } P \text{ as a prefix.}$$

$$\downarrow$$
 branching into possibly $|\Sigma|$ partitions

Complexity: If the partition oracle takes polynomial time and the height of the tree is polynomial, then the algorithm is polynomial delay.

```
1: procedure EnumerateMCS(X, Y, \Sigma)
        \mathcal{U} = \text{FINDUNSHIFTABLES}((|X|, |Y|))
2.
        BINARYPARTITION(#, \{(-1, -1)\})
   end procedure
5: procedure BINARYPARTITION(P, L_P)
6.
        compute the set of extensions Ext_P using \mathcal{U}
        if Ext_P = \emptyset then Output P
7.
        else
8:
           for (i, j) \in Ext_P corresponding to some c \in \Sigma do
9:
               if P \in MCS(X_{\leq i}, Y_{\leq i}) then
10:
                   let (l, m) be the last edge of L_P
11:
12:
                   find leftmost mapping edge (l_c, m_c) for c in G(X_{>l}, Y_{>m})
                   BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
               end if
14.
           end for
15:
        end if
16:
17: end procedure
```

The EnumerateMCS Algorithm

```
For each e \in \mathcal{U} find previ-
 1: procedure EnumerateMCS(X, Y, \Sigma)
                                                             ous pairwise occurrences of
         \mathcal{U} = \mathsf{FindUnshiftables}((|X|, |Y|))
 2.
                                                             every c \in \Sigma, then add edge
        BINARYPARTITION(#, \{(-1, -1)\})
                                                             to \mathcal{U} if not already present:
   end procedure
                                                             O(\sigma n^2 \log(n)) time
 5: procedure BINARYPARTITION(P, L_P)
 6.
        compute the set of extensions Ext_P using \mathcal{U}
        if Ext_P = \emptyset then Output P
 7.
        else
 8:
            for (i, j) \in Ext_P corresponding to some c \in \Sigma do
 9:
                if P \in MCS(X_{\leq i}, Y_{\leq i}) then
10:
                    let (l, m) be the last edge of L_P
11:
12:
                    find leftmost mapping edge (l_c, m_c) for c in G(X_{>l}, Y_{>m})
                    BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
                end if
14.
            end for
15:
        end if
16:
17: end procedure
```

```
1: procedure ENUMERATEMCS(X, Y, \Sigma)
        \mathcal{U} = \text{FINDUNSHIFTABLES}((|X|, |Y|))
 2.
        BINARYPARTITION(#, \{(-1, -1)\})
   end procedure
 5: procedure BINARYPARTITION(P, L_P)
                                                                        Parse unshiftable edges: O(n^2) time
         compute the set of extensions \mathit{Ext}_P using \mathcal U
 6.
        if Ext_P = \emptyset then Output P
 7.
        else
 8:
            for (i,j) \in Ext_P corresponding to some c \in \Sigma do
 9:
                if P \in MCS(X_{\leq i}, Y_{\leq i}) then
10:
                    let (l, m) be the last edge of L_P
11:
12:
                    find leftmost mapping edge (l_c, m_c) for c in G(X_{>l}, Y_{>m})
                    BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
                end if
14.
            end for
15:
        end if
16:
17: end procedure
```

```
1: procedure EnumerateMCS(X, Y, \Sigma)
        \mathcal{U} = \text{FindUnshiftables}((|X|, |Y|))
2.
        BINARYPARTITION(#, \{(-1, -1)\})
   end procedure
5: procedure BINARYPARTITION(P, L_P)
6.
        compute the set of extensions Ext_P using \mathcal{U}
        if Ext_P = \emptyset then Output P
7.
        else
8:
                                                              This can be done
            for (i, j) \in Ext_P corresponding to some c
9:
                                                              in O(|P|) = O(n)
               if P \in MCS(X_{\leq i}, Y_{\leq i}) then \longrightarrow
10:
                                                              time (Sakai 2018)
                   let (l, m) be the last edge of L_P
11:
12:
                   find leftmost mapping edge (l_c, m_c) for c in G(\Lambda > l, I > m)
                    BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
               end if
14.
            end for
15:
        end if
16:
17: end procedure
```

```
1: procedure EnumerateMCS(X, Y, \Sigma)
        \mathcal{U} = \text{FINDUNSHIFTABLES}((|X|, |Y|))
2.
        BINARYPARTITION(#, \{(-1, -1)\})
   end procedure
   procedure BINARYPARTITION(P, L_P)
                                                                      Logarithmic
6.
        compute the set of extensions Ext_P using \mathcal{U}
                                                                                      in
        if Ext_P = \emptyset then Output P
                                                                      length of strings:
7.
        else
                                                                      O(\log(n)) time
8:
           for (i, j) \in Ext_P corresponding to some c \in \Sigma do
9:
               if P \in MCS(X_{\leq i}, Y_{\leq i}) then
10:
                   let (l, m) be the last edge of L_P
11:
                    find leftmost mapping edge (l_c, m_c) for c in G(X_{>l}, Y_{>m})
12:
                   BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
               end if
14.
           end for
15:
        end if
16:
17: end procedure
```

```
1: procedure EnumerateMCS(X, Y, \Sigma)
        \mathcal{U} = \text{FINDUNSHIFTABLES}((|X|, |Y|))
2.
        BINARYPARTITION(#, \{(-1, -1)\})
   end procedure
   procedure BINARYPARTITION(P, L_P)
6.
        compute the set of extensions Ext_P using \mathcal{U}
        if Ext_P = \emptyset then Output P
7.
        else
8:
            for (i, j) \in Ext_P corresponding to some c \in \Sigma do
9:
               if P \in MCS(X_{\leq i}, Y_{\leq i}) then
10:
                   let (l, m) be the last edge of L_P
11:
12:
                   find leftmost mapping edge (l_c, m_c) for c in G(X_{>l}, Y_{>m})
                    BINARYPARTITION(Pc, L_P \cup (l_c, m_c))
13:
               end if
14.
            end for
15:
                          Partition oracle: O(n^2 + |Ext_P|(n + \log(n))) = O(n^2) time
        end if
16:
17: end procedure
```

The EnumerateMCS Algorithm

Final Complexity

Height of the partition tree: O(n) (length of longest MCS)

```
\Rightarrow O(n^3) delay O(\sigma n^2 \log(n)) preprocessing time O(n^2) space.
```

The EnumerateMCS Algorithm

Final Complexity

Height of the partition tree: O(n) (length of longest MCS)

 $\Rightarrow O(n^3)$ delay $O(\sigma n^2 \log(n))$ preprocessing time $O(n^2)$ space.

Theorem

There is a $O(n\sigma(\sigma + \log n))$ polynomial-delay enumeration algorithm for MCS enumeration, with $O(n^2(\sigma + \log n))$ preprocessing time and $O(n^2)$ space.

- ▶ We investigated the string problem of enumerating MCS for the first time; it turned out to be hard to approach with standard techniques.
- Changing our perspective by looking at the strings as a graph was crucial to derive fundamental properties, and eventually solve the problem.
- ▶ MCS are just one of many string problems with interesting applications: similar shift in perspective might help solve other difficult problems.

- ▶ We investigated the string problem of enumerating MCS for the first time; it turned out to be hard to approach with standard techniques.
- ► Changing our perspective by looking at the strings as a graph was crucial to derive fundamental properties, and eventually solve the problem.
- ► MCS are just one of many string problems with interesting applications: similar shift in perspective might help solve other difficult problems.

Future Work:

Explore further connections between LCS and MCS.

- ▶ We investigated the string problem of enumerating MCS for the first time; it turned out to be hard to approach with standard techniques.
- ► Changing our perspective by looking at the strings as a graph was crucial to derive fundamental properties, and eventually solve the problem.
- ► MCS are just one of many string problems with interesting applications: similar shift in perspective might help solve other difficult problems.

Future Work:

- Explore further connections between LCS and MCS.
- Find other applications of graph-theoretic tools to string problems.

Thank you for your attention!

Any Questions?

Feel free to email me at giulia.punzi@phd.unipi.it

References

- Y. Sakai, "Maximal Common Subsequence Algorithms"; in 29th Annual Symposium on Combinatorial Pattern Matching, 1-10, 2018.
- A. Conte, R. Grossi, G. Punzi, T. Uno, (2019) "Polynomial-Delay Enumeration of Maximal Common Subsequences"; in: Brisaboa N., Puglisi S. (eds) String Processing and Information Retrieval (SPIRE 2019), Lecture Notes in Computer Science, vol 11811, 2019.

Pitfalls of MCS

Incremental Approach

Let X and Y' be any two strings. Consider $Y = Y' \circ c$;

$$MCS(X, Y') \circ c \leftrightarrow MCS(X, Y)$$
?

Example

► (Some MCS are not found) Let

$$X = \operatorname{AGCG}$$

$$Y = \underbrace{\operatorname{ACG}}_{Y'} | \operatorname{C}$$

 $MCS(X,Y') = \{ACG\}: AGC \in MCS(X,Y) \text{ was not found.}$

► (Some strings found are not MCS) Instead in

$$X = \text{AAGACT}$$

$$Y = \underbrace{\text{AGCAG}}_{Y'} | \text{C}$$

we have $AGC \in MCS(X, Y')$, but $AGC \notin MCS(X, Y)$.

The Cross

Let P be a prefix of some $W \in MCS(X,Y)$. Given a character $c \in \Sigma$, we would like to find a necessary and sufficient condition for $P \circ c$ to still be a valid prefix.

Definition (Cross)

Given an edge (l,m), its following **cross** $\chi_{(l,m)}=\{e,f\}$ is given by (at most) two edges such that:

- ▶ $e = (e_1, e_2) \in \mathcal{U}$ is such that $e_1 = \min\{h_1 > l \mid \exists h_2 > m : (h_1, h_2) \in \mathcal{U}\}.$
- ▶ $f = (f_1, f_2) \in \mathcal{U}$ is such that $f_2 = \min\{h_2 > m \mid \exists h_1 > l : (h_1, h_2) \in \mathcal{U}\}.$

Candidate Extensions

Definition

Let P be a prefix of some MCS, with its leftmost mapping L_P ending at edge l=(l,m), and let $\chi_{(l,m)}=(e,f)$ be its cross. We define the set of the "Mikado" edges after P as

$$Mk_P = \{(i, j) \in \mathcal{U} \mid e_1 \le i \le f_1 \text{ and } f_2 \le j \le e_2\}.$$

From these we extract the **candidate extensions** for P as follows

$$Ext_P = \{(i,j) \in Mk_P \mid \not\exists (h,k) \in Mk_P \setminus (i,j) \text{ such that } h \leq i \text{ and } k \leq j\}.$$

Figure: Mk_P set transformed into Ext_P

Correctness

 ${
m FIND}_R$ procedure

Given $(i,j) \in \mathcal{U}$, $FIND_R(i,j)$ returns a maximal mapping in $G(X_{>i},Y_{>j})$.

Lemma 1

Let P be a valid prefix with leftmost mapping ending with edge (l,m), and let $(i,j) \in Ext_P$. Then, $\operatorname{FIND}_R(i,j)$ returns a mapping whose corresponding subsequence is $M \in MCS(X_{>l},Y_{>m})$.

MCS Combination

Theorem (MCS Combination)

Let P and C be common subsequences of X,Y. Let (l,m) be the last edge of the leftmost mapping of P, and (i,j) be the first edge of the rightmost mapping of C. Then:

$$P \circ C \in MCS(X,Y) \iff P \in MCS(X_{< i},Y_{< j}) \text{ and } C \in MCS(X_{> l},Y_{> m}).$$

Correctness

Correctness Theorem

Theorem (Correctness)

Let P be a valid prefix of some $M \in MCS(X,Y)$, with leftmost mapping L_P ending with edge (l,m). Then $P \circ c$ is still a valid prefix if and only if the following two conditions hold:

- 1. $\exists (i,j) \in Ext_P \text{ corresponding to character } c$;
- 2. $P \in MCS(X_{< i}, Y_{< j})$.

Proof.

We have said that the conditions are necessary in the previous sections. We know that $\operatorname{FIND}_R(i,j) = C \in MCS(X_{>l},Y_{>m})$. By hypothesis $P \in MCS(X_{< i},Y_{< j})$, therefore by the MCS combination theorem we have $P \circ C \in MCS(X,Y)$. This latter string starts with $P \circ c$, which is therefore a good prefix.