Federated Zero-Shot Learning: A Proposal

Francesco Odierna

CS PhD student @ University of Pisa francesco.odierna@phd.unipi.it

Outline

- Introduction
 - Federated Learning
 - Zero-Shot Learning
- The Proposal
- Motivation
- Road Map

Federated Learning

Federated Learning (1)

Primary goal

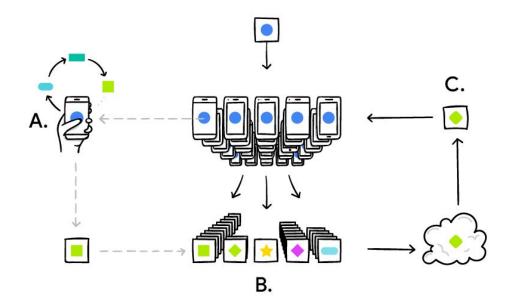
Training a global shared model.

How?

Using data stored locally on remote devices.

Why?

Decentralization. Privacy preserving. Model adaptation.



Federated Learning (2)

Problem formulation m total number of devices $p_k \ge 0$ and $\sum_k p_k = 1$ F_k local objective function for the kth device

Goal

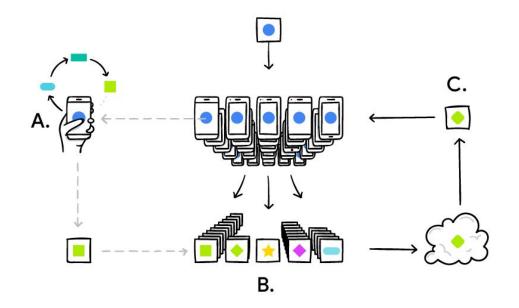
 $\min_w F(w)$

$$F(w) := \sum_{k=1}^{m} p_k F_k(w)$$

Federated Learning (3)

Steps

- A. Local updates.
- B. Models aggregation.
- C. Global model distribution.



Federated Learning (4)

Key challenges

1. Expensive communication

- Updates may become a bottleneck.
- Communication-efficient methods are necessary.

2. Systems heterogeneity

- High hardware variability.
- Low amount of participation.
- Strategies to deal with HW heterogeneity.

- 3. Privacy
 - Updates may reveal sensitive information.
 - Trade-off between performance and privacy.
- 4. Statistical heterogeneity
 - Each device generates its own data.
 - Multi-task learning and meta-learning approaches.

Zero-Shot Learning

Zero-Shot Learning (1)

Primary goal

Learn to classify unseen testing examples without training data.

How?

Using additional knowledge: a **semantic space**.

Why?

Learning with few data. Adaptation to new unseen categories. Deal with a variable number of categories.

Zero-Shot Learning (2)

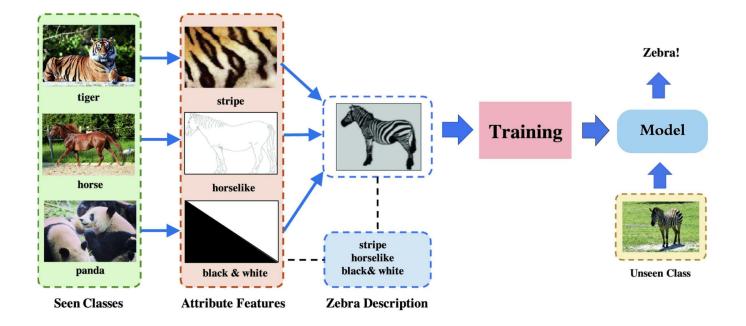
Problem formulation

S seen classes, **U** unseen classes, $\mathbf{S} \cap \mathbf{U} = \emptyset$, **X** feature space

$$D^{tr} = \left\{ \begin{pmatrix} x_i^{tr}, y_i^{tr} \end{pmatrix} \in \mathbf{X} \times \mathbf{S} \right\}_{i=1}^{N_{tr}}$$
$$X^{te} = \left\{ x_i^{te} \in \mathbf{X} \right\}_{i=1}^{N_{te}} \text{ testing examples}$$
$$Y^{te} = \left\{ y_i^{te} \in \mathbf{U} \right\}_{i=1}^{N_{te}} \text{ labels to predict}$$

Goal Given D^{tr} , learn a classifier $f^u(\cdot) : \mathbf{X} \to \mathbf{U}$

Zero-Shot Learning (3)



Zero-Shot Learning (4)

Key challenges

- 1. Extend ZSL to different type of data.
 - Most of the works focus on images.

2. Exploit characteristics of input data.

• Time-series, for example.

3. Combination with other learning paradigms.

• Why not Federated Learning?

Federated Zero-Shot Learning

Federated Zero-Shot Learning (1)

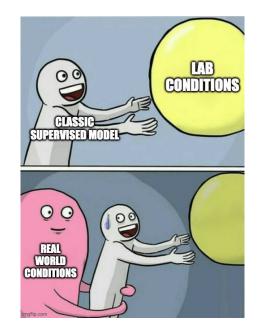
The proposal Federate Learning + Zero-Shot Learning.

Motivation

Real world conditions ≠ **Lab conditions.**

- Few labeled data.
- Unseen classes.
- Data distributed across devices.
- GDPR regulation.

A novel paradigm is needed!



Federated Zero-Shot Learning (2)

Features

- 1. Learning with few labeled data.
 - Collaboration to enhance the global model.
 - ZSL to deal with unseen classes.

2. Privacy.

• Training on remote devices.

3. Human Centric Al.

- Local data.
- Human feedback.
- User-based model -> Services personalization.

Road Map

Road Map

Goal

Federated Learning + Zero-Shot Learning → Services Personalization.

Models & Data

Recurrent models on sequential data e.g. time-series.

Challenges

- 1. Train recurrent models in FL scenarios.
 - Communication, privacy, new learning algorithms.
- 2. ZSL with time-series data.
 - Semantic space.
- 3. Incorporate human feedbacks during the training.
- 4. Put it all together!

References

- H.T. Cheng, M. Griss, P. Davis, J. Li, and D. You, "Towards zero-shot learning for human activity recognition using semantic attribute sequence model", in Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing.
- 2. V. Smith, C.K. Chiang, M. Sanjabi, and A. S. Talwalkar, "*Federated Multi-Task Learning*", in Advances in Neural Information Processing Systems 30, 2017.
- H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learning of Deep Networks from Decentralized Data", arXiv:1602.05629, Feb. 2017, <u>http://arxiv.org/abs/1602.05629</u>.
- 4. W. Wang, V. W. Zheng, H. Yu, and C. Miao, *"A Survey of Zero-Shot Learning: Settings, Methods, and Applications"*, ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1–37, Jan. 2019.
- 5. Q. Yang, Y. Liu, T. Chen, and Y. Tong, *"Federated Machine Learning: Concept and Applications"*, ACM Trans. Intell. Syst. Technol., vol. 10, no. 2, pp. 1–19, Jan. 2019.
- 6. T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, *"Federated Learning: Challenges, Methods, and Future Directions"*, arXiv:1908.07873, Aug. 2019, <u>http://arxiv.org/abs/1908.07873</u>.

Questions?

Francesco Odierna

CS PhD student @ University of Pisa francesco.odierna@phd.unipi.it