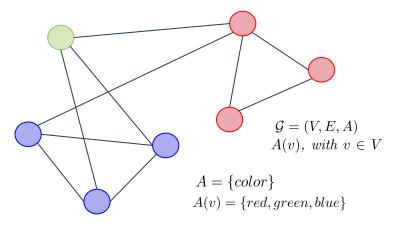
Mixing pattern quantification in node-attributed networks


Salvatore Citraro

A brief context (of my work)

Feature-rich networks (Interdonato et al. 2019)

More information as a complement to the topology

e.g. node-attributed networks

Improve solutions to complex network tasks

---> Community detection: EVA [1]

Network measures: Conformity

[1] Citraro S., Rossetti G. (2020) "Eva: Attribute-Aware Network Segmentation". COMPLEX NETWORKS 2019

Node-attributed networks What can we do?

Community detection

well-connectedness and homogeneity

Network measures

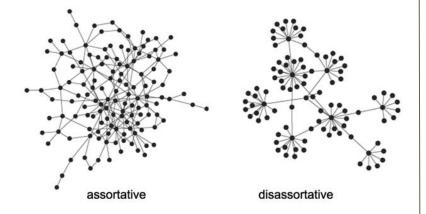
quantify **homophily** according to the attributes carried by the nodes

Homophily

Tendency of similar nodes to interact with similar others

social networks: education, age, gender, work, etc.

co-citation networks: topics

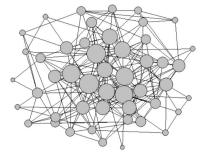

linguistic networks: psycholinguistic variables of words

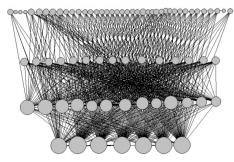
Idea 1:	Idea 2:
nodes with similar characteristics (degree, labels) are connected with a higher probability than expected	similar characteristics are more prominent along short distances

A special case: degree

Newman's assortativity [2]

$$R = rac{\sum_{xy} xy(e_{xy} - a_x \cdot b_y)}{\sigma_a \sigma_b} \; ,$$


[2] Newman, M. E. J. "Mixing Patterns in Networks." Physical Review E 67.2 (2003): n. pag. Crossref. Web.


Clumpiness [3]

$$\Lambda(G,k,\alpha) = \sum_{i>j}^{n(n-1)/2} \frac{k_i k_j}{\left(d_{ij}\right)^{\alpha}},$$

a) Clumped Assortative

b) Clumped Disassortative

[3] Estrada, N. Hatano, A. Gutierrez, "Clumpiness mixing in complex networks", Journal of Statistical Mechanics: Theory and Experiment.

Newman's assortativity (categorical)

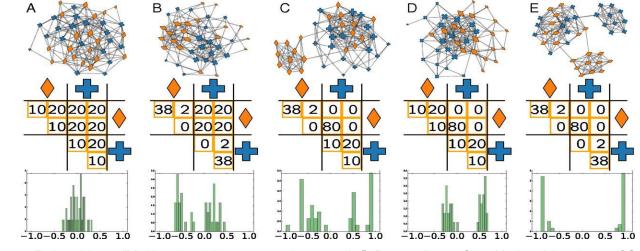
A **global** measure based on Pearson's *r*

 $r=rac{\sum_i e_{ii}-\sum_i a_i b_i}{1-\sum_i a_i b_i}$

- r = -1 perfectly disassortative
 - *r* = 0 no assortative (or random) mixing
 - *r* = 1 perfectly assortative

		black	hispanic	white	other	a_i
_	black	0.258	0.016	0.035	0.013	0.323
men	hispanic	0.012	0.157	0.058	0.019	0.247
	white	0.013	0.023	0.306	0.035	0.377
	other	0.005	0.007	0.024	0.016	0.053
	b_i	0.289	0.204	0.423	0.084	
						′ r = 0.621

Limitation

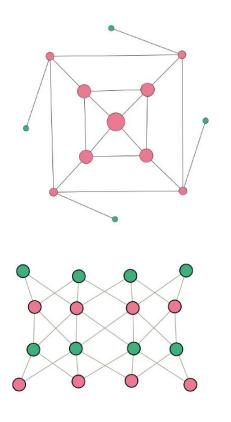

- An average quantification of mixing pattern across the *whole* network
- *Different patterns* and *outliers* are not identified

Peel's assortativity [4]

A **node-centric** measure based on a multiscale strategy

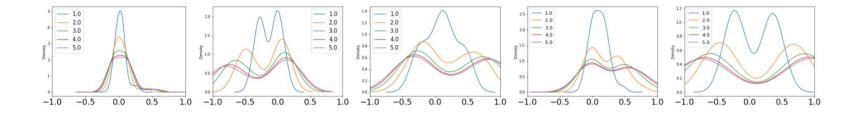
overcome limits of global assortativity

 $e_{gh}\left(\ell
ight)=\sum_{i:y_i=g}\sum_{j:y_j=b}w\left(i;\ell
ight)rac{A_{ij}}{k_i},
onumber \ w_{
m multi}\left(i;\ell
ight)=\int_{0}^{1}w_{lpha}(i;\ell){
m d}lpha$


[4] L. Peel, J.-C. Delvenne, R. Lambiotte, "Multiscale mixing patterns in networks", Proceedings of the National Academy of Sciences. Detailed explanation of the measure: <u>https://piratepeel.github.io/slides/MixingPatterns_IC2S2.pdf</u>

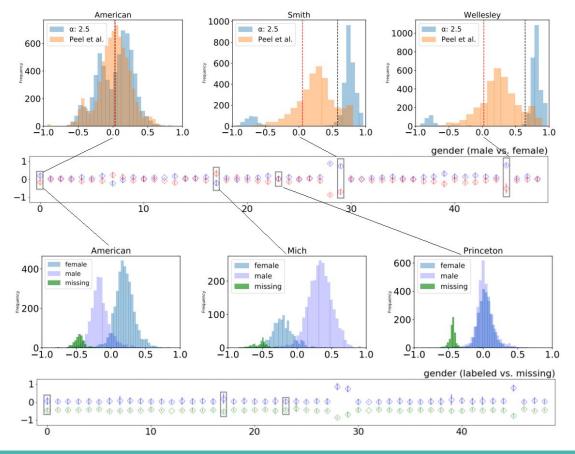
Conformity (Rossetti G., Citraro S., Milli L.)

$$I_{u,v} = \begin{cases} 1 & \text{if } l_u = l_v \\ -1 & \text{otherwise} \end{cases}$$


$$f_{u,l_u} = \begin{cases} \frac{|\{v|v \in \Gamma(u) \land l_u = l_v\}|}{|\Gamma(u)|} & \text{if } > 0\\ 1 & \text{otherwise} \end{cases}$$

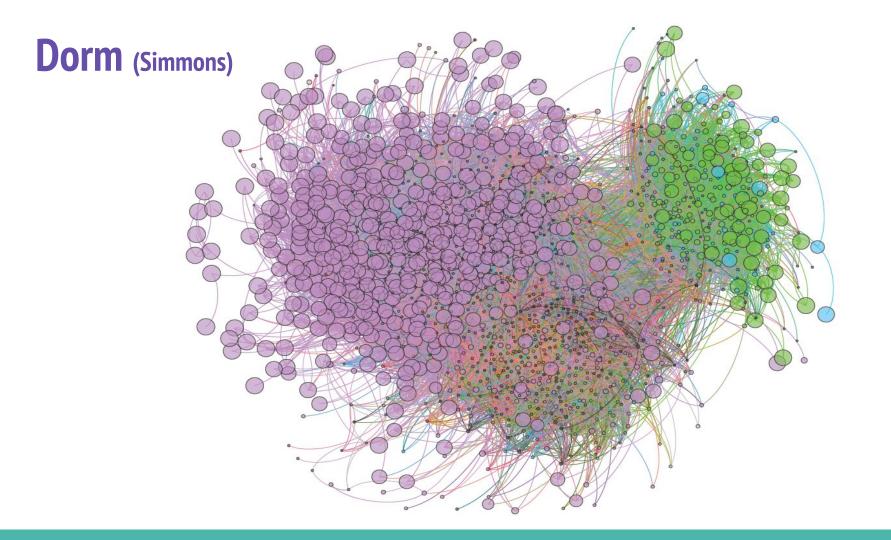
$$\psi(u,\alpha) = \frac{\sum_{d \in D} \frac{\sum_{v \in N_{u,d}} I_{u,v} f_{v,l_v}}{|N_{u,d}| d^{\alpha}}}{\sum_{d \in D} d^{-\alpha}}$$

Conformity (cont'd)


Facebook100: gender, year, dorm, etc...

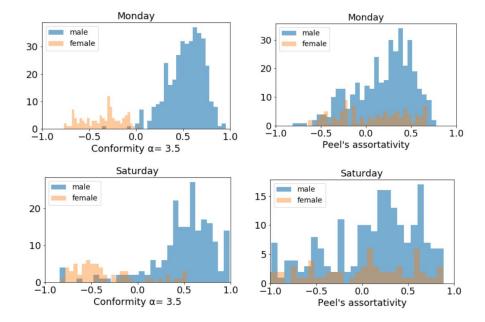
just an overview of Conformity

Interaction data from Copenhagen Network Study: gender


----- a statistically significant comparison of Conformity and Peel's assortativity

Facebook100 - Gender

Facebook100 - Year



Interaction data from Copenhagen Network Study

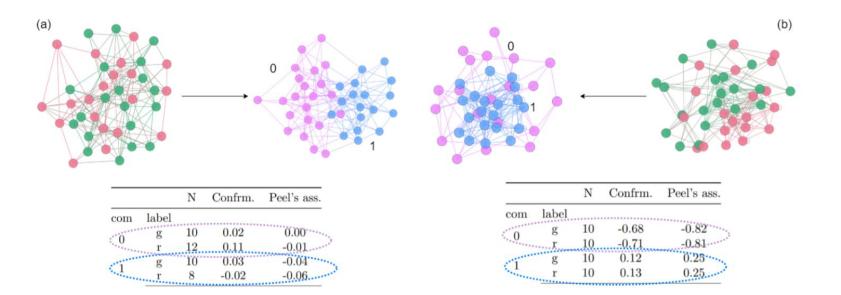
Homophily by gender:

- the most difficult to capture (under-representation of women, etc)
- In the absence of a ground truth
- we can not say whether Conformity
- or Peel's assortativity approximate
- the network behaviour

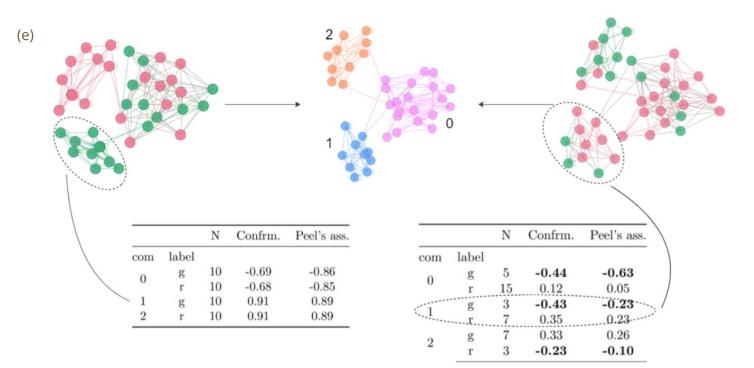
Framework of comparison

Community structure as a matter of comparison

---> the **minority group** within a community must be more heterophilic


than the **majority group**

Hypothesis


the more gender groups are **unbalanced** within a community,

the more the minority group is heterophilic w.r.t. gender

Peel's quintet

Peel's quintet (unbalanced)

First step: find the core

A meta-definition of **community** is not enough

the comparison must be done with nodes strongly embedded

within their communities

(statistically significant) **degree embeddedness**

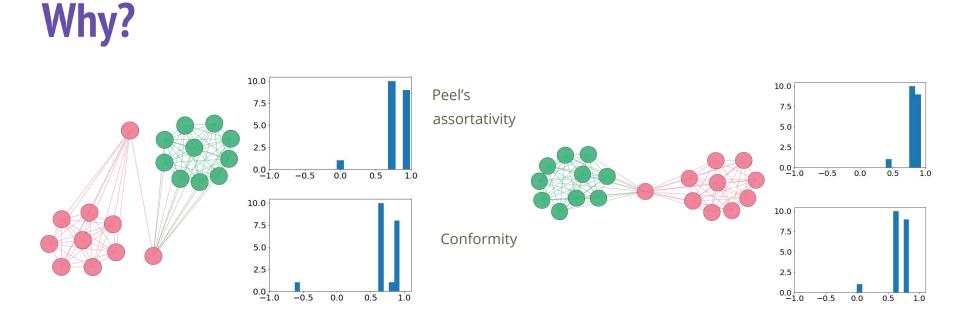
$$e_i = k^{in} - k^{out}$$

$$t_score(e_i) = \frac{e_i - \widehat{e}}{\frac{\sigma}{\sqrt{n}}}$$

CNS - Monday (Walktrap)

			Confe	ormity	Peel's	assrt.	•			0	Conform	nity	Peel's	assrt.
		N	М	SD	Μ	SD			N	I	М	SD	Μ	SD
Ξī	Community						$t_{\alpha\alpha\alpha}$	0 Comm						
rst	0	130	0.333	0.442	0.130	0.339	t-score (e _i) >				204	0.431	0.174	0.351
æ	1	92	0.036	0.252	0.112	0.318		$\rightarrow 0$						
First level	2	75	0.298	0.397	0.158	0.316		1	70			0.232	0.113	0.305
<u>.</u> .	3	66	0.551	0.320	0.251	0.291		2				0.392	0.163	0.326
	4	46	0.542	0.392	0.201	0.322		3	-	S (1		0.341	0.272	0.288
	5							4	-			0.422	0.159	0.344
	0	17	0.475	0.327	0.190	0.438		5	1	3 (0.600	0.092	0.131	0.409
			Ļ								Ļ			
				Confo	rmity	Peel's	assrt.				Confo	rmity	Peel's	assrt.
			N	Μ	SD	М	SD			N	Μ	SD	M	SD
S	Community	Gender						Core	Gender					
90	0	0	103	0.546	0.147	0.145	0.326	Community						
Second level	0	1	27	-0.475	0.172	0.075	0.386	0	0	61	0.570	0.159		0.347
		0	50	0.234	0.143	0.114	0.289		1	12	-0.497	0.205		0.371
ev	1	1	42	-0.200	0.107	0.109	0.363	1	0	41	0.228	0.112		0.365
e		0	59	0.486	0.172	0.196	0.303		1	37	-0.184	0.099		0.348
	2	1	16	-0.390	0.143	0.016	0.330	2	0	49 11	0.512	$0.156 \\ 0.177$	$0.191 \\ 0.037$	$0.312 \\ 0.372$

Second step: analysis of variance


Hard due to group size unbalance itself

two-way ANOVA?

An idea: Mann-Whitney U

	Conformity	7	Peel's assortativity			
	Mann Whitney U	p-value	Mann Whitney U	p-value		
Community 0	0.0	0.00	1234.0	0.10		
Community 1	38.0	0.00	1047.0	0.40		
Community 2	0.0	0.00	320.0	0.02		

	Conformity	7	Peel's assortativity			
	Mann Whitney U	p-value	Mann Whitney U	p-value		
Core community 0	0.0	0.00	294.0	0.14		
Core community 1	0.0	0.00	747.0	0.45		
Core community 2	0.0	0.00	204.0	0.10		

Maybe *Peel's assortativity* can not *scale* in extremely unbalanced situations

Conclusion and future works

1. **Conformity** is more coherent than **Peel's assortativity** w.r.t. the

community structure of networks (must be proven better in future)

- 2. Conformity is quite expensive
- 3. Is Conformity a **metrics**?