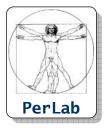
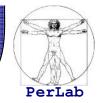
# Personal Air Quality Monitoring

### **Giuseppe Anastasi**


Pervasive Computing & Networking Lab (Perlab) Dept. of Information Engineering, University of Pisa

E-mail: giuseppe.anastasi@unipi.it

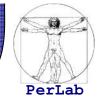
Website: www.iet.unipi.it/~anastasi/


Università di Pisa





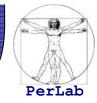
TI4AAB 2016 | Pisa, July 7-8, 2016


## Introduction



- Air quality has a serious impact on public health, environment and economy
  - Poor air quality results in ill health, premature deaths, as well as damages to ecosystems, crops, and buildings
  - The effects are clearly more serious in urban areas
- European countries have significantly reduced the emissions of several air pollutants
  - sulphur dioxide (SO<sub>2</sub>), carbon monoxide (CO), benzene (C<sub>6</sub>H<sub>6</sub>), lead (Pb)
- Other pollutants still represent a serious threat
  - particulate matter (PM)
  - ozone (O<sub>3</sub>),
  - Nitrogen dioxide (NO<sub>2</sub>)
  - some organic compounds




# EEA Report 2015



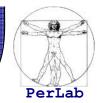




# EEA Report 2015



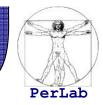
Contents


### Contents

### Contents

| Ac | rony | ıms, ui         | nits and symbols                                                                 | 5  |
|----|------|-----------------|----------------------------------------------------------------------------------|----|
| Ac | knov | wledge          | ments                                                                            | 6  |
| Ex | ecut | ive su          | nmary                                                                            | 7  |
| 1  | Intr | oducti          | on                                                                               | 11 |
|    | 1.1  | Huma            | in health                                                                        | 11 |
|    | 1.2  | Ecosy           | stems                                                                            | 12 |
|    | 1.3  | Clima           | te change                                                                        | 12 |
|    | 1.4  | The b           | uilt environment and cultural heritage                                           | 12 |
|    | 1.5  | Air po          | licy                                                                             | 12 |
|    | 1.6  | Outlin          | ne of this report                                                                | 13 |
| 2  | Sou  | rces a          | nd emissions of air pollutants                                                   | 14 |
|    | 2.1  | Sourc           | es of regulated pollutants                                                       | 14 |
|    | 2.2  | Total           | emissions of air pollutants                                                      | 15 |
|    | 2.3  | Secto           | ral emissions of air pollutants                                                  | 15 |
| 3  | Part | ticulat         | e matter                                                                         | 20 |
|    | 3.1  | Europ           | ean air quality standards and World Health Organization                          |    |
|    |      |                 | lines for particulate matter                                                     |    |
|    | 3.2  |                 | s in concentrations                                                              |    |
|    |      |                 | Exceedances of limit and target values                                           |    |
|    |      |                 | Relationship of emissions to ambient particulate matter concentrations           |    |
| 4  | Ozo  | ne              |                                                                                  | 25 |
|    | 4.1  | Europ<br>for oz | ean air quality standards and World Health Organization guidelines<br>one        | 25 |
|    | 4.2  | Statu           | s in concentrations                                                              | 26 |
|    |      | 4.2.1           | Exceedance of the target values for protection of health                         | 27 |
|    |      | 4.2.2           | Relationship of ozone precursor emissions to ambient ozone<br>concentrations     | 27 |
| 5  | Nitr | ogen            | lioxide                                                                          | 29 |
|    | 5.1  | Europ<br>for N  | ean air quality standards and World Health Organization guidelines $\Omega_2$    | 29 |
|    | 5.2  | Statu           | s in concentrations                                                              | 30 |
|    |      | 5.2.1           | Exceedances of limit values for the protection of human health                   | 30 |
|    |      | 5.2.2           | Relationship of nitrogen oxides emissions and nitrogen<br>dioxide concentrations | 32 |

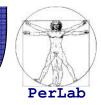
| 6  | Ben  | zo[a]pyrene                                                                                                                     |
|----|------|---------------------------------------------------------------------------------------------------------------------------------|
|    | 6.1  | European air quality standards and reference levels for benzo[a]pyrene                                                          |
|    | 6.2  | Status in concentrations                                                                                                        |
|    |      | 6.2.1 Exceedances of the target value                                                                                           |
| 7  | Oth  | er pollutants: sulphur dioxide, carbon monoxide, toxic metals and benzene36                                                     |
|    | 7.1  | European air quality standards and World Health Organization guidelines                                                         |
|    | 7.2  | Status in concentrations                                                                                                        |
|    |      | 7.2.1 Sulphur dioxide                                                                                                           |
|    |      | 7.2.2 Carbon monoxide                                                                                                           |
|    |      | 7.2.3 Toxic metals                                                                                                              |
|    |      | 7.2.4 Benzene                                                                                                                   |
| 8  | Рор  | ulation exposure to air pollutants in European urban areas                                                                      |
|    | 8.1  |                                                                                                                                 |
|    | 8.2  | Ozone                                                                                                                           |
|    | 8.3  | Nitrogen dioxide40                                                                                                              |
|    | 8.4  | Benzo[a]pyrene40                                                                                                                |
|    | 8.5  | Sulphur dioxide40                                                                                                               |
|    | 8.6  | Carbon monoxide41                                                                                                               |
|    | 8.7  | Toxic metals (arsenic, cadmium, lead and nickel)41                                                                              |
|    | 8.8  |                                                                                                                                 |
| 9  | Hea  | Ith impacts of exposure to fine particulate matter, ozone and nitrogen dioxide42                                                |
|    | 9.1  | Health impacts of current exposure to fine particulate matter, ozone and nitrogen dioxide                                       |
|    | 9.2  | Estimated health gains attributable to attainment of fine particulate matter<br>and nitrogen dioxide guidelines or limit values |
| 10 | Hea  | Ith impacts of exposure to benzo[a]pyrene46                                                                                     |
| 11 | Imp  | acts of air pollution on ecosystems                                                                                             |
|    | 11.1 | Vegetation damage by ground-level ozone                                                                                         |
|    | 11.2 | Eutrophication                                                                                                                  |
|    | 11.3 | Acidification                                                                                                                   |
|    | 11.4 | Environmental impacts of toxic metals                                                                                           |
|    | 11.5 | Ecosystem exposure to nitrogen oxides and sulphur dioxide                                                                       |
| Re | fere | nces                                                                                                                            |


# EEA Report 2015

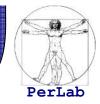


### Table 9.2 Premature deaths attributable to PM<sub>2.5</sub>, O<sub>3</sub> and NO<sub>2</sub> exposure in 2012 in 40 European countries and the EU-28 Country PM<sub>2.5</sub> **O**<sub>3</sub> NO<sub>2</sub> 6 1 0 0 320 660 Austria Belgium 9 300 170 2 300 Bulgaria 14 100 500 700 4 500 270 50 Croatia 790 40 0 Cyprus Czech Republic 10 400 380 290 2 900 Denmark 110 50 620 30 0 Estonia Finland 1 900 60 0 43 400 1 500 7 700 France 59 500 2 100 10 400 Germany Greece 11 100 780 1 300 12 800 610 720 Hungary rol 1 200 30 0 Italy 59 500 3 300 21 600 90 Latvia 1 80( Lithuania 2 300 80 0 250 10 60 Luxembourg Malta 200 20 0 Netherlands 10 100 200 2 800 Poland 44 600 1 1 0 0 1 600 5 400 320 470 Portugal Romania 25 500 720 1 500 Slovakia 5 700 250 60 Slovenia 1 700 100 30 Spain 25 500 1 800 5 900 Sweden 3 700 160 10 United Kingdom 37 800 530 14 100 Albania 2 200 140 270 60 4 0 Andorra Bosnia and Herzegovina 3 500 200 70 former Yugoslav Republic of Macedonia, the 3000 130 210 2 0 lceland 100 20 1 3 Liechtenstein 2 7 Monaco 30 Montenegro 570 40 20 Norway 1 700 70 200 2 30 0 San Marino Serbia (ª) 13 400 550 1100 Switzerland 4 300 240 950 Total (<sup>b</sup>) 432 000 17 000 75 000 EU-28 (b) 403 000 16 000 72 000

# Premature deaths due to PM2.5, O2, and NO2 exposure in 2012


# Motivations




- Air quality typically monitored through large and expensive sensing stations
  - Located in (few) strategic locations
  - *Accurate* monitoring, but *limited* to specific areas



# Motivations



- Air quality typically monitored through large and expensive sensing stations
  - Located in (few) strategic locations
  - *Accurate* monitoring, but *limited* to specific areas
- Sensing stations are managed by public authorities
  - pollution data are often not (promptly) available to citizens
  - or they can be difficult to understand



### Rete Regionale Monitoraggio Qualità Aria - AGGLOMERATO NAPOLI - CASERTA (ZONA IT1507)

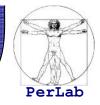
| POSTAZIONI                     |     | NO2 / ora [µg/m³] |       |      | CO mob / ora [mg/m <sup>3</sup> ] |       | PM10 [µg/m³] |       | PM2.5<br>[µg/m³] |       | O3 / ora [µg/m³] |     |       |      | ZENE (µ | ıg/m³] | SO2 [µg/m³] |     |     |       |      |
|--------------------------------|-----|-------------------|-------|------|-----------------------------------|-------|--------------|-------|------------------|-------|------------------|-----|-------|------|---------|--------|-------------|-----|-----|-------|------|
|                                | max | ora               | media | sup. | max                               | media | sup.         | media | sup.             | media | max              | ora | media | sup. | max     | ora    | media       | max | ora | media | sup. |
| Caserta CE51 Ist. Manzoni      | 96  | 21                | 41    | 0    | *                                 | *     | *            | 28    | 14               | 19    | 109              | 15  | 47    | 0    | *       | *      | *           | *   | *   | *     | *    |
| Caserta CE52 Sc. De Amicis     | 40  | 9                 | 26    | 0    | 0,8                               | 0,4   | 0            | 29    | 13               | 10    | *                | *   | *     | *    | nv      | -      | nv          | *   | *   | *     | *    |
| Maddaloni CE54 Sc. Settembrini | 64  | 19                | 36    | 0    | *                                 | *     | *            | 41    | 14               | 16    | 100              | 15  | 40    | 0    | *       | -      | *           | *   | *   | *     | *    |
| Napoli NA01 Oss. Astronomico   | 39  | 12                | 21    | 0    | 0,5                               | 0,4   | 0            | 27    | 7                | 11    | 122              | 17  | 84    | 0    | nv      | -      | nv          | *   | *   | *     | *    |
| Napoli NA02 Osp. Santobono     | nv  | -                 | nv    | 0    | *                                 | *     | *            | nv    | 2                | nv    | *                | *   | *     | *    | *       | *      | *           | *   | *   | *     | *    |
| Napoli NA06 Museo Nazionale    | 104 | 9                 | 58    | 0    | 4,1                               | 3,1   | 0            | nv    | 17               | 27    | *                | *   | *     | *    | m       | -      | m           | *   | *   | *     | *    |
| Napoli NA07 Ferrovia           | 112 | 21                | 66    | 0    | 0,9                               | 0,8   | 0            | 34    | 12               | 22    | *                | *   | *     | *    | 0,5     | 10     | 0,2         | *   | *   | *     |      |
| Napoli NA08 Osp. N. Pellegrini | 142 | 22                | 65    | 0    | *                                 | *     | *            | 30    | 13               | 14    | *                | *   | *     | *    | *       | *      | *           | *   | *   | *     | *    |
| Napoli NA09 Via Argine         | 118 | 21                | 66    | 0    | m                                 | m     | 0            | np    | 16               | np    | *                | *   | *     | *    | 4,8     | 22     | 1,7         | m   | -   | m     | 0    |
| Napoli Epomeo (Tirrenopower)   | np  | -                 | np    | 0    | np                                | np    | 0            | np    | *                | np    | *                | *   | *     | *    | *       | *      | *           | *   | *   | *     | *    |
| Acerra Zona Industriale        | nv  | -                 | nv    | 0    | 1,0                               | 0,9   | 0            | 38    | 13               | 17    | *                | *   | *     | *    | nv      | -      | nv          | 4,2 | 8   | 1,5   | 0    |
| Acerra Scuola Caporale         | np  | -                 | np    | 0    | np                                | np    | 0            | np    | 12               | np    | *                | *   | *     | *    | np      | -      | np          | *   | *   | *     | *    |
| Aversa Scuola Cirillo          | m   | -                 | m     | 0    | m                                 | m     | 0            | *     | *                | *     | *                | *   | *     | *    | m       | -      | m           | *   | *   | *     | *    |
| Casoria Scuola Palizzi (CAM)   | np  | -                 | np    | 0    | *                                 | *     | *            | np    | 17               | np    | np               | -   | np    | 0    | *       | *      | *           | *   | *   | *     | *    |
| Pomigliano d'Arco Area Asi     | 67  | 2                 | nv    | 0    | 1,3                               | nv    | 0            | nv    | 21               | nv    | *                | *   | *     | *    | 6,0     | 6      | nv          | 4,5 | 1   | nv    | 0    |
| Portici Parco Reggia           | m   | -                 | m     | 0    | *                                 | *     | *            | m     | *                | m     | m                | -   | m     | 0    | m       | -      | m           | *   | *   | *     | *    |
| S. Vitaliano Scuola Marconi    | 127 | 22                | 61    | 0    | *                                 | *     | *            | 56    | 37               | 25    | 104              | 16  | 32    | 0    | 8,6     | 1      | 4,4         | 6,5 | 9   | 2,9   | 0    |
| Torre Annunziata Sc. Pascoli   | 106 | 8                 | 52    | 0    | *                                 | *     | *            | *     | *                | *     | 59               | 15  | 26    | 0    | *       | *      | *           | *   | *   | *     | *    |
| Volla (Tirrenopower)           | np  | -                 | np    | 0    | np                                | np    | 0            | np    | *                | np    | *                | *   | *     | *    | *       | *      | *           | *   | *   | *     | *    |

PROSPETTO DI SINTESI DATI DI QUALITA' DELL'ARIA AMBIENTE RILEVATI DALLE ORE 01:00 ALLE ORE 24:00 DEL 31-03-2016

LA STRUTTURA DELLA RETE DI MONITORAGGIO E' IN FASE DI ADEGUAMENTO AL D.LGS. 155/2010, L'ACQUISIZIONE DEI DATI ED I CRITERI DI VALUTAZIONE PER L'ANNO 2016 SONO DEFINITI DAL D.LGS. 155/2010.

LEGENDA

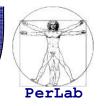
": analizzatore non previsto m: analizzatore in manutenzione


nv: dati non validabili

np:dati non pervenuti

|             |                               |                       | Tempi di mediazione  |                                                                                                          |
|-------------|-------------------------------|-----------------------|----------------------|----------------------------------------------------------------------------------------------------------|
| ARPAC       | NO <sub>2</sub>               | Biossido di azoto     | massima media oraria | Il valore orario di 200 µg/m³ non può essere superato più di 18 volte nell'arco dell'anno                |
|             | CO                            | Monossido di carbonio | massima media oraria | Il valore massimo della media mobile calcolata sulle 8 ore non può superare i 10 mg/m3                   |
|             | PM <sub>10</sub>              | Polveri sosp d<10µm   | media giornaliera    | Il valore giornaliero di 50 µg/m³ non può essere superato più di 35 volte nell'arco dell'anno            |
| - 1 - 1 - 1 | PM <sub>2,5</sub>             | Polveri sosp d<2,5µm  | media annuale        | Il valore medio annuale di 25 µg/m³ non può essere superato nell'arco dell'anno                          |
|             | O3                            | Ozono                 | massima media oraria | Il valore orario della soglia di informazione è pari a 180 µg/m³ la soglia di allarme è pari a 240 µg/m³ |
|             | C <sub>6</sub> H <sub>6</sub> | Benzene               | media annuale        | Il valore medio annuale di 5 µg/m³ non può essere superato nell'arco dell'anno                           |
|             | SO <sub>2</sub>               | Biossido di zolfo     | massima media oraria | Il valore orario di 350 µg/m³ non può essere superato più di 24 volte nell'arco dell'anno                |

Dati elaborati in data 01/04/2016

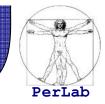

💽 💽 🐁 🚿 🔼 🖸 🝋 🗐



| → C ff [] www.arpat.toscana.it/temi-ambienta<br>p ★ Bookmarks 🔢 Calendar 💽 Notes 🕵 Traduttore 🏙 |                      | eneo 🛻 CINI 🔎 Con | ntatti 📑 Facebook in L    | inkedIn 📋 U                           | ilities 🗀                           | Smart-Cities [                         | 🗋 Didatt                      | ica 🚞 R                       | licerca 🧰 Cfl                         | Ps 🧀 Papers                              | 🎦 Revisioni 🦳 Eventi-Riviste 🦳 Giornali ( | 🛋 🏠 S<br>🗅 Aerei » 🗀 Altri Pri |
|-------------------------------------------------------------------------------------------------|----------------------|-------------------|---------------------------|---------------------------------------|-------------------------------------|----------------------------------------|-------------------------------|-------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------|
|                                                                                                 |                      |                   |                           | Dellettine                            |                                     |                                        |                               |                               |                                       |                                          |                                           |                                |
|                                                                                                 | Bollettino rete Re   | gionale Boi       | lettino Ozono             | Bollettino                            | stazior                             | ii provinci                            | Cerc                          | a                             |                                       |                                          | <u>A</u> -                                |                                |
|                                                                                                 | STAZIONE             | COMUNE            | ZONA 🔺                    | PM10<br>μg/m³<br>media<br>giornaliera | Numero<br>Sup.<br>da inizio<br>anno | PM2.5<br>µg/m³<br>media<br>giornaliera | NO2<br>µg/m³<br>max<br>orario | SO2<br>µg/m³<br>max<br>orario | CO<br>mg/m³<br>max media<br>mobile 8h | Benzene<br>µg/m³<br>media<br>giornaliera | H2S<br>µgim <sup>3</sup><br>max<br>orario |                                |
|                                                                                                 | FI-GRAMSCI           | FIRENZE           | Agglomerato di<br>Firenze | n.d.                                  | 10                                  | n.d.                                   | 88                            |                               | 0.9                                   | 2.3                                      | · .                                       |                                |
|                                                                                                 | <b>FI-SETTIGNANO</b> | FIRENZE           | Agglomerato di<br>Firenze | -                                     | -                                   | -                                      | 7                             | -                             |                                       |                                          | -                                         |                                |
|                                                                                                 | FI-SIGNA             | SIGNA             | Agglomerato di<br>⊢ırenze | 6                                     | 13                                  | -                                      | 53                            | -                             | -                                     | 1                                        | -                                         |                                |
|                                                                                                 | FI-BOBOLI            | FIRENZE           | Agglomerato di<br>Firenze | 8                                     | 3                                   | -                                      | -                             | -                             | -                                     | -                                        | -                                         |                                |
|                                                                                                 | FI-SCANDICCI         | SCANDICCI         | Agglomerato di<br>Firenze | 9                                     | 4                                   | -                                      | 60                            | -                             | -                                     | -                                        | -                                         |                                |
|                                                                                                 | FI-BASSI             | FIRENZE           | Agglomerato di<br>Firenze | 5                                     | 2                                   | 4                                      | 52                            | 1.5                           | -                                     | n.d.                                     | -                                         |                                |
|                                                                                                 | FI-MOSSE             | FIRENZE           | Agglomerato di<br>Firenze | 13                                    | 4                                   | -                                      | 73                            | -                             | -                                     | -                                        | -                                         |                                |
|                                                                                                 | AR-CASA-STABBI       | CHITIGNANO        | Zona Collinare<br>Montana | 1                                     | 1                                   | -                                      | 2                             | -                             | -                                     | -                                        | -                                         |                                |
|                                                                                                 | PI-MONTECERBOLI      | POMARANCE         | Zona Collinare<br>Montana | 6                                     | 0                                   | -                                      | 9                             | -                             | -                                     | -                                        | 40                                        |                                |
|                                                                                                 | SI-POGGIBONSI        | POGGIBONSI        | Zona Collinare<br>Montana | 7                                     | 0                                   | 6                                      | 32                            | -                             | -                                     | -                                        | -                                         |                                |
|                                                                                                 | SI-BRACCI            | SIENA             | Zona Collinare            | 9                                     | 0                                   | -                                      | 50                            | -                             | 0.6                                   | -                                        | -                                         |                                |

ISI (2 📴

IT 🔺 🔀 🚼 🎲 🛱 🌗 17:29 23/11/2015

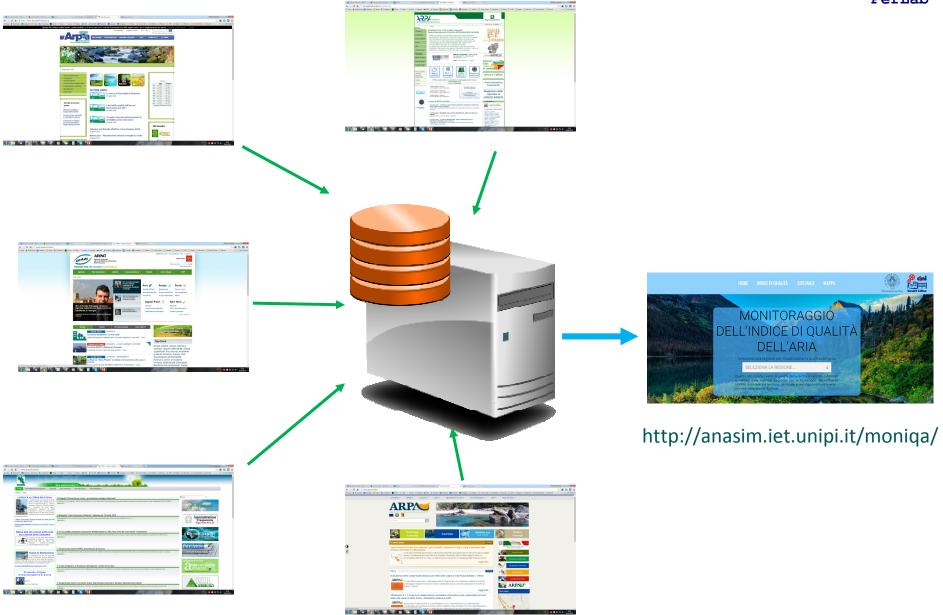



$$AQI = \max \left\{ \frac{G_1^{meas}}{G_1^{lim}}, \frac{G_2^{meas}}{G_2^{lim}}, \frac{G_3^{meas}}{G_3^{lim}}, \dots, \frac{G_N^{meas}}{G_N^{lim}} \right\}$$

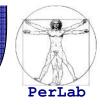
### **Air Quality Index**

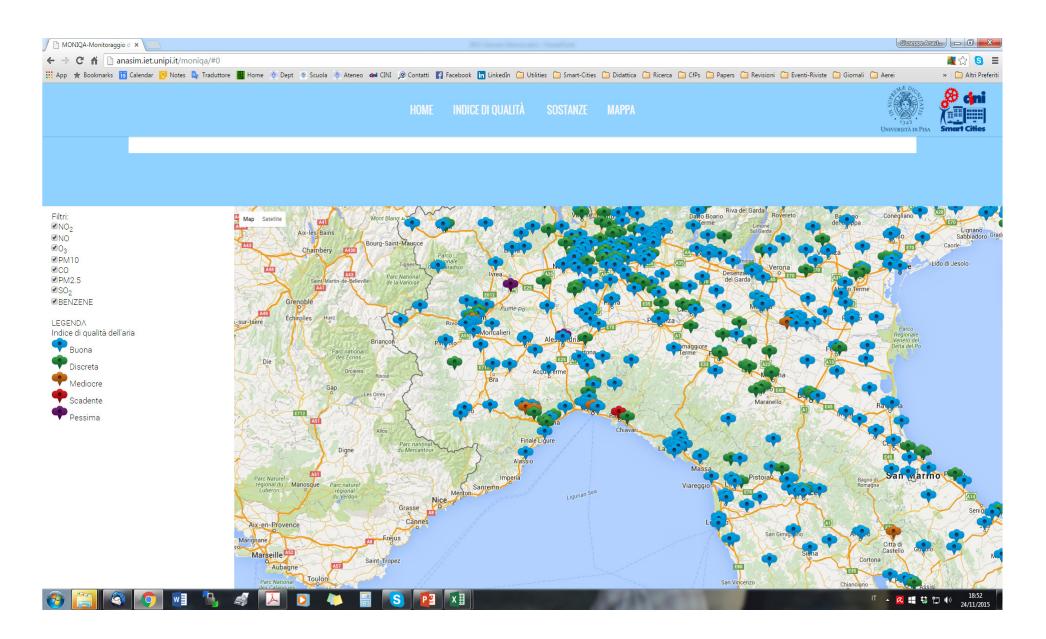
| Air Quality Index           | Air Quality Classes | Color |
|-----------------------------|---------------------|-------|
| From $\theta$ to $\theta.5$ | Good                |       |
| From 0.5 to <i>1</i>        | Fair                |       |
| From <i>1</i> to 1.5        | Moderate            |       |
| From 1.5 to 2               | Unhealthy           |       |
| More than 2                 | Insalubrious        |       |



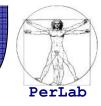


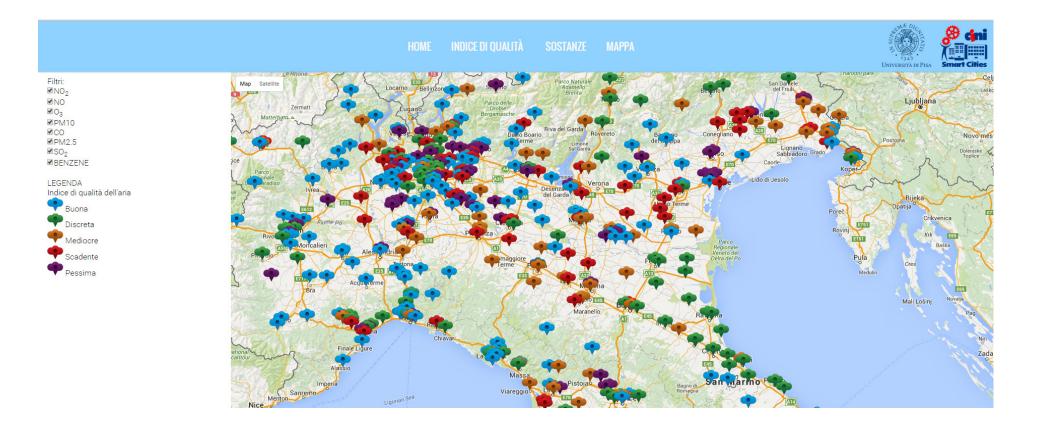

### http://anasim.iet.unipi.it/moniqa/





# MonIQA







# MonIQA

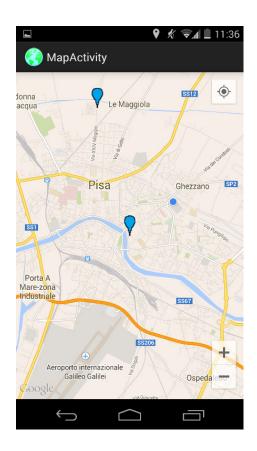




# MonIQA (December 2015)






# **MonIQA for Mobile Devices**











Versione Web: anasim.iet.unipi.it/moniqa/



## **MonIQA for Mobile Devices**

App available in **b** Coogle play





19 0





27 dicembre 2015 · MonIga · 🛞

Schif ....

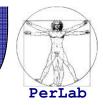


### L'aria alla stazione di PI-Borghetto è Mediocre

Le misurazioni sono: NO2: 72.0 su 200.0 µg/m³, PM10: 44.0 su 50.0 µg/m³, CO: 1.6 su 10.0 mg/m3, PM2.5: 30.0 su 25.0 µg/m3

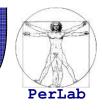
DATI RIFERITI AL 23/12/2015




PerLab

 $\sim$ 

# **Cooperative Sensing**




### **Other Motivations**



- Sensing stations are managed by public authorities
  - pollution data are often not (promptly) available to citizens
  - or they can be difficult to understand
- People are really interested in knowing air quality in places where they live
  - street where their home is located
  - school of their kids
  - working place
  - public gardens
  - •••

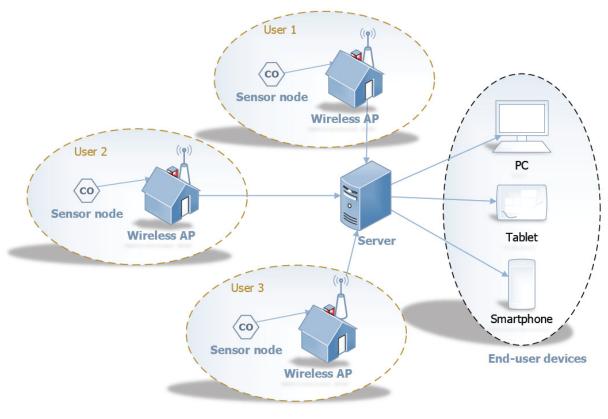
### <mark>u Sense</mark>



- Based on low-cost sensor nodes
  - equipped with appropriate gas sensors
  - privately installed by citizens (group of citizens)
     ⇒ Balcony, Garden, ...
- Sensor nodes are powered by batteries
  - flexible deployment and easy relocation
- Users can share their measurements
  - through social networks (cooperative sensing)
- Real-time and fine-grained monitoring
  - Many low-cost sensors

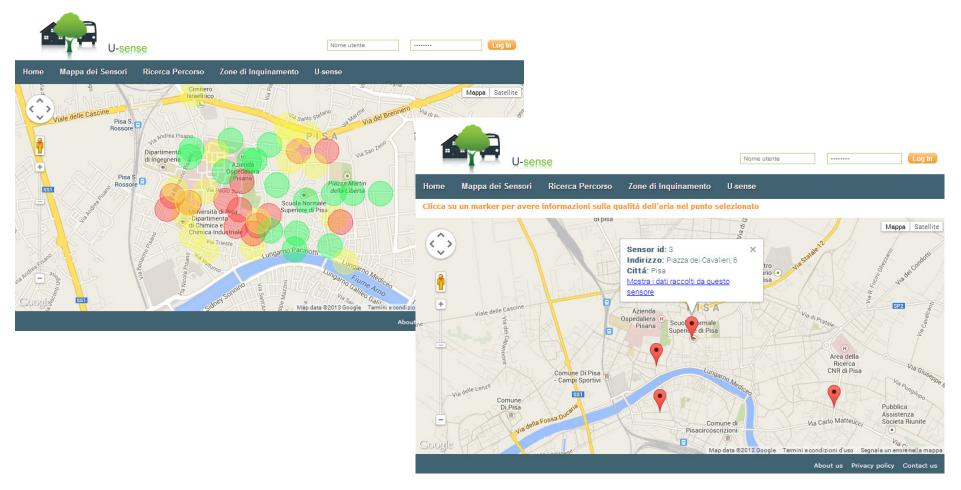


## **USense:** Architecture




Where the users really live












- Through a web interface, a user can:
  - View pollution map

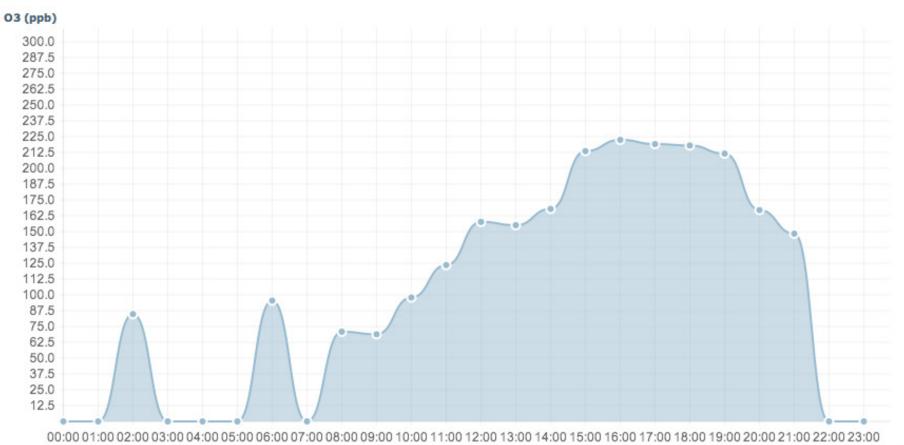






# PerLab

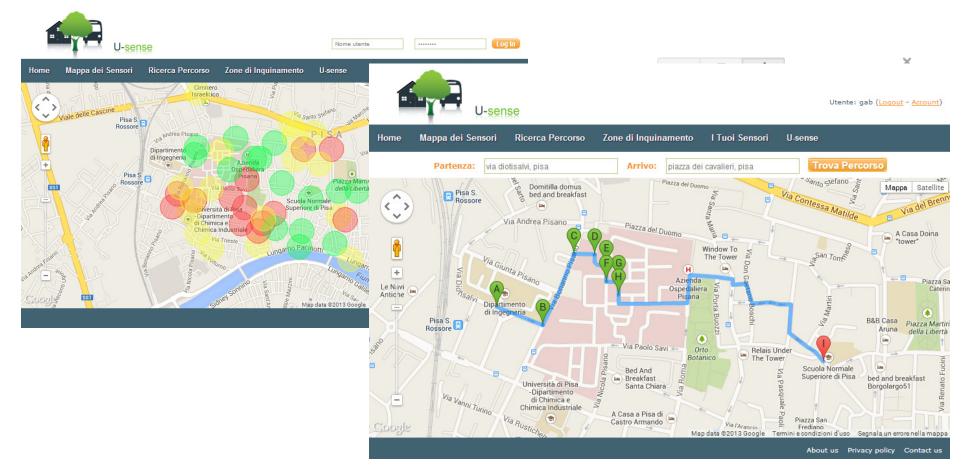
### ...Check gas concentrations in real-time


| Ora      | Data       | TEMP<br>(°C) | CO<br>(PPM) | CO2<br>(PPM) | NO2<br>(PPM) | <b>O3</b><br>(PPB) |
|----------|------------|--------------|-------------|--------------|--------------|--------------------|
| 21:30:00 | 15-03-2014 | 12           | 56.172      | 1334.289     | 0.037        | 141.679            |
| 21:12:00 | 15-03-2014 | 12           | 54.003      | 1334.289     | 0.038        | 155.018            |
| 20:54:00 | 15-03-2014 | 12           | 57.994      | 1539.04      | 0.038        | 162.052            |
| 20:35:00 | 15-03-2014 | 12           | 57.46       | 1198.809     | 0.039        | 161.175            |
| 20:17:00 | 15-03-2014 | 12           | 61.743      | 1077.085     | 0.04         | 177.692            |
| 19:59:00 | 15-03-2014 | 12           | 58.265      | 1242.367     | 0.043        | 197.342            |
| 19:40:00 | 15-03-2014 | 12           | 57.46       | 1156.778     | 0.043        | 207.461            |
| 19:22:00 | 15-03-2014 | 12           | 54.706      | 1116.221     | 0.043        | 219.993            |
| 19:04:06 | 15-03-2014 | 12           | 53.32       | 1198.809     | 0.043        | 221.654            |
| 18:45:00 | 15-03-2014 | 12           | 56.937      | 1116.221     | 0.043        | 220.824            |
| 18:27:00 | 15-03-2014 | 12           | 57.197      | 1287.508     | 0.042        | 210.815            |
| 18:09:09 | 15-03-2014 | 12           | 58.265      | 1077.085     | 0.043        | 222.484            |
| 17:50:00 | 15-03-2014 | 13           | 61.743      | 1077.085     | 0.043        | 222.484            |
| 17:32:00 | 15-03-2014 | 13           | 57.46       | 1039.322     | 0.043        | 219.993            |
| 17:14:00 | 15-03-2014 | 13           | 59.661      | 1002.882     | 0.042        | 214.995            |
| 16:55:00 | 15-03-2014 | 13           | 62.053      | 1077.085     | 0.042        | 221.654            |
| 16:37:00 | 15-03-2014 | 14           | 63.005      | 933.792      | 0.041        | 219.993            |
| 16:19:00 | 15-03-2014 | 14           | 66.061      | 1156.778     | 0.042        | 221.654            |
| 16:00:05 | 15-03-2014 | 14           | 63.005      | 1077.085     | 0.041        | 226.626            |
| 15:42:00 | 15-03-2014 | 14           | 62.053      | 1242.367     | 0.041        | 225.799            |
| 15:24:00 | 15-03-2014 | 14           | 62.053      | 1334.289     | 0.041        | 209.978            |
| 15:05:05 | 15-03-2014 | 15           | 64.664      | 1077.085     | 0.04         | 204.94             |
| 14:47:00 | 15-03-2014 | 15           | 63.989      | 1116.221     | 0.038        | 192.25             |
| 14:29:00 | 15-03-2014 | 19           | 66.421      | 1156.778     | 0.036        | 172.506            |
| 14:10:00 | 15-03-2014 | 21           | 75.573      | 1198.809     | 0.033        | 138,986            |



### ... and plots

### Mostra grafici:


Temperatura - Umidità - Pressione - CO - CO2 - O3 - NO2 - VOC







- Through a web interface, a user can:
  - Search for the less polluted route

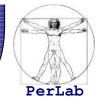






### **Sensor Registration**

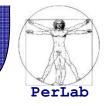
- A user with a private sensor can:
  - Create an account
  - Register his/her sensor to the system
  - Modify the sensor location
  - Remove a sensor from the system
  - View data taken from his/her sensor directly on a dedicated page

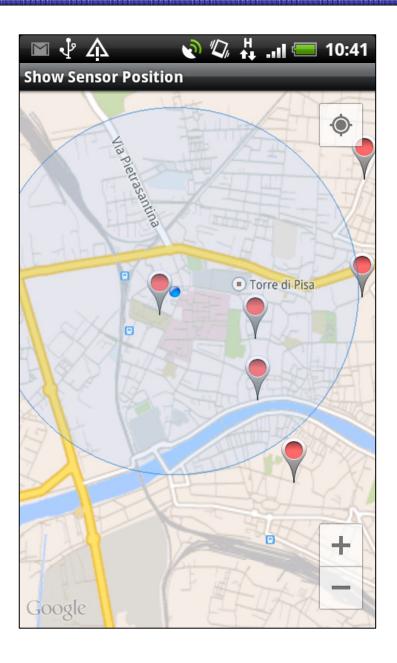





| Sense Registration Form                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | Pe  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              | P   |
| U-sense Nome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e utente                                     | Log |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                              |     |
| ne Mappa dei Sensori Ricerca Percorso Zone di Inquinamento U-sense                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |     |
| Cos'è U-sense?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Registrati                                   |     |
| <b>Cos'è U-sense?</b><br>Il progetto Smarty (Smart Transport for a Sustainable City) è un progetto finanziato dal<br>overno della Regione Toscana a cui prendono parte tra i partner l'azienda toscana Softec e                                                                                                                                                                                                                                                                                                          | <b>Registrati</b><br>Nome utente             |     |
| <b>Cos'è U-sense?</b><br>Il progetto Smarty (Smart Transport for a Sustainable City) è un progetto finanziato dal<br>overno della Regione Toscana a cui prendono parte tra i partner l'azienda toscana Softec e<br>Università di Pisa, e prevede una durata che va dal 2012 al 2014. Obiettivo del progetto è la<br>calizzazione di una piattaforma ICT che permetta lo sviluppo di servizi innovativi,                                                                                                                  |                                              |     |
| Cos'è U-sense?<br>Il progetto Smarty (Smart Transport for a Sustainable City) è un progetto finanziato dal<br>overno della Regione Toscana a cui prendono parte tra i partner l'azienda toscana Softec e<br>Università di Pisa, e prevede una durata che va dal 2012 al 2014. Obiettivo del progetto è la<br>calizzazione di una piattaforma ICT che permetta lo sviluppo di servizi innovativi,<br>romuovendo l'utilizzo di sistemi di trasporto flessibili come il car/bus pooling e il bike/car                       | Nome utente                                  |     |
| Cos'è U-sense?<br>Il progetto Smarty (Smart Transport for a Sustainable City) è un progetto finanziato dal<br>overno della Regione Toscana a cui prendono parte tra i partner l'azienda toscana Softec e<br>Università di Pisa, e prevede una durata che va dal 2012 al 2014. Obiettivo del progetto è la<br>calizzazione di una piattaforma ICT che permetta lo sviluppo di servizi innovativi,<br>romuovendo l'utilizzo di sistemi di trasporto flessibili come il car/bus pooling e il bike/car                       | Nome utente<br>Password                      |     |
| <b>Cos'è U-sense?</b><br>Il progetto Smarty (Smart Transport for a Sustainable City) è un progetto finanziato dal<br>governo della Regione Toscana a cui prendono parte tra i partner l'azienda toscana Softec e<br>Università di Pisa, e prevede una durata che va dal 2012 al 2014. Obiettivo del progetto è la<br>ealizzazione di una piattaforma ICT che permetta lo sviluppo di servizi innovativi,<br>promuovendo l'utilizzo di sistemi di trasporto flessibili come il car/bus pooling e il bike/car<br>sharing." | Nome utente<br>Password<br>Conferma password |     |

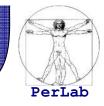
Beta version on <u>http://anasim.iet.unipi.it</u>

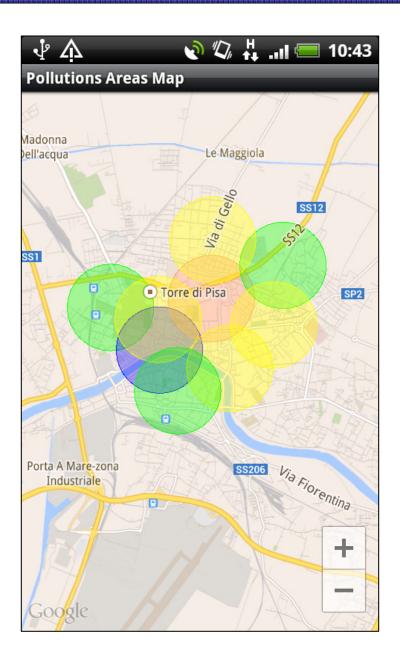

# **Mobile Interface**




| чÅ            | 🕼 🛜 📶 🗺 08:57     |
|---------------|-------------------|
| Usense Mobile |                   |
| 1             | U-sense<br>Mobile |
|               | Sensors Positions |
|               | Pollution Areas   |
|               | View Iqa          |
|               | Search path       |
|               |                   |

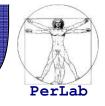
- Visualize sensors in her/his proximity (GPS localization)
- Check pollution areas
- Check IQA (Air Quality Index) in real time
- Look for less polluted paths

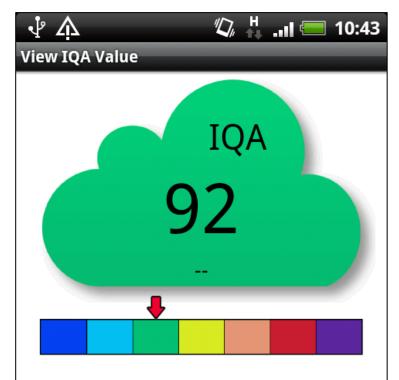





- Visualize sensors in her/his proximity (GPS localization)
- Check pollution areas
- Check IQA (Air Quality Index) in real time
- Look for less polluted paths



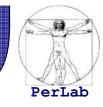



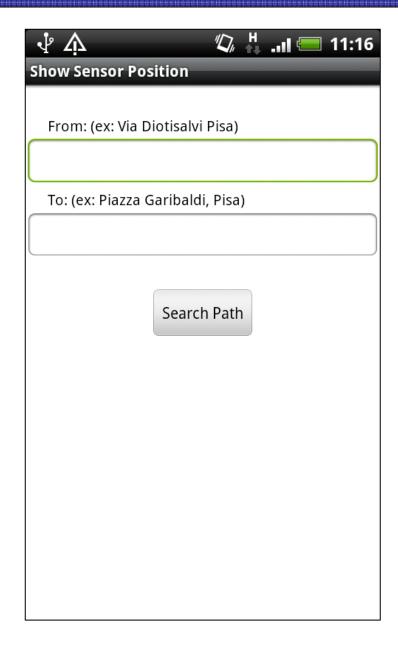



- Visualize sensors in her/his proximity (GPS localization)
- Check pollution areas
- Check IQA (Air Quality Index) in real time
- Look for less polluted paths









TEMP :21°

CO: 33.517PPM CO2 :748.428PPM NO2 :0.032PPB O3 :107.397PPB VOC :0PPM

- Visualize sensors in her/his proximity (GPS localization)
- Check pollution areas
- Check IQA (Air Quality Index) in real time
- Look for less polluted paths







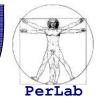
- Visualize sensors in her/his proximity (GPS localization)
- Check pollution areas
- Check IQA (Air Quality Index) in real time
- Look for less polluted paths



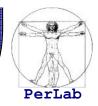




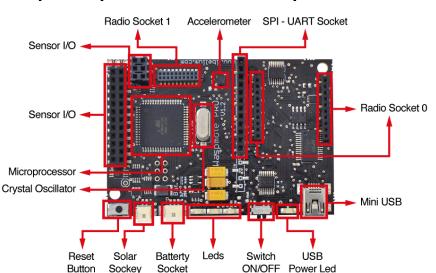
### Hardware


- Libelium Waspmote
  - 8-bit microcontroller
  - WIFI Communication module

### Gas sensor board 2.0


- CO (carbon monoxide)
- CO<sub>2</sub> (carbon dioxide)
- NO<sub>2</sub> (nitrogene dioxide)
- O<sub>3</sub> (ozone)
- VOC (volatile organic compound)
- Temperature
- Humidity





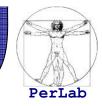



## Waspmote



- Waspmote
  - 8-bit microcontroller
  - Microcontroller: ATmega 1281 (low power consumption processor)
    Radio Socket 1 Accelerometer SPI-UART Socket
  - Frequency: 14 Mhz
  - SO: none
  - SRAM: 8Kb
  - EPROM: 4Kb
  - FLASH: 128Kb
  - Battery: 3,7 V 6.600 mA/h
  - Consumption:
     ON: 15 mA Sleep: 55uA DeepSleep: 55uA



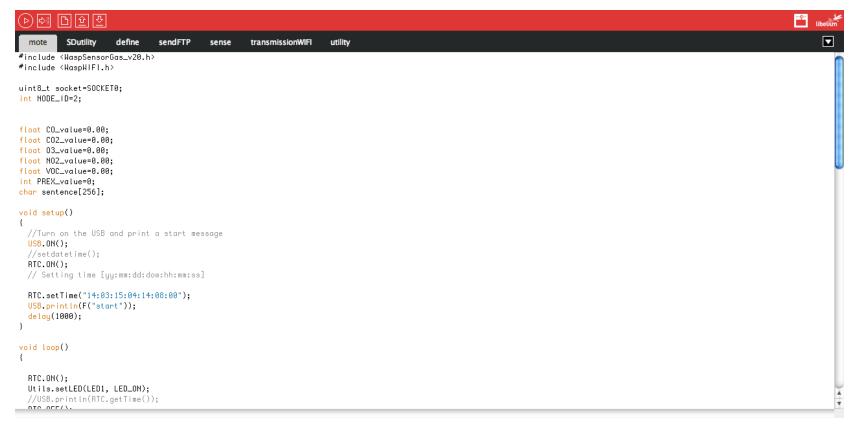

### **WIFI Module**

- Protocol: 802.11b/g 2,4GHz
- TX Power: from 0 to 12 dBm, variable via software

| Estate                 | Power Consumption |
|------------------------|-------------------|
| OFF                    | 0 uA              |
| SLEEP                  | 4 uA              |
| ON                     | 33 mA             |
| Receiving Data         | 38 mA             |
| Transmitting Data      | 38 mA             |
| Scanning Access Points | 34 mA             |



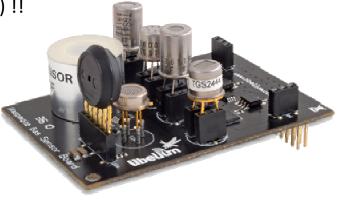





### Waspmote programming

### Programming:

- Clanguage, procedural (non-object oriented).
- No threads, no multitasking
- Library for interfacing with sensors, WiFi/ZigBee module, and microcontroller.


PerLab



#### **Gas Sensor Board**

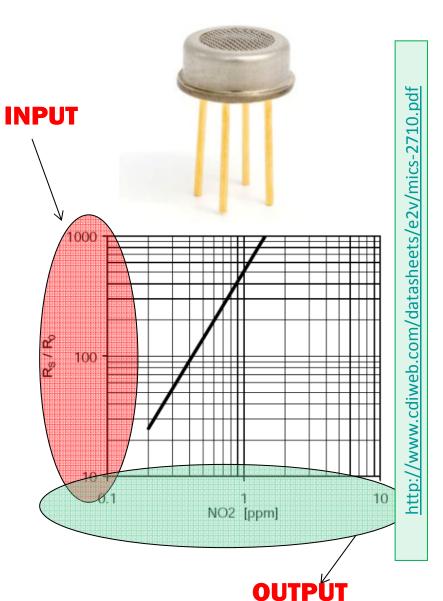
PerLab

- GAS Sensor Board
  - CO, CO<sub>2</sub>, NO<sub>2</sub>, O<sub>3</sub>, VOC
  - All sensor need to be calibrated
    - ⇒ All sensors have different physical characteristics
  - From microcontroller we obtain an electrical measure
    - ⇒ Voltage or resistance value
  - Calibration is not simple, it needs a gas reference
    - ⇒ We need an artificial air with known gas concentration
  - Sensors are energy hungry
    - $\Rightarrow$  All sensors have a resistance to be heated up to 400 °C !!!
    - ⇒ Power consumption is about 100 mW (on average) !!
    - ⇒ Duty cycling required



## **GAS Sensor Board**




Specifications (from datasheet)

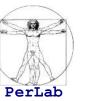
#### **Maximum Ratings**

| Rating                              | Symbol            | Value/<br>Range | Unit |
|-------------------------------------|-------------------|-----------------|------|
| Maximum sensor supply<br>voltage    | V <sub>cc</sub>   | 2.5             | V    |
| Maximum heater power<br>dissipation | P <sub>H</sub>    | 50              | mW   |
| Maximum sensor power<br>dissipation | Ps                | 1               | mW   |
| Relative humidity range             | R <sub>H</sub>    | 5 – 95          | %RH  |
| Ambient operating temperature       | T <sub>amb</sub>  | -30 - 85        | °C   |
| Storage temperature range           | T <sub>sto</sub>  | -40 - 120       | °C   |
| Storage humidity range              | RH <sub>sto</sub> | 5 - 95          | %RH  |

#### **Operating Conditions**

| Parameter          | Symbol         | Тур | Min | Max | x Unit |  |
|--------------------|----------------|-----|-----|-----|--------|--|
| Heating power      | P <sub>H</sub> | 43  | 30  | 50  | mW     |  |
| Heating voltage    | V <sub>H</sub> | 1.7 | -   | -   | V      |  |
| Heating current    | I <sub>H</sub> | 26  | -   | -   | mA     |  |
| Heating resistance | R <sub>H</sub> | 66  | 59  | 73  | Ω      |  |



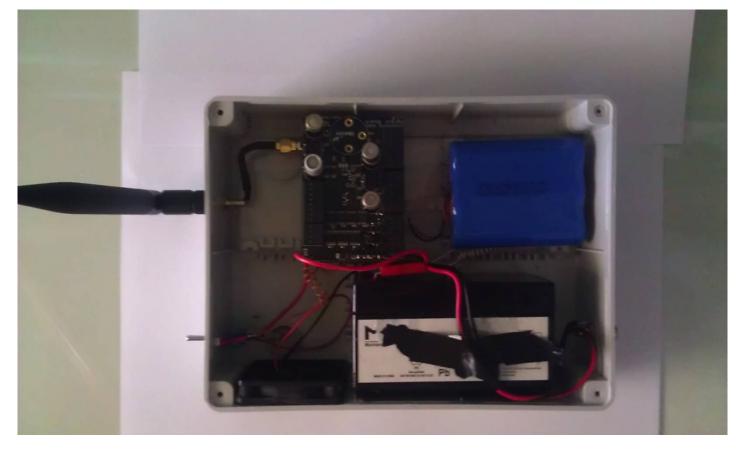



## **Sensor Calibration**

We calibrated sensors in our lab








**U-sense** 



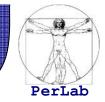
#### **External Box**

- Packaging
  - External PVC box
  - Includes fan, activation buttons, led indicators ...
  - And an extra 12V battery to power the fan








### **Experimental Setup**

- 30-day in-site experimentation
  - May 1-31, 2014
- Three different sensor nodes
  - Deployed in different locations
  - with different traffic conditions
  - and expected pollution levels
- Measurements
  - Gas concentration (every 30 min)
    - ⇔ CO
    - ⇔ CO<sub>2</sub>
    - ⇒ NO<sub>2</sub>
    - ⇔ O<sub>3</sub>

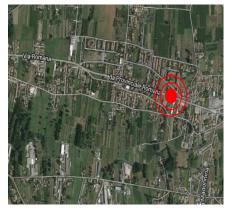




#### **Experimental Setup**

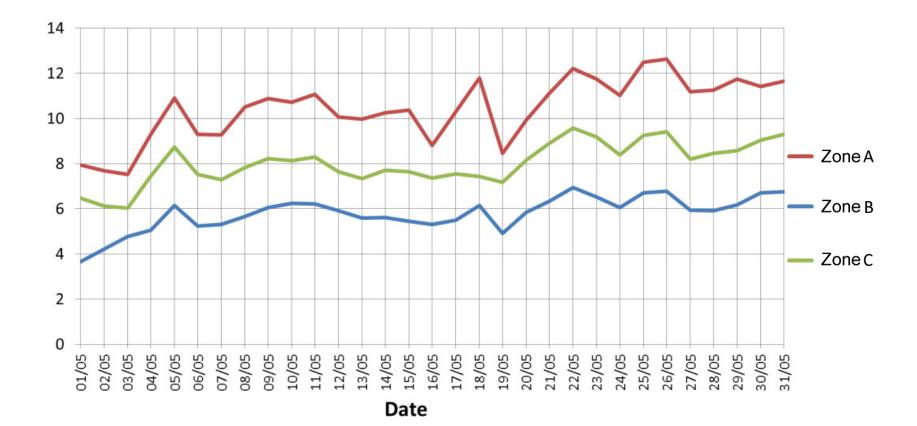


We considered 3 locations with different traffic conditions

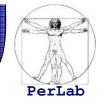



Low Traffic Conditions



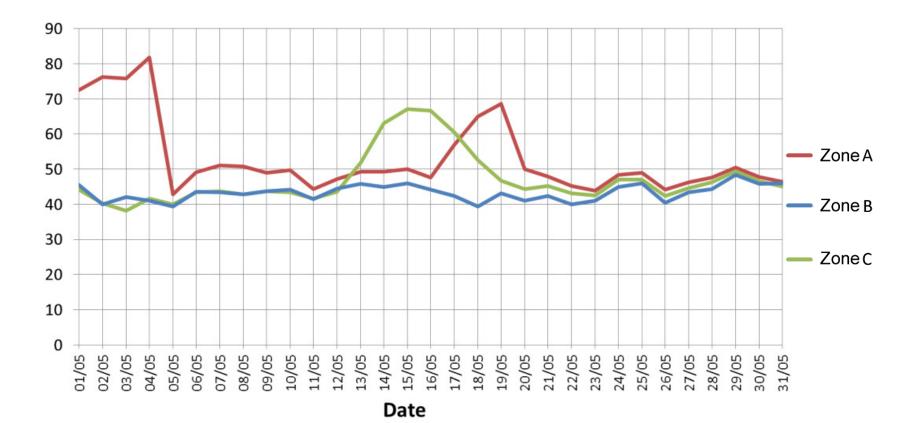



Moderate Traffic Conditions ZONE C






# CO Concentration (mg/m<sup>3</sup>)

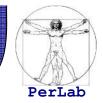



**Experimental data** 





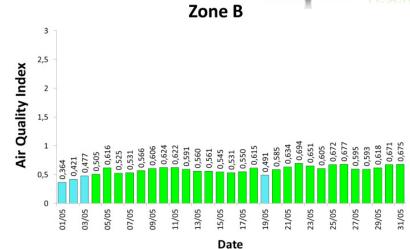


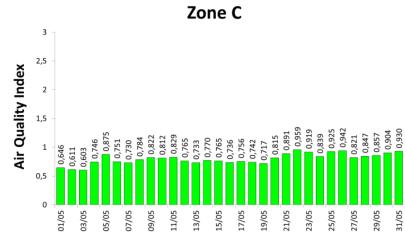







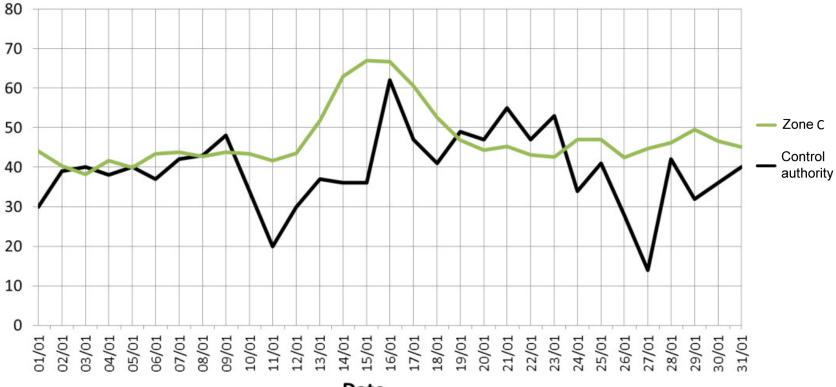

#### **Experimental data**


#### **Experimental data**





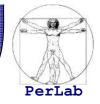

Zone A 3 2,5 Air Quality Index 2 1,5 ,174 ,142 1,165 118 126 1,18 103 1,036 1,031 0,996 1,02 0.931 0,92 0,881 0,845 0,793 1 0,5 0 01/05 03/05 05/05 07/05 11/05 13/05 15/05 17/05 19/05 23/05 25/05 27/05 29/05 31/05 20/60 21/05


Date



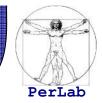


Date








**Experimental data** 



Date

#### **Next Steps**



#### **Personal Air Quality Monitoring**

Low-cost devices based on open-platform hardware

- Wearable sensing device connected to the SmartPhone
- Sensing device mounted on bikes/scooters/baby strollers
- Geo-localization and data sharing
  - through social networks
- Indoor Air Quality Monitoring



Università di Pisa

Activity Funded by University of Pisa in the Framework of the PRA 2015 Program





# **Questions?**

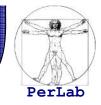


# NextSteps



## **Traffic-Air Pollution Correlation**

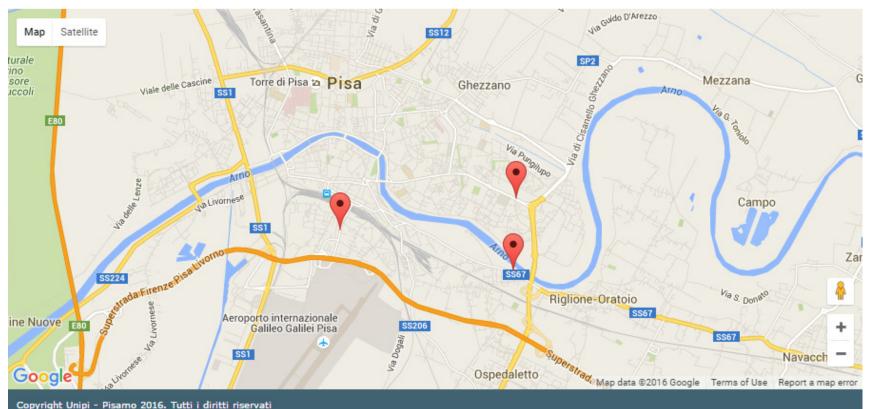
- 2 monitoring stations
  - Managed by ARPA
- 3 more low-cost stations
  - UniPI-PisaMO project











#### **Low-cost Stations**







Click on a marker for information on air quality at the selected point



Copyright Unipi - Pisamo 2016. Tutti i diritti riservati

#### **Low-cost Stations**



| UniPISAmo                             |  |  |  |  |  |  |  |
|---------------------------------------|--|--|--|--|--|--|--|
| Home Sensors Map                      |  |  |  |  |  |  |  |
| Data from sensor 3 (, Pisa)           |  |  |  |  |  |  |  |
| Look day (dd/mm/yyyy) Visualizza dati |  |  |  |  |  |  |  |

보 Download CSV format data file

Open Graph:

#### Temperature - Humidity - Battery - CO - O3 - NO2 - SO2 PM1 PM2.5 PM10

| Ora      | Data           | Temp<br>(°C) | Humid<br>(%) | Batt<br>(%) | СО<br>(РРМ) | ОЗ<br>(РРМ) | NO2<br>(РРМ) | SO2<br>(PPM) | PM1<br>(ug/m3) | PM2.5<br>(ug/m3) | PM10<br>(ug/m3) |
|----------|----------------|--------------|--------------|-------------|-------------|-------------|--------------|--------------|----------------|------------------|-----------------|
| 19:02:33 | 04-07-<br>2016 | 30.59        | 49           | 93          | 1.005       | 0           | 0.088        | 0            | 2.8898         | 9.8197           | 36.5529         |
| 18:47:17 | 04-07-<br>2016 | 30.82        | 49           | 93          | 1.43        | 0           | 0.082        | 0            | 1.9368         | 5.3974           | 29.2854         |
| 18:32:03 | 04-07-<br>2016 | 30.65        | 51           | 93          | 1.168       | 0           | 0.085        | 0            | 1.7572         | 4.5892           | 8.0421          |
| 18:16:40 | 04-07-<br>2016 | 31.21        | 48           | 93          | 0.584       | 0.059       | 0.091        | 0            | 2.0674         | 6.1429           | 23.0078         |
| 18:01:17 | 04-07-<br>2016 | 30.9         | 49           | 93          | 1.028       | 0           | 0.092        | 0            | 1.8631         | 4.3893           | 12.8938         |
| 17:45:58 | 04-07-<br>2016 | 31.44        | 49           | 93          | 1.03        | 0           | 0.098        | 0            | 1.9582         | 4.131            | 6.2343          |
| 17:30:31 | 04-07-<br>2016 | 31.39        | 49           | 93          | 0.776       | 0.056       | 0.094        | 0            | 2.8508         | 6.2902           | 8.7065          |
| 17:15:17 | 04-07-<br>2016 | 31.21        | 48           | 93          | 0.909       | 0.043       | 0.079        | 0            | 2.1306         | 4.1025           | 4.9122          |
| 16:59:50 | 04-07-<br>2016 | 31.23        | 47           | 93          | 0.796       | 0           | 0.087        | 0            | 2.1627         | 5.4366           | 24.1856         |