Computational Fields SMuC and CFC, two models compared

Lorenzo Ceragioli

January 15, 2018

・ロト ・日 ・ ・ ヨト ・ ヨ

Introduction

SMuC

3 CFC

4 Conclusion

Lorenzo Ceragioli

メロト メロト メヨト メヨト

Introduction

+ = + + = + + = + + = +

In physics: A field is a physical entity that has a value (scalar, vector, tensor ...) for each point in space.

Examples

- Temperature field (scalar)
- Gravitational field (vector)

A Computational Field is a computing system that assign a value to each point in space.

- The space topology is not necessarily regular
- Communication is only local

< ロ ト < 回 ト < 三 ト < 三 ト</p>

A Computational Field is a computing system that assign a value to each point in space.

- The space topology is not necessarily regular
- Communication is only local

A **Graph based computational field** is a computational field in witch the space topology is defined by a graph structure.

- Values are assigned to nodes
- Edges represent communication capabilities

A Computational Field is a computing system that assign a value to each point in space.

- The space topology is not necessarily regular
- Communication is only local

A **Graph based computational field** is a computational field in witch the space topology is defined by a graph structure.

- Values are assigned to nodes
- Edges represent communication capabilities

We want to express the emergent behavior of the system

Soft Mu-Calculus for Computational Fields (SMuC)

- based on fixpoints computation
- the composition of the values propagated by the neighboring nodes is expressed by **mu-calculus-like formulas**
- domains for values of nodes are from constraint semiring

< ロ ト < 回 ト < 三 ト < 三 ト</p>

SMuC and CFC

Soft Mu-Calculus for Computational Fields (SMuC)

- based on fixpoints computation
- the composition of the values propagated by the neighboring nodes is expressed by **mu-calculus-like formulas**
- domains for values of nodes are from constraint semiring

Computational Fields Calculus (CFC)

- minimal
- $\bullet\,$ it allows the restriction of a field computation to a sub-region of the network
- more simple

Soft Mu-Calculus for Computational Fields (SMuC)

- based on fixpoints computation
- the composition of the values propagated by the neighboring nodes is expressed by **mu-calculus-like formulas**
- domains for values of nodes are from constraint semiring

Computational Fields Calculus (CFC)

- minimal
- it allows the restriction of a field computation to a sub-region of the network
- more simple

Both SMuC and CFC support the definition of computational field through:

- composition of fields
- propagation of values between neighboring nodes
- the field evolution over time

イロト 不得 トイヨト イヨト

SMuC

<ロト < 回 ト < 臣 ト < 臣 ト</p>

メロト メロト メヨト メヨト

Execution: sequential computation of fixpoints.

Execution: sequential computation of fixpoints.

Values: from some constraint semiring

Execution: sequential computation of fixpoints.

Values: from some constraint semiring

- **Robustness against node unavailability**, nodes can proceed with different speed and the result of execution is the same
- **Robustness against node failure**, nodes can fail and return to a precedent consistent state and the result of execution is the same

Execution: sequential computation of fixpoints.

Values: from some constraint semiring

- **Robustness against node unavailability**, nodes can proceed with different speed and the result of execution is the same
- **Robustness against node failure**, nodes can fail and return to a precedent consistent state and the result of execution is the same

Distributed implementation of the calculus is presented

Constraint semiring

Field domain : $\langle A, \sqsubseteq, \bot, \top \rangle$

- $\langle A, \sqsubseteq \rangle$ is a ω -chain complete partially \sqsubseteq -ordered with bottom element \bot and top element \top
- $\langle A, \sqsupseteq \rangle$ is a $\omega\text{-chain complete partially} \sqsupseteq\text{-ordered with bottom element} \top$ and top element \bot

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Field domain : $\langle A, \sqsubseteq, \bot, \top \rangle$

- $\langle A,\sqsubseteq\rangle$ is a ω -chain complete partially \sqsubseteq -ordered with bottom element \bot and top element \top
- $\langle A, \sqsupseteq \rangle$ is a $\omega\text{-chain complete partially} \sqsupseteq\text{-ordered with bottom element} \top$ and top element \bot

Constraint semiring : $\langle A, +, \times, \bot, \top \rangle$ with \sqsubseteq defined as $a \sqsubseteq b$ iff a + b = b

- $+: A \times A \rightarrow A$ associative, commutative, idempotent (choose)
- $\times : A \times A \to A$ is an associative, commutative (combine)
- $\bullet~\times$ distributes over +
- $\bot + a = a$, $\top + a = \top$, $\top \times a = a$, $\bot \times a = \bot$ for all $a \in A$
- $\langle A, \sqsubseteq, \bot, \top \rangle$ is a field domain of preferences

Field domain : $\langle A, \sqsubseteq, \bot, \top \rangle$

- $\langle A,\sqsubseteq\rangle$ is a ω -chain complete partially \sqsubseteq -ordered with bottom element \bot and top element \top
- $\langle A, \sqsupseteq \rangle$ is a $\omega\text{-chain complete partially} \sqsupseteq\text{-ordered with bottom element} \top$ and top element \bot

Constraint semiring : $\langle A, +, \times, \bot, \top \rangle$ with \sqsubseteq defined as $a \sqsubseteq b$ iff a + b = b

- $+: A \times A \rightarrow A$ associative, commutative, idempotent (choose)
- $\times : A \times A \to A$ is an associative, commutative (combine)
- ullet \times distributes over +
- $\bot + a = a$, $\top + a = \top$, $\top \times a = a$, $\bot \times a = \bot$ for all $a \in A$
- $\langle A, \sqsubseteq, \bot, \top \rangle$ is a field domain of preferences

 $\begin{array}{l} \textbf{Tropical semiring} \ \langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \\ \text{where the field domain is} \ \langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \end{array}$

イロト 不得 トイヨト イヨト

Field domain : $\langle A, \sqsubseteq, \bot, \top \rangle$

- $\langle A,\sqsubseteq\rangle$ is a $\omega\text{-chain complete partially}\sqsubseteq\text{-ordered with bottom element}\perp$ and top element \top
- $\langle A, \sqsupseteq \rangle$ is a $\omega\text{-chain complete partially} \sqsupseteq\text{-ordered with bottom element} \top$ and top element \bot

Constraint semiring : $\langle A, +, \times, \bot, \top \rangle$ with \sqsubseteq defined as $a \sqsubseteq b$ iff a + b = b

- $+: A \times A \rightarrow A$ associative, commutative, idempotent (choose)
- $\times : A \times A \to A$ is an associative, commutative (combine)
- ullet \times distributes over +

•
$$\bot + a = a$$
, $\top + a = \top$, $\top \times a = a$, $\bot \times a = \bot$ for all $a \in A$

• $\langle A, \sqsubseteq, \bot, \top \rangle$ is a field domain of preferences

 $\begin{array}{l} \textbf{Tropical semiring} \ \langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \\ \text{where the field domain is} \ \langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \end{array}$

Set semiring $\langle 2^A,\cup,\cap,\emptyset,A\rangle$ where the field domain is $\langle 2^A,\subseteq,\emptyset,A\rangle$

イロト イポト イヨト イヨト 三日

Computational fields

Field : tuple $\langle N, E, A, L = L_N \uplus L_E, I = I_N \uplus I_E \rangle$ where

- $\bullet \ N$ is a set of nodes
- $E \subseteq N \times N$ is a set of edges
- $\langle A, \sqsubseteq_A, \bot_A, \top_A \rangle$ is a field domain

Node evaluation : function $N \to A$.

Field : tuple $\langle N, E, A, L = L_N \uplus L_E, I = I_N \uplus I_E \rangle$ where

- $\bullet \ N$ is a set of nodes
- $\bullet \ E \subseteq N \times N \text{ is a set of edges}$
- $\langle A, \sqsubseteq_A, \bot_A, \top_A \rangle$ is a field domain

Node evaluation : function $N \to A$.

- L_N is a set of node labels and L_E is a set of edge labels
- $I_N: L_N \to (N \to A)$ defines interpretation for node labels
- $I_E: L_E \to (E \to (A \to A))$ defines interpretation for edges labels

Field : tuple $\langle N, E, A, L = L_N \uplus L_E, I = I_N \uplus I_E \rangle$ where

- $\bullet \ N$ is a set of nodes
- $E \subseteq N \times N$ is a set of edges
- $\langle A, \sqsubseteq_A, \bot_A, \top_A \rangle$ is a field domain

Node evaluation : function $N \rightarrow A$.

- L_N is a set of node labels and L_E is a set of edge labels
- $I_N: L_N \to (N \to A)$ defines interpretation for node labels
- $I_E: L_E \to (E \to (A \to A))$ defines interpretation for edges labels

Update function : function $(N \to A) \to (N \to A)$.

Field domain of attribute values : function $\langle A, \sqsubseteq_A, \bot_A, \top_A \rangle$.

Field domain of node evaluation : function $\langle (N \to A), \sqsubseteq_{(N \to A)}, \bot_{(N \to A)}, \top_{(N \to A)} \rangle$.

Let ${\mathcal Z}$ be a set for Variables, ${\mathcal M}$ be a set of functions

 $\Psi ::= i \mid z \mid f(\Psi, \dots, \Psi) \mid g \textcircled{\alpha} \Psi \mid g \textcircled{\alpha} \Psi \mid \mu z. \Psi \mid \nu z. \Psi$

where:

- $i \in L_N$
- $\alpha \in L_E$
- $f \in \mathcal{M} : A^* \to A$ combines values
- $g \in \mathcal{M} : mset(A) \to A$ aggregates values
- $z \in \mathcal{Z}$ is a variable.

(日)

SMuC formulas

Given
$$\rho: \mathcal{Z} \to (N \to A)$$
, we define $\llbracket \cdot \rrbracket_{\rho}^{F} : \Psi \to (N_F \to A_F)$ as

$$\llbracket i \rrbracket_{\rho}^{F} = I_F(i)$$

$$\llbracket z \rrbracket_{\rho}^{F} = \rho(z)$$

$$\llbracket f(\Psi_1, \dots, \Psi_k) \rrbracket_{\rho}^{F} = \lambda n \cdot \llbracket f \rrbracket_{A_F}(\llbracket \Psi_1 \rrbracket_{\rho}^{F}(n), \dots, \llbracket \Psi_k \rrbracket_{\rho}^{F}(n))$$

$$\llbracket g(\mathbf{a}) \Psi \rrbracket_{\rho}^{F} = \lambda n \cdot \llbracket g \rrbracket_{A_F}(\{I_F(\alpha)(n, n')(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n, n') \in E_F \})$$

$$\llbracket g(\mathbf{a}) \Psi \rrbracket_{\rho}^{F} = \lambda n \cdot \llbracket g \rrbracket_{A_F}(\{I_F(\alpha)(n', n)(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n', n) \in E_F \})$$

$$\llbracket \mu z \cdot \Psi \rrbracket_{\rho}^{F} = lfp \ \lambda f \cdot \llbracket \Psi \rrbracket_{\rho[f_{/z}]}^{F}$$

$$\llbracket \nu z \cdot \Psi \rrbracket_{\rho}^{F} = gfp \ \lambda f \cdot \llbracket \Psi \rrbracket_{\rho[f_{/z}]}^{F}$$

· T -

ппF

1 0

4.

メロト メロト メヨト メヨト

SMuC formulas

Given
$$\rho: \mathcal{Z} \to (N \to A)$$
, we define $\llbracket \cdot \rrbracket_{\rho}^{F} : \Psi \to (N_F \to A_F)$ as
 $\llbracket i \rrbracket_{\rho}^{F} = I_F(i)$
 $\llbracket z \rrbracket_{\rho}^{F} = \rho(z)$
 $\llbracket f(\Psi_1, \dots, \Psi_k) \rrbracket_{\rho}^{F} = \lambda n. \llbracket f \rrbracket_{A_F}(\llbracket \Psi_1 \rrbracket_{\rho}^{F}(n), \dots, \llbracket \Psi_k \rrbracket_{\rho}^{F}(n))$
 $\llbracket g(\mathbf{a}) \Psi \rrbracket_{\rho}^{F} = \lambda n. \llbracket g \rrbracket_{A_F}(\{I_F(\alpha)(n, n')(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n, n') \in E_F \})$
 $\llbracket g(\mathbf{a}) \Psi \rrbracket_{\rho}^{F} = \lambda n. \llbracket g \rrbracket_{A_F}(\{I_F(\alpha)(n', n)(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n', n) \in E_F \})$
 $\llbracket \mu z. \Psi \rrbracket_{\rho}^{F} = lfp \ \lambda f. \llbracket \Psi \rrbracket_{\rho[f/z]}^{F}$
 $\llbracket \nu z. \Psi \rrbracket_{\rho}^{F} = gfp \ \lambda f. \llbracket \Psi \rrbracket_{\rho[f/z]}^{F}$

Fixpoint existence ($\lambda f. \llbracket \Psi \rrbracket_{\rho \llbracket f/z \rrbracket}^F$ monotone and continuous)

SMuC formulas

Given
$$\rho : \mathcal{Z} \to (N \to A)$$
, we define $\llbracket : \rrbracket_{\rho}^{F} : \Psi \to (N_{F} \to A_{F})$ as
 $\llbracket i \rrbracket_{\rho}^{F} = I_{F}(i)$
 $\llbracket z \rrbracket_{\rho}^{F} = \rho(z)$
 $\llbracket f(\Psi_{1}, \dots, \Psi_{k}) \rrbracket_{\rho}^{F} = \lambda n. \llbracket f \rrbracket_{A_{F}}(\llbracket \Psi_{1} \rrbracket_{\rho}^{F}(n), \dots, \llbracket \Psi_{k} \rrbracket_{\rho}^{F}(n))$
 $\llbracket g \textcircled{a} \Psi \rrbracket_{\rho}^{F} = \lambda n. \llbracket g \rrbracket_{A_{F}}(\{I_{F}(\alpha)(n, n')(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n, n') \in E_{F}\})$
 $\llbracket g \textcircled{a} \Psi \rrbracket_{\rho}^{F} = \lambda n. \llbracket g \rrbracket_{A_{F}}(\{I_{F}(\alpha)(n', n)(\llbracket \Psi \rrbracket_{\rho}^{F}(n')) \mid (n', n) \in E_{F}\})$
 $\llbracket \mu z. \Psi \rrbracket_{\rho}^{F} = lfp \ \lambda f. \llbracket \Psi \rrbracket_{\rho[f/z]}^{F}$
 $\llbracket \nu z. \Psi \rrbracket_{\rho}^{F} = gfp \ \lambda f. \llbracket \Psi \rrbracket_{\rho[f/z]}^{F}$

Fixpoint existence $(\lambda f. \llbracket \Psi \rrbracket_{\rho^{\lceil f/z \rceil}}^F$ monotone and continuous)

Semiring monotony: Let I_F is such that $I_F(\alpha)(e)$ is monotone for all $\alpha \in L_A$, $e \in E_A$, \mathcal{M} contains only function symbols that are obtained by composing additive and multiplicative operations of the semiring. Then, every function $\lambda f.\llbracket \Psi \rrbracket_{\rho[f/z]}^F$ is monotone and continuous.

イロト 不得 トイヨト イヨト 二日

SMuC formulas examples:

メロト メロト メヨト メヨト

SMuC formulas examples:

- \bullet Assign to every node the minimal value of the sub-graph of nodes that can reach it, for a given node label i
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle$
 - Formula: $\mu z.min(i, min \ id \ z)$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

SMuC formulas examples:

- Assign to every node the minimal value of the sub-graph of nodes that can reach it, for a given node label *i*
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle$
 - Formula: $\mu z.min(i, min \ id \ z)$

- Assign to all the nodes the union of all elements in the graph in nodes that are reachable from it, for a given node label *i*
 - Semiring: $\langle 2^A, \cup, \cap, \emptyset, A \rangle$
 - Field domain: $\langle 2^A, \subseteq, \emptyset, A \rangle$
 - Formula: $\mu z.i \cup (\cup (id) z)$

< ロ ト < 回 ト < 三 ト < 三 ト</p>

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i, min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i, min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, >, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \Box, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i, min_1(\alpha) z)$ Where *i* is a shorthand for: *goal* ? $(0, self) : (+\infty, \bullet)$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(qoal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i, min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

	0	1	2	3
ψ^0	$\langle +\infty, \bullet \rangle$			
ψ^1	$\langle 0, 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i, min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

	0	1	2	3
ψ^0	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, ullet angle$	$\langle +\infty, \bullet \rangle$
ψ^1	$\langle 0, 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^2	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i,min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

	0	1	2	3
ψ^0	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, ullet angle$	$\langle +\infty, \bullet \rangle$
ψ^1	$\langle 0, 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^2	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^3	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 4, 2 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$

・ロト ・日 ・ ・ ヨ ・ ・

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i,min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

	0	1	2	3
ψ^0	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^1	$\langle 0, 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^2	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^3	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 4, 2 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$
ψ^4	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 3, 2 \cdot 3 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$

・ロト ・日 ・ ・ ヨ ・ ・

- Assign to all the nodes the minimal distance to a goal node and the path for reaching it
 - Semiring: $\langle \mathbb{R}^+ \cup \{+\infty\}, min, +, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, min, max, \bullet, \epsilon \rangle$
 - Field domain: $\langle \mathbb{R}^+ \cup \{+\infty\}, \geq, +\infty, 0 \rangle \times_1 \langle N^* \cup \{\bullet\}, \sqsubseteq, \bullet, \epsilon \rangle$
 - Formula: $\mu z.min_1(i,min_1 \bigcirc z)$ Where *i* is a shorthand for: $goal ? \langle 0, self \rangle : \langle +\infty, \bullet \rangle$
 - Interpretation of node label: $I_N(self)(n) = n$ and : $I_N(goal)(n) = true$ if n is a goal node, false otherwise
 - Interpretation of edge label: $I_E(\alpha)(n, n')(\langle cost, path \rangle) = \langle cost + delta, n \cdot path \rangle$

	0	1	2	3
ψ^0	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^1	$\langle 0, 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^2	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle +\infty, \bullet \rangle$	$\langle +\infty, \bullet \rangle$
ψ^3	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 4, 2 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$
ψ^4	$\langle 0, 0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 3, 2 \cdot 3 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$
ψ^5	$\langle 0,0 \rangle$	$\langle 1, 1 \cdot 0 \rangle$	$\langle 3, 2 \cdot 3 \cdot 1 \cdot 0 \rangle$	$\langle 2, 3 \cdot 1 \cdot 0 \rangle$

・ロト ・日 ・ ・ ヨ ・ ・

 $P,Q ::= \text{skip} \mid i \leftarrow \Psi \mid P;Q \mid \text{if } \Psi \text{ then } P \text{ else } Q \mid \text{until } \Psi \text{ do } P$

where:

- $i \in L_N$
- $\bullet \ \Psi$ is a SMuC formula

メロト メロト メヨト メヨト

 $P,Q::=\texttt{skip} \mid i \leftarrow \Psi \mid P \text{;} Q \mid \texttt{if} \ \Psi \text{ then } P \text{ else } Q \mid \texttt{until } \Psi \text{ do } P$

where:

- $i \in L_N$
- $\bullet \ \Psi \ {\rm is \ a \ SMuC \ formula}$

State of computation: pair of program and field

Memory stores: is represented by interpretation function of the field

Semantics: given via transition system $\rightarrow \subseteq (P \times \mathcal{F})^2$

<ロト <回ト < 注ト < 注ト -

- Simple assignment program: no fixpoints
- Asynchronous agreement: we use a tree-based infrastructure that spans the complete field
- Distributed field infrastructure: (Field , spanning Tree)
- Distributed fragment: $d = n[S \mid \iota : \chi : k]$
 - $\bullet \ n \in N \text{ is a node}$
 - $\bullet \ S$ is the simple assignment program currently executed by n
 - $\iota: N \to L_N \to A$ is a partial interpretation of node labels at n
 - χ is an agreement store
 - k is an agreement counter

- Simple assignment program: no fixpoints
- Asynchronous agreement: we use a tree-based infrastructure that spans the complete field
- Distributed field infrastructure: (Field , spanning Tree)
- Distributed fragment: $d = n[S \mid \iota : \chi : k]$
 - $\bullet \ n \in N \text{ is a node}$
 - $\bullet \ S$ is the simple assignment program currently executed by n
 - $\iota: N \to L_N \to A$ is a partial interpretation of node labels at n
 - χ is an agreement store
 - k is an agreement counter
- Evolution of fragments: $d_n \rightarrow^{msg} d_n$
- Evolution of distributed execution: $D \Rightarrow^{msg} D$ where $D = \{d_n\}_{n \in N}$

イロト 不得 トイヨト イヨト

When we compute the fixpoint of an update function $\psi : (N \to A) \to (N \to A)$

- nodes are allowed to proceed at different speeds
- nodes may remain inactive for some iterations
- nodes don't wait for communications, they use caching

When we compute the fixpoint of an update function $\psi : (N \to A) \to (N \to A)$

- nodes are allowed to proceed at different speeds
- nodes may remain inactive for some iterations
- nodes don't wait for communications, they use caching

We guarantee that the same fixpoint of a synchronous execution is reached, under reasonable conditions:

- we have only a finite number of nodes
- every node execute infinitely often (fair strategy)
- the update function ψ is monotone (remember semiring operations)

< ロ ト < 回 ト < 三 ト < 三 ト</p>

When we compute the fixpoint of an update function $\psi:(N\to A)\to (N\to A)$

- nodes are allowed to proceed at different speeds
- nodes may remain inactive for some iterations
- nodes don't wait for communications, they use caching

We guarantee that the same fixpoint of a synchronous execution is reached, under reasonable conditions:

- we have only a finite number of nodes
- every node execute infinitely often (fair strategy)
- the update function ψ is monotone (remember semiring operations)

 $\ensuremath{\textbf{Actually}}$ to guarantee that some fixpoint is reached at all we need also to add this condition

 $\bullet~A$ has finite partially ordered chains ${\bf only}$

We consider the possibility for a node to fail, it may stay inactive for a while and then resumes and **enters a backup state** it had in a previous iteration (e.g. the initial one)

イロト イロト イヨト イヨ

We consider the possibility for a node to fail, it may stay inactive for a while and then resumes and **enters a backup state** it had in a previous iteration (e.g. the initial one)

We guarantee that the same fixpoint of a synchronous no-failure execution is reached, under reasonable conditions:

- we have only a finite number of nodes
- every node execute infinitely often (fair strategy)
- the update function ψ is monotone (remember semiring operations)
- at some point the system enters a condition in where no more failures occur

《日》《圖》《臣》《臣》

Fields: networks with attributes on nodes.

Execution: only a simple generic construct for iteration.

Values: from a sound type system

- number and boolean as elementary data types
- we can build pairs
- we can build filed types

Conditional construct if allows the restriction to a sub-region of the network

Where:

- n is a number
- b is a boolean
- x is a variable name
- o is a builtin function name
- d is a user-defined function name

 $\mathsf{e} ::= \mathsf{x} \mid \mathsf{l} \mid (\mathsf{o}\bar{\mathsf{e}}) \mid (\mathsf{d}\bar{\mathsf{e}}) \mid (\mathsf{rep } \mathsf{x} \mathsf{ w} \mathsf{ e}) \mid (\mathsf{nbr } \mathsf{e}) \mid (\mathsf{i} \mathsf{f} \mathsf{ e} \mathsf{ e}' \mathsf{ e}'') \qquad expression$

Informal semantics:

- (oē) is the composition between the fields $\bar{e}=(e_0,e_1,\ldots,e_n)$
- $(d\bar{e})$ is the application of the function d to the fields $\bar{e} = (e_0, e_1, \dots, e_n)$
- (rep x w e) is the field obtained by starting from configuration w and updating through time using e as update function where x represent the actual state of the field
- (nbr e) is the propagation of e to neighboring nodes (field values)
- (if e e' e'') is the field e' in nodes where e evaluates to true and e'' in nodes where e evaluates to false

CFC examples

• Field that assigns to all the nodes the minimum reachable value in a given field

```
( def gossip-min ( source )
      ( rep d source ( min-hood ( nbr d ))))
```

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• Field that assigns to all the nodes the minimum reachable value in a given field

```
( def gossip-min ( source )
      ( rep d source ( min-hood ( nbr d ))))
```

Field that assigns to each node the minimal distance to a source node

```
( def distance-to ( source )
      ( rep d infinity
            ( mux source 0 ( min-hood ( +[f,f] ( nbr d ) (nbr-range)))))))
```

< ロ ト < 回 ト < 三 ト < 三 ト</p>

• Field that assigns to all the nodes the minimum reachable value in a given field

```
( def gossip-min ( source )
      ( rep d source ( min-hood ( nbr d ))))
```

• Field that assigns to each node the minimal distance to a source node

```
( def distance-to ( source )
      ( rep d infinity
            ( mux source 0 ( min-hood ( +[f,f] ( nbr d ) (nbr-range))))))))
```

 Field that assigns to each node the minimal distance to a source node avoiding obstacle nodes

CFC semantiscs

Execution is partially synchronous, in each round a device:

- sleeps for some limited time
- wakes up
- gathers information about messages received while asleep
- performs his field evaluation
- emits a message to all neighbours

< ロ ト < 回 ト < 三 ト < 三 ト</p>

CFC semantiscs

Execution is partially synchronous, in each round a device:

- sleeps for some limited time
- wakes up
- gathers information about messages received while asleep
- performs his field evaluation
- emits a message to all neighbours

Operational semantics: based on runtime expression syntax

- Annotations: for transient partial run-time information about the computation
- Superscript: for durable partial run-time information about the computation

Congruence and *alignment* context are used to impose an order of evaluation to subexpressions

A type system to guarantee well-formedness of expressions

Conclusion

+ = + + = + + = + + = +

Soft Mu-Calculus for Computational Fields (SMuC)

- based on fixpoints computation
- composition of the values from neighboring nodes expressed by **mu-calculus-like** formulas
- domains for values built from constraint semiring
- robust against node unavailability and failure
- synchronization-based constructs if and until

Computational Fields Calculus (CFC)

- minimal
- it allows the restriction of a field computation to a sub-region of the network
- simpler approach

< ロ ト < 回 ト < 三 ト < 三 ト</p>

 $\texttt{rep} \text{ in } \mathsf{CFC}$

- based on the idea that the computation never ends
- is more handy (you specify the beginning state and the update rule)

< ロ ト < 回 ト < 三 ト < 三 ト</p>

rep in CFC

- based on the idea that the computation never ends
- is more handy (you specify the beginning state and the update rule)

 μ and ν in SMuC

- based on the idea that the computation must end
- you have to think domain-based
- automatic guarantee of termination
- requires you more, gives you more

rep in CFC

- based on the idea that the computation never ends
- is more handy (you specify the beginning state and the update rule)

 μ and ν in SMuC

- based on the idea that the computation must end
- you have to think domain-based
- automatic guarantee of termination
- requires you more, gives you more

(rep in CFC and until in SMuC are quite the same)

if from CFC and if from SMuC only share the name

if from CFC makes two separate computations

- one for the sub-network that evaluates the guard to true
- one for the sub-network that evaluates the guard to false

 ${\tt if from \ SMuC \ is \ synchronization \ based}$

- if all the network evaluates the guard to true execute the first branch
- if at least one node evaluates the guard to false execute the second branch

In SMuC

In SMuC

In CFC

In SMuC

In CFC

Can we simulate the two constructs ?

・ロト ・ 日 ト ・ ヨ ト ・

Can we simulate the two constructs ?

• SMuC if inside CFC

We need to create support for distributed synchronization (i.e. write code for what in SMuC is runtime support)

Can we simulate the two constructs ?

• SMuC if inside CFC

We need to create support for distributed synchronization (i.e. write code for what in SMuC is runtime support)

 \bullet CFC if inside SMuC

Problem for semantic compositionality (e.g. if Ψ_0 then Ψ_1 else Ψ_1) We can obtain the same behavior only with ad hoc rewriting

(日)

References

+ = + + = + + = + + = +

- Jacob Beal and Mirko Viroli. Space-time programming. Phil.Trans.R.Soc. A 373: 20140220, 2015.
- Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. A fixpoint-based calculus for graph-shaped computational fields. In Tom Holvoet and Mirko Viroli, editors, Coordination Models and Languages - 17th IFIP WG 6.1 International Conference, COORDINATION 2015, Held as Part of the 10th International Federated Conference on Distributed Computing Techniques, DisCoTec 2015, Grenoble, France, June 2-4, 2015, Proceedings, volume 9037 of Lecture Notes in Computer Science, pages 101–116. Springer, 2015.
- Lluch Lafuente Alberto, Loreti Michele, Montanari Ugo. Asynchronous Distributed Execution Of Fixpoint-Based Computational Fields. Logical Methods in Computer Science, Volume 13, Issue 1 (March 22, 2017) Imcs:3212
- J. Beal, J. Bachrach, Infrastructure for engineered emergence in sensor/actuator networks, IEEE Intell. Syst. 21 (March/April 2006) 10–19.
- Ferruccio Damiani, Mirko Viroli and Jacob Beal. A type-sound calculus of computational fields. Science of Computer Programming, 117:17 44, 2016.