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Field in physics and Computational Fields

In physics: A field is a physical entity that has a value (scalar, vector, tensor ...) for each
point in space.

Examples

Temperature field (scalar)
Gravitational field (vector)

Lorenzo Ceragioli Computational Fields January 15, 2018 4 / 33



Field in physics and Computational Fields

A Computational Field is a computing system that assign a value to each point in space.

The space topology is not necessarily regular
Communication is only local

A Graph based computational field is a computational field in witch the space topology
is defined by a graph structure.

Values are assigned to nodes
Edges represent communication capabilities

We want to express the emergent behavior of the system
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SMuC and CFC

Soft Mu-Calculus for Computational Fields (SMuC)

based on fixpoints computation
the composition of the values propagated by the neighboring nodes is expressed by
mu-calculus-like formulas
domains for values of nodes are from constraint semiring

Computational Fields Calculus (CFC)

minimal
it allows the restriction of a field computation to a sub-region of the network
more simple

Both SMuC and CFC support the definition of computational field through:

composition of fields
propagation of values between neighboring nodes
the field evolution over time

Lorenzo Ceragioli Computational Fields January 15, 2018 6 / 33



SMuC and CFC

Soft Mu-Calculus for Computational Fields (SMuC)

based on fixpoints computation
the composition of the values propagated by the neighboring nodes is expressed by
mu-calculus-like formulas
domains for values of nodes are from constraint semiring

Computational Fields Calculus (CFC)

minimal
it allows the restriction of a field computation to a sub-region of the network
more simple

Both SMuC and CFC support the definition of computational field through:

composition of fields
propagation of values between neighboring nodes
the field evolution over time

Lorenzo Ceragioli Computational Fields January 15, 2018 6 / 33



SMuC and CFC

Soft Mu-Calculus for Computational Fields (SMuC)

based on fixpoints computation
the composition of the values propagated by the neighboring nodes is expressed by
mu-calculus-like formulas
domains for values of nodes are from constraint semiring

Computational Fields Calculus (CFC)

minimal
it allows the restriction of a field computation to a sub-region of the network
more simple

Both SMuC and CFC support the definition of computational field through:

composition of fields
propagation of values between neighboring nodes
the field evolution over time

Lorenzo Ceragioli Computational Fields January 15, 2018 6 / 33



SMuC
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Soft Mu-Calculus main ideas

Fields: networks with attributes on both nodes and arcs.

Execution: sequential computation of fixpoints.

Values: from some constraint semiring

Robustness against node unavailability, nodes can proceed with different speed
and the result of execution is the same
Robustness against node failure, nodes can fail and return to a precedent
consistent state and the result of execution is the same

Distributed implementation of the calculus is presented
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Constraint semiring

Field domain : 〈A,v,⊥,>〉
〈A,v〉 is a ω-chain complete partially v-ordered with bottom element ⊥ and top
element >
〈A,w〉 is a ω-chain complete partially w-ordered with bottom element > and top
element ⊥

Constraint semiring : 〈A,+,×,⊥,>〉 with v defined as a v b iff a+ b = b

+ : A×A→ A associative, commutative, idempotent (choose)
× : A×A→ A is an associative, commutative (combine)
× distributes over +
⊥+ a = a, >+ a = >, >× a = a, ⊥× a = ⊥ for all a ∈ A
〈A,v,⊥,>〉 is a field domain of preferences

Tropical semiring 〈R+ ∪ {+∞},min,+,+∞, 0〉
where the field domain is 〈R+ ∪ {+∞},≥,+∞, 0〉

Set semiring 〈2A,∪,∩, ∅, A〉
where the field domain is 〈2A,⊆, ∅, A〉
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Computational fields

Field : tuple 〈N,E,A,L = LN ] LE , I = IN ] IE〉 where
N is a set of nodes
E ⊆ N ×N is a set of edges
〈A,vA,⊥A,>A〉 is a field domain

Node evaluation : function N → A.

LN is a set of node labels and LE is a set of edge labels
IN : LN → (N → A) defines interpretation for node labels
IE : LE → (E → (A→ A)) defines interpretation for edges labels

Update function : function (N → A)→ (N → A).

Field domain of attribute values : function 〈A,vA,⊥A,>A〉.

Field domain of node evaluation : function 〈(N → A),v(N→A),⊥(N→A),>(N→A)〉.
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SMuC formulas

Let Z be a set for Variables, M be a set of functions

Ψ ::= i | z | f(Ψ, . . . ,Ψ) | g α Ψ | g α Ψ | µz.Ψ | νz.Ψ

where:

i ∈ LN
α ∈ LE
f ∈M : A∗ → A combines values
g ∈M : mset(A)→ A aggregates values
z ∈ Z is a variable.
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SMuC formulas

Given ρ : Z → (N → A), we define [[·]]Fρ : Ψ→ (NF → AF ) as

[[i]]Fρ = IF (i)

[[z]]Fρ = ρ(z)

[[f(Ψ1, . . . ,Ψk)]]Fρ = λn.[[f ]]AF ([[Ψ1]]Fρ (n), . . . , [[Ψk]]Fρ (n))

[[g α Ψ]]Fρ = λn.[[g]]AF ({ IF (α)(n, n′)([[Ψ]]Fρ (n′)) | (n, n′) ∈ EF })

[[g α Ψ]]Fρ = λn.[[g]]AF ({ IF (α)(n′, n)([[Ψ]]Fρ (n′)) | (n′, n) ∈ EF })

[[µz.Ψ]]Fρ = lfp λf.[[Ψ]]Fρ[f/z ]

[[νz.Ψ]]Fρ = gfp λf.[[Ψ]]Fρ[f/z ]

Fixpoint existence (λf.[[Ψ]]Fρ[f/z ] monotone and continuous)

Semiring monotony: Let IF is such that IF (α)(e) is monotone for all α ∈ LA, e ∈ EA,
M contains only function symbols that are obtained by composing additive and
multiplicative operations of the semiring. Then, every function λf.[[Ψ]]Fρ[f/z ] is monotone
and continuous.
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SMuC formulas

SMuC formulas examples:

Assign to every node the minimal value of the sub-graph of nodes that can reach it,
for a given node label i

Semiring: 〈R+ ∪ {+∞},min,+,+∞, 0〉

Field domain: 〈R+ ∪ {+∞},≥,+∞, 0〉

Formula: µz.min(i,min id z)

Assign to all the nodes the union of all elements in the graph in nodes that are
reachable from it, for a given node label i

Semiring: 〈2A,∪,∩, ∅, A〉

Field domain: 〈2A,⊆, ∅, A〉

Formula: µz.i ∪ (∪ id z)
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SMuC formulas

Assign to all the nodes the minimal distance to a goal node and the path for
reaching it

Semiring: 〈R+ ∪ {+∞},min,+,+∞, 0〉 ×1 〈N∗ ∪ {•},min,max, •, ε〉

Field domain: 〈R+ ∪ {+∞},≥,+∞, 0〉 ×1 〈N∗ ∪ {•},v, •, ε〉

Formula: µz.min1(i,min1 α z)
Where i is a shorthand for: goal ? 〈0, self〉 : 〈+∞, •〉

Interpretation of node label: IN (self)(n) = n
and : IN (goal)(n) = true if n is a goal node, false otherwise

Interpretation of edge label: IE(α)(n, n′)(〈cost, path〉) = 〈cost+ delta, n · path〉

0

1

2

31

1

3

1

1

0 1 2 3
ψ0 〈+∞, •〉 〈+∞, •〉 〈+∞, •〉 〈+∞, •〉
ψ1 〈0, 0〉 〈+∞, •〉 〈+∞, •〉 〈+∞, •〉
ψ2 〈0, 0〉 〈1, 1 · 0〉 〈+∞, •〉 〈+∞, •〉
ψ3 〈0, 0〉 〈1, 1 · 0〉 〈4, 2 · 1 · 0〉 〈2, 3 · 1 · 0〉
ψ4 〈0, 0〉 〈1, 1 · 0〉 〈3, 2 · 3 · 1 · 0〉 〈2, 3 · 1 · 0〉
ψ5 〈0, 0〉 〈1, 1 · 0〉 〈3, 2 · 3 · 1 · 0〉 〈2, 3 · 1 · 0〉
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SMuC programs

P,Q ::= skip | i← Ψ | P;Q | if Ψ then P else Q | until Ψ do P

where:

i ∈ LN
Ψ is a SMuC formula

State of computation: pair of program and field

Memory stores: is represented by interpretation function of the field

Semantics: given via transition system →⊆ (P ×F)2
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Emergent to local behavior

Simple assignment program: no fixpoints

Asynchronous agreement: we use a tree-based infrastructure that spans the
complete field

Distributed field infrastructure: 〈 Field , spanning Tree 〉

Distributed fragment: d = n[ S | ι : χ : k ]
n ∈ N is a node
S is the simple assignment program currently executed by n
ι : N → LN → A is a partial interpretation of node labels at n
χ is an agreement store
k is an agreement counter

Evolution of fragments: dn →msg dn

Evolution of distributed execution: D ⇒msg D where D = {dn}n∈N
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Robustness against node unavaliability

When we compute the fixpoint of an update function ψ : (N → A)→ (N → A)

nodes are allowed to proceed at different speeds
nodes may remain inactive for some iterations
nodes don’t wait for communications, they use caching

We guarantee that the same fixpoint of a synchronous execution is reached, under
reasonable conditions:

we have only a finite number of nodes
every node execute infinitely often (fair strategy)
the update function ψ is monotone (remember semiring operations)

Actually to guarantee that some fixpoint is reached at all we need also to add this
condition

A has finite partially ordered chains only
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Robustness against node failures

We consider the possibility for a node to fail, it may stay inactive for a while and then
resumes and enters a backup state it had in a previous iteration (e.g. the initial one)

We guarantee that the same fixpoint of a synchronous no-failure execution is reached,
under reasonable conditions:

we have only a finite number of nodes
every node execute infinitely often (fair strategy)
the update function ψ is monotone (remember semiring operations)
at some point the system enters a condition in where no more failures occur
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CFC
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Computational Field Calculus main ideas

Fields: networks with attributes on nodes.

Execution: only a simple generic construct for iteration.

Values: from a sound type system

number and boolean as elementary data types
we can build pairs
we can build filed types

Conditional construct if allows the restriction to a sub-region of the network

Lorenzo Ceragioli Computational Fields January 15, 2018 20 / 33



CFC syntax

e ::= x | l | (oē) | (dē) | (rep x w e) | (nbr e) | (if e e e) expression
l ::= n | b | 〈l, l〉 lacal value
w ::= x | l variable or lacal value
D ::= (def d(x̄)e) user-defined function declaration
P ::= D̄e program

Where:
n is a number
b is a boolean
x is a variable name
o is a builtin function name
d is a user-defined function name
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CFC semantics

e ::= x | l | (oē) | (dē) | (rep x w e) | (nbr e) | (if e e′ e′′) expression

Informal semantics:
(oē) is the composition between the fields ē = (e0, e1, . . . , en)
(dē) is the application of the function d to the fields ē = (e0, e1, . . . , en)
(rep x w e) is the field obtained by starting from configuration w and updating
through time using e as update function where x represent the actual state of the
field
(nbr e) is the propagation of e to neighboring nodes (field values)
(if e e′ e′′) is the field e′ in nodes where e evaluates to true and e′′ in nodes
where e evaluates to false
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CFC examples

Field that assigns to all the nodes the minimum reachable value in a given field

( def gossip-min ( source )
( rep d source ( min-hood ( nbr d ))))

Field that assigns to each node the minimal distance to a source node

( def distance-to ( source )
( rep d infinity

( mux source 0 ( min-hood ( +[f,f] ( nbr d ) (nbr-range)))))))

Field that assigns to each node the minimal distance to a source node avoiding
obstacle nodes

( def distance-obs-to ( source, obstacle )
( if ( not obstacle ) ( distance-to source ) infinity )))
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CFC semantiscs

Execution is partially synchronous, in each round a device:

sleeps for some limited time
wakes up
gathers information about messages received while asleep
performs his field evaluation
emits a message to all neighbours

Operational semantics: based on runtime expression syntax

Annotations: for transient partial run-time information about the computation
Superscript: for durable partial run-time information about the computation

Congruence and alignment context are used to impose an order of evaluation to
subexpressions

A type system to guarantee well-formedness of expressions
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Conclusion
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SMuC vs CFC

Soft Mu-Calculus for Computational Fields (SMuC)

based on fixpoints computation
composition of the values from neighboring nodes expressed by mu-calculus-like
formulas
domains for values built from constraint semiring
robust against node unavailability and failure
synchronization-based constructs if and until

Computational Fields Calculus (CFC)

minimal
it allows the restriction of a field computation to a sub-region of the network
simpler approach
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rep vs µ and ν

rep in CFC
based on the idea that the computation never ends
is more handy (you specify the beginning state and the update rule)

µ and ν in SMuC
based on the idea that the computation must end
you have to think domain-based
automatic guarantee of termination
requires you more, gives you more

(rep in CFC and until in SMuC are quite the same)
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Two very different flavour of if construct

if from CFC and if from SMuC only share the name

if from CFC makes two separate computations

one for the sub-network that evaluates the guard to true
one for the sub-network that evaluates the guard to false

if from SMuC is synchronization based

if all the network evaluates the guard to true execute the first branch
if at least one node evaluates the guard to false execute the second branch
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Two very different flavour of if construct

Example: if even then cmp-min else cmp-max

1 2 3

5 6 8 9

7 4 3

In SMuC

9 9 9

9 9 9 9

9 9 9

In CFC

1 2 3

5 6 8 9

7 4 3
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Two very different flavour of if construct

Can we simulate the two constructs ?

SMuC if inside CFC

We need to create support for distributed synchronization
(i.e. write code for what in SMuC is runtime support)

CFC if inside SMuC

Problem for semantic compositionality (e.g. if Ψ0 then Ψ1 else Ψ1 )
We can obtain the same behavior only with ad hoc rewriting
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