
Smart Contracts on
Blockchains

Models, Verification and Attacks

1

We will see

● Bitcoin
○ Bitcoin scripting
○ how to very contract using high level languages

■ Balzac
■ BITML

● Ethereum
○ vulnerabilities in Ethereum contracts

■ overview of several vulnerabilities
■ DAO hack in detail

○ how to analyze such contracts
■ Securify

2

3

Smart Contracts on Bitcoin

Bitcoin Transactions

Most common case:

Input: which block output to spend, authentication
Output: value, who can spend it

UTXO (Unspent Transaction Output)

input output

 I am Alice 4, you must be Bob

input output

_ 5, you must be Alice

4

Bitcoin Transactions

What really happens:

Input: which block output to spend, unlocking script
Output: value, locking script

Pay-to-public-key-hash (P2PKH) Script

input output

_ 5, check you are Alice

input output

 prove I am Alice 4, check you are Bob

5

Bitcoin Transactions - in general

input output

_ val1, lockingScript1

_ val2, lockingScript2

_

input output

 unlocking1 out1: _, _

 unlocking2 out2: _, _

 unlocking3

 unlocking4

input output

_ val1’, lockingScript1’

input output

_ val1’’, lockingScript1’’

_ val2’’, lockingScript2’’ 6

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

7

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

8

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

2

9

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

3

2

10

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

5

11

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

5

5

12

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

stack

true

13

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 unlocking script locking script
 2 3 OP_ADD 5 OP_EQUAL

 The system run: 2 3 OP_ADD 5 OP_EQUAL
 … and check that true (and only true) is in the stack at the end

14

Bitcoin Scripting Language - P2PKH

Unlocking script
 <Alice Signature> <Alice Public Key>

Locking script
OP_DUP OP_HASH160 <Alice Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

15

Bitcoin Scripting Language

● Cryptographic primitives
○ OP_HASH160, OP_CHECKSIG, …

● Time
○ don’t append until Timelock
○ Check Lock Time Verify in Script

● Multisignature
○ N out of M singatures in Script

● Flow control
○ IF, ELSE, ENDIF

16

17

Verification of Bitcoin Contracts

High Level Languages

Difficult to reason on complex examples with the Script language

- Proposals for high level models
- More, less or equally expressive w.r.t. Script
- Compile in Bitcoin Script
- Allow some form of property verification

We will look at some of them through an example

18

Example - timed commitment

Alice (committer)
- commits to a secret with a deadline

- she will reveal the secret before the deadline
- otherwise she will pay a price to Bob

Bob (receiver)
- read and use the secret if it is revealed
- punish Alice if the secret is not revealed before deadline

19

Balzac - Transactions

● Express Bitcoin transactions in readable way

● Allow to express protocols that uses such transactions

● Can perform some sanity checks

20

Balzac - Transactions

Alice’s commit
- Redeems FundsA
- “I will reveal s s.t. sha256(s) = h

before
2019-03-31 and take my money back
OR Bob will get the money”

Alice’s reveal
- Redeems Commit
- Reveal s (sha256(s) = h checked by

locking script of Commit)
- Unlocking script checks Alice spends

21

Balzac - Transactions

Bob’s timeout
- Redeems Commit
- Unlocking script check Bob spends
- Timelock deadline (checked by

locking script of Commit)
22

Balzac - Protocol

Actually we need a protocol using the transactions

Model
● System: parallel composition of the protocols of participants and blockchain
● Execution: computation on the process algebra

23

BITML

● Explicitly speaks about contracts

● Contracts are advertised, signed and executed

● Compiles in Script

● Possible executions (traces) can be model checked with LTL

24

BITML

Contract advertisement: {G}C
● precondition G
● contract C

25

BITML

Contract advertisement: {G}C
● precondition G
● contract C

Contract requirement fulfillment: A[x ⊳ {G}C]
● user A
● contract advertisement {G}C

Contract execution:〈C, v〉
● contract C
● value v

26

BITML

27

Comparison between models

28

29

Ethereum

Ethereum

Bitcoin is not for contracts…

30

Ethereum

Bitcoin is not for contracts… Ethereum is for contracts!

31

Ethereum

Bitcoin is not for contracts… Ethereum is for contracts!

Ethereum Virtual Machine executes bytecode
● A smart contract is a EVM program

Database with transactions and system state

32

Ethereum transactions

● Recipient (target ETH address)
● Value (ETH to send)
● Data

Used for
● Payments
● Invocation of contracts

○ a specific function
● Creation of contracts

○ with a starting balance

33

● Gas limit
● Gas price

Ethereum accounts

● Externally Owned Accounts
○ controlled by users

● Contract Accounts
○ do what the program tells
○ executed in the Ethereum Virtual Machine
○ contracts can call other contracts

34

Ethereum Bytecode

Turing completeness… but with limited resources
● Each instruction has a cost (in gas)
● Transactions specifies

○ a limited amount of gas (gas limit)
○ how many ETH he pays for gas (gas price)

Context of execution
● the contract state
● the caller transaction
● (limited view of the blockchain)

35

Ethereum contracts language

● EVM bytecode is difficult to use directly

● Several High Level Languages
○ Serpent
○ Solidity
○ Vyper
○ Bamboo

36

Ethereum contracts language

● EVM bytecode is difficult to use directly

● Several High Level Languages
○ Serpent
○ Solidity
○ Vyper
○ Bamboo

37

Solidity - an example

38

Solidity - an example

39

Solidity - an example

40

Solidity - an example

41

Solidity - an example

42

Contract security

● Arithmetic over/underflow
○ as usual must be taken into account

● Unexpected Eth
○ assuming only functions can change the balance is a mistake

● Delegatecall
● External Contract Referencing (Type Flow)
● Uninitialized Storage Pointers
● Reentrancy
● Denial of Service (DoS)

43

DAO hack (2016 hard-fork, $50 million)

● Contract functions can send ETH to the caller
● This may cause a call to a function of the caller contract
● The attacker can exploit this

○ malicious code calling back the vulnerable contract

Note: Reentrancy is actually a well known problem in computer science
44

Contract Attacker

call

sendEth

call

Reentrancy - DAO hack (the vulnerable contract)

45

Reentrancy - DAO hack (the attacker)

46

Reentrancy - DAO hack

You deposit 1 eth
You withdraw 1 eth

Fine so far

47

Reentrancy - DAO hack You withdraw 1 eth

48

Reentrancy - DAO hack You withdraw 1 eth

49

Reentrancy - DAO hack You withdraw 1 eth

50

Reentrancy - DAO hack You withdraw 1 eth

51

Reentrancy - DAO hack You withdraw 1 eth

 Fine so far

Note: if fallback just take the money everything is fine!

fallback of the attacker

52

Reentrancy - DAO hack

The fallback function of the attacker

 another call to withdrawFunds

Note:
● Another call to the same function
● The old one remains in the stack

53

Reentrancy - DAO hack

Note: balances and lastWithdrawTime are not updated yet

You withdraw 1 eth

fallback of the attacker

54

Reentrancy - DAO hack

The fallback function of the attacker
● Assume etherStore.balance is 1
● Just take the ethereum (the second one)
● And we return to the second instance of withdrawFunds

55

Reentrancy - DAO hack

● Balances[attacker] take 0
● LastWithdrawTime[attacker] take now
● We go back to first instance of fallback and then to withdrawFunds

You withdraw 1 eth

fallback of the attacker

56

Reentrancy - DAO hack

● Balances[attacker] take -1 (more or less)
● LastWithdrawTime[attacker] take now

You withdraw 1 eth

fallback of the attacker

57

Reentrancy - DAO hack

Solution

● Update the variables before calling the external code

or

● Use mutex

58

Denial of Service (DoS)

● When a user can make a contract inoperable
● Different possible sources:

○ Cost of the computation depends on input of the users
■ Loop through externally manipulated mappings/arrays

● Contract loops on an array of subscribed users
● Any user can subscribe
● Subscribing lots of users can make the cost of running the

contract higher than the gas limit of the contract

59

60

Automated Security Analysis of
Ethereum Contracts

Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe and unsafe calls:
- can we find all the safe\unsafe calls?

61

Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe and unsafe calls:
- can we find all the safe\unsafe calls? NO! (Turing completeness)

62

Automated Security Analysis

● Bug hunting approach
○ You try to find problems
○ If you can’t just assume it is safe (you may miss issues)

63

Automated Security Analysis

● Bug hunting approach
○ You try to find problems
○ If you can’t just assume it is safe (you may miss issues)

● New approach: Securify
○ If sure it is problematic → error
○ If sure it is safe → ok
○ otherwise → warning

64

Securify

often security properties can be expressed on the data-flow graph

● Given a security property, you must define two patterns
○ compliance pattern (pc): implies property
○ violation pattern (pv): implies property negation

● Securify check this patterns
○ contract dependency graph → semantic information in Datalog
○ check pc and pv → report violation, compliance and warning

65

Securify

66

Securify - property workflow

1. Original security property P
2. Data-flow graph property P’ s.t.

∀ contract C . C ⊨ P iff C ⊨ P’
3. Patterns in the domain-specific language of Securify
● Compliance pattern (pc) s.t.

■ ∀ contract C . if C ⊨ pc then C ⊨ P’
● Violation pattern (pv) s.t.

■ ∀ contract C . if C ⊨ vc then C ⊨ ¬P’

67

Securify language for properties

Properties speak about
● flow-dependency predicates
● data-dependency predicates

68

Example - DAO vulnerability

1. Property P: no state changes after the call instructions
2. Property P’: for all traces t, the storage does not change in the

interval that start just before any call instruction and ends when the
trace completes

3.
● pc: no write mayFollow a call instruction

 ∀ call(L1,_, _). ¬∃ sstore(L2, _, _). mayFollow(L2, L1)
● pv: a write mustFollow a call instruction

 ∃ call(L1,_, _). ∃ sstore(L2, _, _). mustFollow(L2, L1)

69

Encoded properties

70

Conclusions

● Very different contexts for smart contracts

● Very different languages for smart contracts

● Critical - lots of money may be involved

● Error prone - attacker view everything and has lots of options

● Problems are not peculiar

● Standard solutions and techniques can be successfully applied

71

Bibliography - Bitcoin

● Mastering Bitcoin 2nd Edition - Programming the Open Blockchain,
Andreas M. Antonopoulos (2017)

● Formal Models of Bitcoin Contracts: A Survey, Massimo Bartoletti,
Roberto Zunino, Frontiers Blockchain (2019)

● BitML: A Calculus for Bitcoin Smart Contracts, Massimo Bartoletti,
Roberto Zunino, CCS (2018)

72

Bibliography - Ethereum

● Mastering Ethereum, Andreas M. Antonopoulos, Gavin Wood (2018)

● Securify: Practical Security Analysis of Smart Contracts, Petar
Tsankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Bünzli, Martin T. Vechev, CCS (2018)

73

