
Smart Contracts on 
Blockchains

Models, Verification and Attacks
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We will see

● Bitcoin
○ Bitcoin scripting
○ how to very contract using high level languages

■ Balzac
■ BITML

● Ethereum
○ vulnerabilities in Ethereum contracts

■ overview of several vulnerabilities
■ DAO hack in detail

○ how to analyze such contracts
■ Securify
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Smart Contracts on Bitcoin



Bitcoin Transactions

Most common case:

Input: which block output to spend, authentication
Output: value, who can spend it

UTXO (Unspent Transaction Output)

input output

  I am Alice 4, you must be Bob

input output

_ 5, you must be Alice
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Bitcoin Transactions

What really happens:

Input: which block output to spend, unlocking script
Output: value, locking script

Pay-to-public-key-hash (P2PKH) Script

input output

_ 5, check you are Alice

input output

  prove I am Alice 4, check you are Bob
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Bitcoin Transactions - in general

input output

_ val1, lockingScript1

_ val2, lockingScript2

_

input output

  unlocking1 out1: _, _

  unlocking2 out2: _, _

  unlocking3

  unlocking4

input output

_ val1’, lockingScript1’

input output

_ val1’’, lockingScript1’’

_ val2’’, lockingScript2’’ 6



Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL
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Bitcoin Scripting Language
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Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

 2 3 OP_ADD 5 OP_EQUAL

 

stack

true
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Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

   unlocking script                                           locking script
           2 3 OP_ADD                                             5 OP_EQUAL

 The system run: 2 3 OP_ADD 5 OP_EQUAL 
     … and check that true (and only true) is in the stack at the end
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Bitcoin Scripting Language - P2PKH

Unlocking script                                           
 <Alice Signature> <Alice Public Key>

Locking script
OP_DUP OP_HASH160 <Alice Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG
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Bitcoin Scripting Language

● Cryptographic primitives
○ OP_HASH160, OP_CHECKSIG, … 

● Time
○ don’t append until Timelock
○ Check Lock Time Verify in Script

● Multisignature
○ N out of M singatures in Script

● Flow control
○ IF, ELSE, ENDIF
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Verification of Bitcoin Contracts



High Level Languages

Difficult to reason on complex examples with the Script language

- Proposals for high level models
- More, less or equally expressive w.r.t. Script
- Compile in Bitcoin Script
- Allow some form of property verification

We will look at some of them through an example
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Example - timed commitment

Alice (committer) 
- commits to a secret with a deadline

- she will reveal the secret before the deadline
- otherwise she will pay a price to Bob

Bob (receiver)
- read and use the secret if it is revealed
- punish Alice if the secret is not revealed before deadline
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Balzac - Transactions

● Express Bitcoin transactions in readable way

● Allow to express protocols that uses such transactions

● Can perform some sanity checks
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Balzac - Transactions

Alice’s commit
- Redeems FundsA
- “I will reveal s s.t. sha256(s) = h 

before 
2019-03-31 and take my money back 
OR Bob will get the money”

Alice’s reveal
- Redeems Commit
- Reveal s (sha256(s) = h checked by 

locking script of Commit)
- Unlocking script checks Alice spends
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Balzac - Transactions

Bob’s timeout
- Redeems Commit
- Unlocking script check Bob spends
- Timelock deadline (checked by 

locking script of Commit)
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Balzac - Protocol

Actually we need a protocol using the transactions

Model
● System: parallel composition of the protocols of participants and blockchain
● Execution: computation on the process algebra
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BITML

● Explicitly speaks about contracts

● Contracts are advertised, signed and executed

● Compiles in Script

● Possible executions (traces) can be model checked with LTL
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BITML

Contract advertisement: {G}C
● precondition G
● contract C
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BITML

Contract advertisement: {G}C
● precondition G
● contract C

Contract requirement fulfillment: A[x ⊳ {G}C]
● user A
● contract advertisement {G}C

Contract execution:〈C, v〉 
● contract C
● value v
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BITML
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Comparison between models
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Ethereum



Ethereum

Bitcoin is not for contracts… 
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Ethereum

Bitcoin is not for contracts… Ethereum is for contracts!
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Ethereum

Bitcoin is not for contracts… Ethereum is for contracts!

Ethereum Virtual Machine executes bytecode
● A smart contract is a EVM program

Database with transactions and system state
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Ethereum transactions

● Recipient (target ETH address)
● Value (ETH to send)
● Data 

Used for
● Payments
● Invocation of contracts 

○ a specific function
● Creation of contracts

○ with a starting balance
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● Gas limit
● Gas price



Ethereum accounts

● Externally Owned Accounts
○ controlled by users

● Contract Accounts
○ do what the program tells
○ executed in the Ethereum Virtual Machine
○ contracts can call other contracts
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Ethereum Bytecode

Turing completeness…  but with limited resources
● Each instruction has a cost (in gas)
● Transactions specifies 

○ a limited amount of gas (gas limit)
○ how many ETH he pays for gas (gas price)

Context of execution
● the contract state
● the caller transaction
● (limited view of the blockchain)
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Ethereum contracts language

● EVM bytecode is difficult to use directly

● Several High Level Languages
○ Serpent
○ Solidity
○ Vyper
○ Bamboo
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Solidity - an example
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Solidity - an example
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Contract security

● Arithmetic over/underflow
○ as usual must be taken into account

● Unexpected Eth
○ assuming only functions can change the balance is a mistake

● Delegatecall
● External Contract Referencing (Type Flow)
● Uninitialized Storage Pointers
● Reentrancy 
● Denial of Service (DoS) 
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DAO hack (2016 hard-fork, $50 million)

● Contract functions can send ETH to the caller
● This may cause a call to a function of the caller contract
● The attacker can exploit this

○ malicious code calling back the vulnerable contract

Note: Reentrancy is actually a well known problem in computer science
44

Contract Attacker

call

sendEth

call



Reentrancy - DAO hack (the vulnerable contract)
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Reentrancy - DAO hack (the attacker)
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Reentrancy - DAO hack

You deposit 1 eth
You withdraw 1 eth

Fine so far
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Reentrancy - DAO hack You withdraw 1 eth
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Reentrancy - DAO hack You withdraw 1 eth
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Reentrancy - DAO hack You withdraw 1 eth

50



Reentrancy - DAO hack You withdraw 1 eth
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Reentrancy - DAO hack You withdraw 1 eth

  Fine so far

Note: if fallback just take the money everything is fine! 

fallback of the attacker
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Reentrancy - DAO hack

The fallback function of the attacker

 another call to withdrawFunds

Note: 
● Another call to the same function
● The old one remains in the stack
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Reentrancy - DAO hack

Note: balances and lastWithdrawTime are not updated yet

You withdraw 1 eth

fallback of the attacker
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Reentrancy - DAO hack

The fallback function of the attacker
● Assume etherStore.balance is 1
● Just take the ethereum (the second one)
● And we return to the second instance of withdrawFunds
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Reentrancy - DAO hack

● Balances[attacker] take 0
● LastWithdrawTime[attacker] take now
● We go back to first instance of fallback and then to withdrawFunds

You withdraw 1 eth

fallback of the attacker

56



Reentrancy - DAO hack

● Balances[attacker] take -1 (more or less)
● LastWithdrawTime[attacker] take now

You withdraw 1 eth

fallback of the attacker
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Reentrancy - DAO hack

Solution

● Update the variables before calling the external code

or

● Use mutex
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Denial of Service (DoS)

● When a user can make a contract inoperable
● Different possible sources:

○ Cost of the computation depends on input of the users
■ Loop through externally manipulated mappings/arrays

● Contract loops on an array of subscribed users
● Any user can subscribe
● Subscribing lots of users can make the cost of running the 

contract higher than the gas limit of the contract
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Automated Security Analysis of 
Ethereum Contracts



Automated Security Analysis 

W.r.t. a security property, 
e.g. “no state changes after call instructions”

Assume we have safe      and unsafe      calls:
- can we find all the safe\unsafe calls? 
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Automated Security Analysis 

W.r.t. a security property, 
e.g. “no state changes after call instructions”

Assume we have safe      and unsafe      calls:
- can we find all the safe\unsafe calls? NO! (Turing completeness)
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Automated Security Analysis 

● Bug hunting approach
○ You try to find problems
○ If you can’t just assume it is safe (you may miss issues)
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Automated Security Analysis 

● Bug hunting approach
○ You try to find problems
○ If you can’t just assume it is safe (you may miss issues)

● New approach: Securify
○ If sure it is problematic → error
○ If sure it is safe → ok
○ otherwise → warning
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Securify

often security properties can be expressed on the data-flow graph

● Given a security property, you must define two patterns
○ compliance pattern (pc): implies property
○ violation pattern (pv): implies property negation

● Securify check this patterns
○ contract dependency graph → semantic information in Datalog
○ check pc and pv → report violation, compliance and warning
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Securify
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Securify - property workflow

1. Original security property P
2. Data-flow graph property P’ s.t.

∀ contract C . C ⊨ P iff C ⊨ P’ 
3. Patterns in the domain-specific language of Securify
● Compliance pattern (pc) s.t.

■ ∀ contract C . if C ⊨ pc then C ⊨ P’ 
● Violation pattern (pv) s.t.

■ ∀ contract C . if C ⊨ vc then C ⊨ ¬P’ 
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Securify language for properties

Properties speak about
● flow-dependency predicates
● data-dependency predicates
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Example - DAO vulnerability

1. Property P: no state changes after the call instructions
2. Property P’: for all traces t, the storage does not change in the 

interval that start just before any call instruction and ends when the 
trace completes

3.
● pc: no write mayFollow a call instruction

   ∀ call(L1,_, _). ¬∃ sstore(L2, _, _). mayFollow(L2, L1)
● pv: a write mustFollow a call instruction

   ∃ call(L1,_, _). ∃ sstore(L2, _, _). mustFollow(L2, L1)
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Encoded properties
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Conclusions

● Very different contexts for smart contracts

● Very different languages for smart contracts 

● Critical - lots of money may be involved

● Error prone - attacker view everything and has lots of options

● Problems are not peculiar

● Standard solutions and techniques can be successfully applied
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