
QWIRE
A Core Language for Quantum Circuits

1

● Context: interaction between classical and quantum computers

● Qwire introduction with examples

● Type System for well-formed circuits

● Operational Semantics for circuit normalization

● Denotational Semantics based on density matrices

● Extensions and Applications (Quantum Oracles)

Contents

2

QRAM model of quantum computing

Host Language

● Circuits as host types
● Guarantee that circuits are well-formed
● Still allowing abstractions and high level features

Classical
Computer

Quantum
Computer

circuits

measurement
results

3

A Minimal Core

Host Language is parametric

● Could be instantiated with a wide range of programming languages
○ High-level functional programming languages
○ Theorem provers (e.g. Coq)

● Only the interaction between classical and quantum computer is
formalized

4

Guarantee Circuits Safety

Using a strong type system

● We need linear types (qubits cannot be duplicated)

● But in the host language we also need non-linear types

● Integrating linear types in existing languages is (very) difficult
○ Linear types for the circuit language
○ Non-linear types for the host language

● Runtime errors arise only from host language!

5

Box and Unboxing

Boxed circuits

● In the host language
● Non-linear types
● Can be used inside the host

language

Unboxed circuits

● In the circuit language
● Linear types
● Can be reused inside other

circuits

Box and Unbox rules link the type systems of Host and Qwire

6

Some Examples

7

A First Example

Circ(W, W) is the (Host) type of circuits

● W is a wire type (bit/qubit wire and their composition)
● w is a wire name, it is not a regular variable (it is linear)

8

A Wrong Example

● w cannot be used two times
● Similar property: qubits cannot be discarded implicitly

○ You have to explicitly discard them (after a measurement)

9

Composing Gates

Gates act on wires, not on circuits

● gate meas (gate H w) is ill-formed
● Gates can be composed by connecting wires

e.g.

Same for circuits

● But they must be unboxed (connecting a wire to the input)
e.g.

10

Sequential and Parallel Composition of Circuits

In both cases the type system guarantees that the wire types match

11

Dynamic Lifting - example with Quantum Teleportation

12

Bob with Dynamic Lifting

13

Bob with Dynamic Lifting

14

Running a Circuit

run operation

● Take a circuit with no input (wire of type 1, with only value ())
● Returns a host value

15

Qwire Type System

16

Basic Ingredients

Wire types

Gates have input and output wire type, and we assume

● If a unitary then

● Initialization
● Measurement and discard

17

Typing Judgements for well-formed circuits

Judgement with

● context of host variables with host types
● context of wire variables with wire types
● a circuit
● the output wire type

18

Auxiliary Judgement

Judgement defined as

19

Auxiliary Judgement

Note that is linear

E.g. the following judgements do not hold

● w

●

20

Assumptions on the Host Language

We will assume types are such that there is at least:

● a corresponding type that is the lifting of each wire type
○ bit and qubits (booleans)
○ tensor product (pairs)

● a type for circuits with typed input and output

21

Typing Rules for Qwire

Output

● Build a pattern of its input wires

22

Typing Rules for Qwire

Gates

● Are applied to a pattern of wires
● The output defines another pattern
● Unused wires and output wires are used in the continuation

23

Typing Rules for Qwire

Composition

● Same as gates application
● …
● But the correctness of the input types is defined recursively

24

Typing Rules for Qwire

Boxing

● Bridge from Qwire circuits to Host terms
○ Qwire type above
○ Host type below

25

Typing Rules for Qwire

Unboxing

● Bridge from Host terms to Qwire circuits
○ Host type above
○ Qwire type below

26

Typing Rules for Qwire

Running a circuit

● Host can run Qwire circuits
○ When the circuit has no input wires
○ Qwire type above
○ Host type below

27

Typing Rules for Qwire

Lifting a wire

● Qwire can measure a wire and use the result in Host
○ We update the host context
○ And we continue with the judgement

28

Static VS Dynamic Lifting

● Run is a static lifting operator
○ All the wires are measured (or discarded)
○ No residual state is left on the quantum computer

● Lift is a dynamic lifting operator
○ Only a subset of the wires are measured
○ The classical computer uses the result to compute the rest of the

circuit
○ The state of the quantum computer must be preserved

29

Circuit Normalization

30

Operational Semantics

● Circuits represents instructions for the quantum computer
● Composition and unbox are meta-operations
● The (small-step) operational semantics normalizes circuits

○ Eliminates unboxing and composition
○ Concretizes patterns (no tuples of wires)

31

Operational Semantics - ingredients

● Pattern generalization (e.g.)

● Concrete patterns for , i.e. s.t. for all it is
○ example of concretization:

 from
to

● Host terms evaluation is the union of
○ Host language alone
○ Boxed circuits

32

Operational Semantics

Box

● Concretizes the pattern first
● Then normalizes the circuit

33

Operational Semantics

Unbox

● Just reduces to the terms evaluation
● And eliminates unbox-box pairs

34

Operational Semantics

Gate

● Concretizes the pattern first
● Then proceeds with the continuation

35

Operational Semantics

Composition

● Normalizes the circuits in order
● Substitutes patterns when associated with outputs
● …

36

Operational Semantics

Composition

● …
● Postpones the connection of wires after gate and lifting operations

(Commuting Conversion)

37

Operational Semantics Properties

The normalization satisfies

● Preservation
○ Same type before and after reduction

● Progress
○ If not in normal form then a next step exists

● Normalization
○ Normal form is always reachable

… assuming that also satisfies them

38

Denotational Semantics

39

Why a Denotational Semantics?

Because we want to

● Specify the actual physical meaning of the language
○ Nothing unexpected

● Prove soundness of the operational semantics
○ The denotational semantics of a circuit is the same of its

normalization

40

Denotational Semantics

● We have to deal with ordering and permutations
○ Qwire contexts are unordered
○ Elements of an Hilbert space are ordered
○ We will consider ordered contexts with explicit permutations
○ Then we can simply use

with:

41

Denotational Semantics

● Semantics of values is as expected

for we have an elemento of

42

Denotational Semantics

● Gates and circuits are represented as super-operators

for we have is a super operator from to

where
43

Denotational Semantics

44

Using Qwires

45

Extensions

● Qwire is a minimal core language

● Its strength is that it allows extensions

● We will see a pair of them

○ Pattern Matching on Circuits

○ Dependent Types

○ ReQwire for reasoning about reversible circuits

46

Pattern Matching

● We can write a host-level representation of patterns and gates

● Inductive data structure equivalent to

● Functions from ICirc to Circ and vice-versa

● With this we can do pattern matching on circuits inside Host!
47

Pattern Matching

● We can write a function that safely revert circuits

48

Dependent Types

Note that the number of wires of a circuit is part of its type

● We would like to have functions that generate circuits with a number

of wires that depends on the input, i.e. dependent types

Combining dependent and linear types is active research

● But Qwire keeps linear and non-linear types separated

● Types will depend only on non-linear terms

49

Dependent Types

E.g., the following function returns a circuit with wire types that depends
on the inputs

50

ReQwire: Reasoning about Reversible Circuits

Quantum algorithms commonly use quantum oracles

● Reversible logic circuits require ancillae
● After usage, we want to discard them
● We must be sure of their state to do that

○ Measuring an entangled qubit affects the result!

ReQwire allows to recognise syntactically valid ancillae

● Allowing the definition of a compiler for oracles

51

ReQwire: Reasoning about Reversible Circuits

E.g., the following circuit does not make a correct use of ancillae

52

We add assertion gates that discard a qubit in the given state

We give a pair of denotational semantics:

● Safe semantics (measures the qubit before discarding)
● Unsafe semantics (trusts the assertion and just discards)

○ producing an illegal matrix if the assertion is wrong

A circuit is valid (all the assertions are correct) if the two agree

ReQwire: Reasoning about Reversible Circuits

53

Based on the denotational precise definition of validity

● A syntactic property called source symmetry is defined for
circuits with classical gates

● It is proved to be a sufficient condition for validity

● Source symmetric circuits are characterized inductively

● (A compiler for source symmetric (thus valid) oracles is given)

ReQwire: Reasoning about Reversible Circuits

54

Classical Gates:

● Initialization gates

● Assertion gates

● Not gate

● Controlled not gate

● Toffoli gate

ReQwire: Reasoning about Reversible Circuits

55

ReQwire: Reasoning about Reversible Circuits

Definition of Source symmetric circuits

The input wires of a circuit are divided in

● N source qubits - input of the boolean function
● 1 target qubit - output of the boolean function

Source symmetric circuits behaves as the identity on source qubits

Idea for the characterization: they must uncompute the value obtained
for the source qubits (using the inverse)

(Note that the inverse of a classical gate is itself)
56

ReQwire: Reasoning about Reversible Circuits

Roughly
● The identity is source symmetric
● if g classical and c source symmetric then

○ g ;; c ;; g is source symmetric
● if g classical only acts on target and c is source symmetric

○ g ;; c and c ;; g are source symmetric
● if c is source symmetric and i is in its source then

○ (b at i) ;; c ;; (b at i) is source symmetric

57

ReQwire: Reasoning about Reversible Circuits

Compiling Oracles
● Given a boolean expression

● and a map from variables to wire indices

● Returns a circuit with

○ a wire for each source variable

○ a target wire for the result
58

ReQwire: Reasoning about Reversible Circuits

Compiling Oracles

Source
wires

Unchanged
source
wires

Target ⊕ Target

59

ReQwire: Reasoning about Reversible Circuits

Compiling a variable, true and false

index
of the var

60

ReQwire: Reasoning about Reversible Circuits

Compiling a negation

61

ReQwire: Reasoning about Reversible Circuits

Compiling a conjunction

62

ReQwire: Reasoning about Reversible Circuits

Compiling an exclusive disjunction

here we
have 0

63

ReQwire: Reasoning about Reversible Circuits

Correctness of the compilation (in Coq)

64

Conclusion

Qwire gives a simple, parametric description of the minimal core for a
system in which classical and quantum computations interact

Has good properties

● Normalization
● Static typing guarantee runtime errors only due to Host
● Formal denotational semantics

Allows for interesting extensions and applications

● Pattern matching, dependent types, valid oracles

65

Bibliography

● QWIRE: a core language for quantum circuits, by J. Paykin, R.

Rand and S. Zdancewic. POPL 2017

● ReQWIRE: Reasoning about Reversible Quantum Circuits, by R.

Rand, J. Paykin, D. Lee, S. Zdancewic. QPL 2018

66

