QWIRE

A Core Language for Quantum Circuits

Contents

e Context: interaction between classical and quantum computers
e (Quwire introduction with examples

e Type System for well-formed circuits

e Operational Semantics for circuit normalization

e Denotational Semantics based on density matrices

e Extensions and Applications (Quantum Oracles)

QRAM model of quantum computing

circuits
Classical > Quantum
Computer y Computer
measurement
results

Host Language

e Circuits as host types
e (Guarantee that circuits are well-formed
e Still allowing abstractions and high level features

A Minimal Core

Host Language is parametric

e Could be instantiated with a wide range of programming languages
o High-level functional programming languages
o Theorem provers (e.g. Coq)

e Only the interaction between classical and quantum computer is
formalized

Guarantee Circuits Safety

Using a strong type system

We need linear types (qubits cannot be duplicated)
But in the host language we also need non-linear types

Integrating linear types in existing languages is (very) difficult
o Linear types for the circuit language
o Non-linear types for the host language

Runtime errors arise only from host language!

Box and Unboxing

Boxed circuits Unboxed circuits

e In the host language e In the circuit language

e Non-linear types e Linear types

e Can be used inside the host e Can be reused inside other
language circuits

Box and Unbox rules link the type systems of Host and Qwire

Some Examples

A First Example

hadamard-measure : Circ(qubit,bit) =
box w =>
w’ <- gate H w;
b <- gate meas w’; T H
output b |

Circ (W, W) isthe (Host) type of circuits

e W is a wire type (bit/qubit wire and their composition)
e w IS awire name, it is not a regular variable (it is linear)

A Wrong Example

absurd = box w =>
x <- gate meas w;
w’ <- gate H w;
output (x,w’)

e w cannot be used two times
e Similar property: qubits cannot be discarded implicitly
o You have to explicitly discard them (after a measurement)

Composing Gates

Gates act on wires, not on circuits
® gate meas (gate H w) isill-formed
e (Gates can be composed by connecting wires

€.g. w’ <- gate H w;
b <- gate meas w’;

Same for circuits

e But they must be unboxed (connecting a wire to the input)
e.g. w2 <- unbox cl wl;
unbox c2 w2

10

Sequential and Parallel Composition of Circuits

inSeq (cl : Circ(W1i,W2)) (c2 : Circ(W2,W3))
: Circ(W1,W3) = box wl => — 5 —— 5
w2 <- unbox cl wl; Wi W2 Ws
unbox c2 w2

inPar (¢ : Circ(W1,W2)) (¢’ : Circ(W1’,W2?)
: Circ(Wi®W1’, W2QW2’) = Wi W

, - : : :
S g — - We @ W
w2 <- unbox c wil; ;
w2’ <- unbox c’ wl?’; . .
output (w2,w2?) Rl

In both cases the type system guarantees that the wire types match

11

Dynamic Lifting - example with Quantum Teleportation

H meas *—
bell00 § : §
04 B —e— meas —- |

..

Bob with Dynamic Lifting

bob : Circ(bit®bit®qubit, qubit) =

box (x,y,b) =>
(y,b) <- gate
(x,b) <- gate
@) <- gate
O <- gate
output b

(bit-control X) (y,b);
(bit-control Z) (x,b);
discard y;
discard x;

13

Bob with Dynamic Lifting

bob : Circ(bit®bit®qubit, qubit) =
box (x,y,b) =>
(y,b) <- gate (bit-control X) (y,b);
(x,b) <- gate (bit-control Z) (x,b);

O <- gate discard y;
O <- gate discard x;
output b

bob-dyn : Circ(bit®bit®qubit, qubit) =
box (wl,w2,q) =>
(x1,x2) <= 1lift (wl,w2);
q <- unbox (if x2 then X_gate else id) q;
unbox (if x1 then Z_gate else id) q

14

Running a Circuit

flip : Bool =
run (q <- gate initO0)z

<~ jgate K o; 10— H meas—
b <- gate meas q; : g

run operation

e Take a circuit with no input (wire of type 1, with only value ())
e Returns a host value

15

Qwire Type System

16

Basic Ingredients

Wire types W ::= 1| bit | qubit | W1 @ Wa
Gates have input and output wire type, and we assume

e Ifaunitary u € G(W, W)then
uw' e G(W, W)
control u € G (qubit® W, qubit® W)
bit-control u € G (bit® W,bit® W)

e |Initialization newO, newl € G(1, bit), init0, initl € G(1, qubit)
e [Measurement and discard meas € G(qubit, bit) discard € G(bit, 1)

17

Typing Judgements for well-formed circuits

Judgement [: 2 - C : W with

o I'=um:A1,...,2,: An context of host variables with host types
o 2= w:Wi,...,wn: Wn context of wire variables with wire types

e (' acircuit
e [V the output wire type

18

Auxiliary Judgement

Judgement () = p: W defined as

= ():1 w:W=w:W

1 = p1: W1 29 = pa: Wa
21,822 = (p1,p2): W1 ® Ws

19

Auxiliary Judgement

Note that (2 = p: W is linear
E.g. the following judgements do not hold

. ’w:W,w’: W'=w: W

e wW=(w,w):WW

20

Assumptions on the Host Language

We will assume types A are such that there is at least:

e a corresponding type that is the lifting of each wire type
o bit and qubits (booleans)
o tensor product (pairs)

|bit| = Bool 1| = Unit
|qubit|=Boo| ‘W1® W2|=|W1| X |W2|

e a type for circuits with typed input and output Circ(W1, W2)

21

Typing Rules for Qwire

Output

e Build a pattern of its input wires

R2=p W
I'; 2 outputp: W

OUTPUT

22

Typing Rules for Qwire

Gates

e Are applied to a pattern of wires
e The output defines another pattern (2
e Unused wires and output wires are used in the continuation

geg(W17W2)
01:>p1:W1 92:>p2:W2 F;QQ,Q'_ cC:W

I 81,02+ poy < gategp1; C: W

GATE

23

Typing Rules for Qwire

Composition -) | W
e Same as gates application ¢
° ... (2
e But the correctness of the input types is defined recursively
r'iMb-EC:W Q=W IQ2H-C:W
COMPOSE

I''$21,2p« C;C": W/

24

Typing Rules for Qwire

Boxing

e Bridge from Qwire circuits to Host terms
o Qwire type above 52 :
o Host type below —— C —

=9 W1 I';0FC: Wy .
'+ box (p: W1) = C:Circ(W71, Wa)

OX

25

Typing Rules for Qwire

Unboxing

e Bridge from Host terms to Qwire circuits
o Host type above
o Qwire type below

' t:Circ(Wy, Wa) 2= p: W

................................

UNBOX

I'; 2 F unbox t p: Wa

26

Typing Rules for Qwire

Running a circuit

e Host can run Qwire circuits bit| = Bool
o When the circuit has no input wires qubit| = Bool
o Qwire type above ;
|1| = Unit
o Host type below
| W1 ® Wa| = |Wi| x | Ws
Pyel= O W

UN

R
I'run C:|W|

27

Typing Rules for Qwire

Lifting a wire

e Qwire can measure a wire and use the result in Host
o We update the host context
o And we continue with the judgement

R=>p: W e |[W; 2 C: W

I': 0. 2" w &= ik v: © : W

LIFT

28

Static VS Dynamic Lifting

e Run is a static lifting operator
o All the wires are measured (or discarded)
o No residual state is left on the quantum computer

e Liftis a dynamic lifting operator
o Only a subset of the wires are measured
o The classical computer uses the result to compute the rest of the
circuit
o The state of the quantum computer must be preserved

29

Circuit Normalization

30

Operational Semantics

e Circuits represents instructions for the quantum computer
e Composition and unbox are meta-operations
e The (small-step) operational semantics normalizes circuits

O == "

o Eliminates unboxing and composition
o Concretizes patterns (no tuples of wires)

s OFC:W where Q:=-| Q,w:bit | Q, w:qubit
N ::=output p | p2 + gate g p1; N | x < lift p; C

31

Operational Semantics - ingredients

e Pattern generalizaton p' <p (eg. P S W)

e Concrete patterns p forW, i.e. s.t. for all 2 = p’: Witis —(p’ < p)
o example of concretization:
from w: bit®bit=w: bit®bit
to w" bit,w: bit = (w/, w): bitbit
e Host terms evaluation ¢ — t’ is the union of

o Host language alone —H
o Boxed circuits —s,

32

Operational Semantics

Box

e Concretizes the pattern first
e Then normalizes the circuit

pis concrete for W C = ('’

STRUCT
box (p: W) = C — box (p: W) = C’

p’ < p p’is concrete for W
(box (p: W) = C) —p (box p’ = C {p’/p}) "l

33

Operational Semantics

Unbox

e Just reduces to the terms evaluation
e And eliminates unbox-box pairs

t —
STRUCT

unbox t p = unbox t’ p

unbox (box (p: W) = N) p’ = N {p’/p}

B

34

Operational Semantics

Gate

e Concretizes the pattern first
® Then proceeds with the continuation

g € G(W1, Wa) pais concrete for Wo C — C’
p2 < gate g p1; C = p2 < gate g p1; C’

STRUCT

g € G(W1, Wa) pb < p2 pbis concrete for Ws
p2 < gate g p1; C = pj < gate g p1; C {p5/p2}

n

35

Operational Semantics

Composition

e Normalizes the circuits in order

e Substitutes patterns when associated with outputs
o

ClﬁC'{

STRUCT
p < C1;C = p < Cf; C

p < output p’; C = C {p’/p} :

36

Operational Semantics

Composition

e Postpones the connection of wires after gate and lifting operations
(Commuting Conversion)

CC

p < (p2 < gategp1; N); C = p2 < gateg p1;p < N; C

CC

p' +— (x < liftp; C"); C = x < liftp;p’ + C’; C

37

Operational Semantics Properties

The normalization satisfies

e Preservation

o Same type before and after reduction
e Progress

o If not in normal form then a next step exists
e Normalization

o Normal form is always reachable

... assuming that also — g satisfies them

38

Denotational Semantics

39

Why a Denotational Semantics?

Because we want to

e Specify the actual physical meaning of the language
o Nothing unexpected

e Prove soundness of the operational semantics
o The denotational semantics of a circuit is the same of its
normalization

40

Denotational Semantics

e \We have to deal with ordering and permutations

O

©)
©)
©)

Qwire contexts are unordered
Elements of an Hilbert space are ordered
We will consider ordered contexts with explicit permutations

Then we can simply use
[J=H1 |w:W]=[W] [f, 2] = [{4] ® [£2]

with: bit] = Ho 1] = Ha
[qubit] = Ho (W1 @ W] = [Wh] ® [W2]

41

Denotational Semantics

e Semantics of values is as expected

for [v : |W]] we have an elemento of [W]

[* : Unit] =

[false : Bool]
[true : Bool]

p—

[(v1,v2) « |[Wh| x |[Wa|] =

*

-

)
)
)

[v1 : | WA] @ [ve : | Wa]

42

Denotational Semantics

e (Gates and circuits are represented as super-operators

for g € G(W1, W2) we have [g] is a super operator from W; to W,

[new0], [init0] = (]0) (0])"
[newl], [initl] = (]1) (1])"
[meas] = (|0) (0])" + (|1) (1])”
[discard] = (0|" + (1|

where f*p = fpf1

43

Denotational Semantics

L=p: W
2 F outputp: W

[£2F outputp : W] =T*

sRFC W wm:2=87
s 2FC: W

[RFHC:W]=[2"F C: W]o[r]*

-+ t:Circ(W1, Wa) 2=p: Wi
;2 F unbox t p : Wa

[£2F unbox t p: W'] = [t: Circ(W, W')]

g € G(Wy, Wa)
N =p1: Wy 29 =pa:Wo 82, 02HC: W

21,02 F py « gate s C:W]=[22,2FC: W]o R I*
821, 2F py < gategp1; C: W [[. P2 g g P1]] [[2]] ([[g]])

R=>p: W oz |WE2'ECW [2,2 bz <liftp;C: W)= > [2'F C{v/z}: W]o([v:|W[]' @T)*
.82, 82! - < liftp; C + W!] W

sHhHFC: W Q=p:W Q20,2C:W

O p e OO W [[Ql,QQI—pFC;CI:W’]]:[[Q(),.Qzl—cl:W’]]O([[Qll—C:W]]@I*)
Ty 941,842 3 :

44

Using Qwires

45

Extensions

e Quwire is a minimal core language
e Its strength is that it allows extensions
e \We will see a pair of them

o Pattern Matching on Circuits

o Dependent Types

o ReQwire for reasoning about reversible circuits

46

Pattern Matching

e \We can write a host-level representation of patterns and gates

e Inductive data structure equivalent to Circ(W7, W5)

type ICirc W1l W2 =
| Output : Pat W1 W2 -> ICirc W1 W2

| Gate : Pat W1 (W1°®WO0) -> Gate W1’ W2’ ->
Circ(W2’®W0, W2) -> ICirc W1 W2
| Lift : Pat W1 (WQW?) ->

(IW|] -> Circ(W?,W2)) -> ICirc W1 W2.

e Functions from ICirc to Circ and vice-versa

e With this we can do pattern matching on circuits inside Host!

47

Pattern Matching

e \We can write a function that safely revert circuits

reverse (c : Circ(W1i,W2)) : Option (Circ(W2,W1)) =
case tolCirc c of

| Output p -> fromICirc (Output (reverse_pat p))
| Gate p g ¢’ ->

case reverse (toICirc c’), reverse_gate g of

Some c_rev, Some g_rev ->

let p_rev = reverse_pat p in

let i_rev = Gate id_pat g_rev (Output p_rev) in
inSeq c_rev (fromICirc i_rev)
_, _ => None

end

| Lift

end

_ _ => None

48

Dependent Types

Note that the number of wires of a circuit is part of its type

e \We would like to have functions that generate circuits with a number

of wires that depends on the input, i.e. dependent types
Combining dependent and linear types is active research

e But Qwire keeps linear and non-linear types separated

e Types will depend only on non-linear terms

49

Dependent Types

E.g., the following function returns a circuit with wire types that depends
on the inputs

rotations (m:Nat) :|// (n:Nat).

CIRC(R |(n+1) |qubit, & [(n+1)|qubit) =

fun n => case n of

| O -> id

| 1 -> id

| S n’ -> box (c,(q,qs)) =>
(c,gqs) <- unbox rotations m n’ (c,qs);
(c,q) <- gate (control (RGate (2+m-n’))) (c,q);
output (c,(q,w))

end

ReQuwire: Reasoning about Reversible Circuits

Quantum algorithms commonly use quantum oracles

e Reversible logic circuits require ancillae
e After usage, we want to discard them
e \We must be sure of their state to do that
o Measuring an entangled qubit affects the result!

ReQwire allows to recognise syntactically valid ancillae

e Allowing the definition of a compiler for oracles

51

ReQuwire: Reasoning about Reversible Circuits

E.g., the following circuit does not make a correct use of ancillae

a & ° o a

b D ° D b

0 D D ® avb

c & . H a

d D * D b

0 D < ® cvd

Z .~ 2@ ((avb)r(cvd))

52

ReQuwire: Reasoning about Reversible Circuits

We add assertion gates that discard a qubit in the given state

g :=U | init_O0 | init_1 | meas | discard ||assert_0O | assert_1

We give a pair of denotational semantics:

e Safe semantics (measures the qubit before discarding)
e Unsafe semantics (trusts the assertion and just discards)
o producing an illegal matrix if the assertion is wrong

A circuit is valid (all the assertions are correct) if the two agree

53

ReQuwire: Reasoning about Reversible Circuits

Based on the denotational precise definition of validity

e A syntactic property called source symmetry is defined for
circuits with classical gates

e |Itis proved to be a sufficient condition for validity
e Source symmetric circuits are characterized inductively

e (A compiler for source symmetric (thus valid) oracles is given)

54

ReQuwire: Reasoning about Reversible Circuits

Classical Gates:

e Initialization gates
e Assertion gates

e Not gate

e Controlled not gate

e Toffoli gate

— g

5

55

ReQuwire: Reasoning about Reversible Circuits

Definition of Source symmetric circuits
The input wires of a circuit are divided in

e N source qubits - input of the boolean function
e 1 target qubit - output of the boolean function

Source symmetric circuits behaves as the identity on source qubits

Idea for the characterization: they must uncompute the value obtained
for the source qubits (using the inverse)

(Note that the inverse of a classical gate is itself)

56

ReQuwire: Reasoning about Reversible Circuits

Roughly

e The identity is source symmetric
e if g classical and ¢ source symmetric then
o ¢;;C;; gissource symmetric
e if g classical only acts on target and ¢ is source symmetric
© @g;;candc;, gare source symmetric
e if cis source symmetric and i is in its source then
o (init_bat i);; c;; (assert_b ati)is source symmetric

57

ReQuwire: Reasoning about Reversible Circuits

Compiling Oracles

e Given a boolean expression

b::=x|t|f|—.b|b1/\b2|b1€l§b2

e and amap I from variables to wire indices
e Returns a circuit with
o a wire for each source variable

o a target wire for the result

58

ReQuwire: Reasoning about Reversible Circuits

Compiling Oracles

Target

Source
wires

compileb I

[b] @ Target

Unchanged
source
wires

59

ReQuwire: Reasoning about Reversible Circuits

Compiling a variable, true and false ..., 2] f]

TN
\VV

index
of the var

—lblbl /\b2|b1€|9b2

4 Y
N

60

ReQuwire: Reasoning about Reversible Circuits

Compiling a negation bu=x|t|f |E|\ b1 Aby | by ®b;

JaR)
\V

compileb I compileb I

61

ReQuwire: Reasoning about Reversible Circuits

Compiling a conjunction

br=x|t| f|-b]

b1 /\b2|b1€|9b2

—— compilebll

compile b2 T

compile b2 T

compilebl ! —

62

ReQuwire: Reasoning about Reversible Circuits

Compiling an exclusive disjunction bu=x|t|f|-b|byAby|bi®b,
here we
have O
Vi | Vd
v
0 —1 — 0

compile bl Tl compileblT compile b2 I’ compile b2 I’

63

ReQuwire: Reasoning about Reversible Circuits

Correctness of the compilation (in Coq)

Theorem compile_correct :

V (b : bexp) (I : Ctx) (f : Var — bool) (z : bool),
vars b € domain [' -
[compile b I| (bool_to_matrix z ® basis_state I' f) =
bool_to_matrix (z @ [b]s) ® basis_state I' f.

64

Conclusion

Qwire gives a simple, parametric description of the minimal core for a
system in which classical and quantum computations interact

Has good properties

e Normalization
e Static typing guarantee runtime errors only due to Host
e Formal denotational semantics

Allows for interesting extensions and applications

e Pattern matching, dependent types, valid oracles

65

Bibliography

e QWIRE: a core language for quantum circuits, by J. Paykin, R.
Rand and S. Zdancewic. POPL 2017

e ReQWIRE: Reasoning about Reversible Quantum Circuits, by R.
Rand, J. Paykin, D. Lee, S. Zdancewic. QPL 2018

66

