
Access Control Policies
Across Abstraction Layers

Lorenzo Ceragioli
Università di Pisa

Supervisors

Pierpaolo Degano
Università di Pisa

Letterio Galletta
IMT, Lucca

Referees

David Basin
ETH Zurich

Rosario Pugliese
Università degli Studi di Firenze

Recap - Access Control

Alan

Beth

Resources

Read file “/etc/passwd” !

Write file “~/bash_history” !

1

Recap - Access Control

Alan

Beth

Resources

Read file
“/etc/passwd” ?

Write file
“~/bash_history” ?

ACS

1

Recap - Access Control

Alan

Beth

Resources

Read file
“/etc/passwd” ?

ACS

Policy

Write file
“~/bash_history” ?

1

Access Control - Where?

● Networks: Firewalls

● Web: XACML

● Social Networks: ReBAC

● Operating Systems: ACLs, SELinux

● Medium - Large Enterprises: RBAC

● ...

2

Tasks

● Collecting Requirements

● Defining a Specifications

● Coding the Configuration

● Verification and Analysis

● Testing

● Update (specifications and Configuration)

3

Tasks - Abstraction Layers

● Collecting Requirements

● Defining a Specifications

● Coding the Configuration

● Verification and Analysis

● Testing

● Update
(specifications and Configuration)

3

Low Level

Configuration Language
Hard to Write & Read
Actually Run

High Level

Specification Language
Easy to Write & Read
Cannot Run

Problems

Manual coding is
● error prone - misunderstanding

○ of the specifications – e.g. ignore corner cases
○ of the configuration – e.g. low level intricacy

● expensive

Configurations and Specifications may change over time

Specifications may be impossible to implement

… we propose different solutions for mitigating these problems on three contexts

4

Two-way Translation Based Solution

● Compilation & Decompilation
○ Grant coherence

○ Automatise Coding & Analysis

● Support configuration and
specification changes

● Low Level configuration is
automatically produced, but
can also be modified by hand

High Level Language

Low Level Language

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

5

Firewalls

6

“Connection from internal hosts to
a DNS Server are redirected to

9.9.9.9”

On boundaries of the
networks, filter and
translate packets (NAT)

Different low level
languages (iptables, pf,
ipfw). Difficult to read and
write, with low level
details like shadowing and
tags

FWS/F2F

7

FWQL

- Function over IP packets
- SQL like interface

Firewall Languages

- iptables, ipfw, pf, …
- tag, shadowing, …

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

FWS/F2F

7

FWQL

- Function over IP packets
- SQL like interface

Firewall Languages

- iptables, ipfw, pf, …
- tag, shadowing, …

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

“Connection from internal hosts to a
DNS Server are redirected to

9.9.9.9”

update t_dst = 9.9.9.9 in TAB where
 ((srcIp = Internal)
 and dstPort = DNS)

*nat
-A PREROUTING -p udp -s 192.168.0.0/24
 -- dport 53 -j DNAT -- to 9.9.9.9

*filter
-A FORWARD -m state -- state
 ESTABLISHED -j ACCEPT
-A INPUT -m state -- state
 ESTABLISHED -j ACCEPT
-A FORWARD -p udp -s 192.168.0.0/24
 --dport 53 -j ACCEPT
-A INPUT -p udp -s 192.168.0.0/24
 --dport 53 -j ACCEPT

Intermediate Firewall Configuration Language - IFCL

System Evaluation Algorithm Configuration

Ruleset: list of pairs (Predicate, Action)

 Action in

Rulesets Association

8

FWS/F2F - Tool

FWQL

- Function over IP packets
- SQL like interface

Firewall Languages

- iptables, ipfw, pf, …
- tag, shadowing, …

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

Formal LLL: IFCL

- System --> Control Diagram
- Configuration --> Rulesets

model

9

FWS/F2F - Tool

FWQL

- Function over IP packets
- SQL like interface

Firewall Languages

- iptables, ipfw, pf, …
- tag, shadowing, …

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

Formal LLL: IFCL

- System --> Control Diagram
- Configuration --> Rulesets

model

9

Formally
Verified {

FWS/F2F - Tool

FWQL

- Function over IP packets
- SQL like interface

Firewall Languages

- iptables, ipfw, pf, …
- tag, shadowing, …

compile decompileproject
limitations

- specify
- verify
- update

- tune
- test
- optimize

Formal LLL: IFCL

- System --> Control Diagram
- Configuration --> Rulesets

model

9

Empirically
Validated{

Expressivity Problem

10

Individual Expressivity
 pf cannot apply Destination
 NAT (DNAT) on packets
 following the path in red

Functional Expressivity

 packet p accepted with SNAT
 packet p’ dropped
 what if p after SNAT is equal
 to p’ in q1?

 IFCL

 iptables

 pf, ipfw

 IFCL

ipfw iptables

 pf

Verification Based Solution

● Configuring by hand
● Verification procedure

guarantees coherence
between high and low level

● Support specification and
configuration changes

● When compilation would be
risky (security critical low level
details)

High Level Language

Low Level Language

verify
coherence

- specify
- verify
- update

- configure
- test
- optimize

11

SELinux CIL

SELinux policy defines
mandatory access control for
the applications, processes,
and files on a Linux system.

Used from Servers to Android
devices

CIL allows to structure
configurations using macros
and blocks

12

SELinux - Notoriously a Nightmare

● OS entities and operations are numerous and varied

● Configurations are huge

13

SELinux - Notoriously a Nightmare

13

● OS entities and operations are numerous and varied

● Configurations are huge

SELinux - Notoriously a Nightmare

13

● OS entities and operations are numerous and varied

● Configurations are huge

SELinux - Low Level Configurations

● Every part of the OS is associated with Types
● A set of Operations are defined
● Rules “Type x can perform Operation a on Type y”

Types: Dog, Cat, Dog Bowl, Cat Bowl

Cat

Dog Dog Bowl

Cat Bowl

Eats From

Eats From

15

Figaro

Nana

SELinux - High Level Specifications

Cat

Food Flow

Cat Food

Cat

Food Flow

Dog Food

16

Flow properties:

SELinux - High Level Specifications

Flow properties:

Intransitive Flow Properties:

Cat

Food Flow

Cat Food

Food Flow

Kid

Cat

Food Flow

Cat Food

Food Flow

Adult

Cat

Food Flow

Cat Food

Cat

Food Flow

Dog Food

16

SELinux - High Level Specifications

Flow properties allow Policy Engineering:

Cat

Food Flow

Cat Food

Block A:

Block B:

“refinement”

Cat

Food Flow

Cat FoodCat Bowl

Eats From

17

SELinux IFCIL

IFCIL extends CIL with IFL
requirements that are first
class citizens

A verification procedure
grants that the actual
permissions satisfies the
requirements

Information Flow Language

Functional Requirements
Security Requirements

CIL

Types & Typeattributes
Explicit Permissions (allow)

verify
coherence

18

IFCIL - Example

(macro anonymize((type x) (type y))
 (type anon)
 (allow anon x (file (read)))
 ;IFL; (S1) x +> y : x > anon +> y ;IFL;)

(type DB)
(type http)
(type net)

;IFL; (F1) DB +> http +> net ;IFL;
;IFL; (F2) net +> http +> DB ;IFL;

(call anonymize(DB net))

(allow http anon (file (read)))
(allow http DB (file (write)))
(allow http net (file (read write))) 19

IFCIL - Example

(macro anonymize((type x) (type y))
 (type anon)
 (allow anon x (file (read)))
 ;IFL; (S1) x +> y : x > anon +> y ;IFL;)

(type DB)
(type http)
(type net)

;IFL; (F1) DB +> http +> net ;IFL;
;IFL; (F2) net +> http +> DB ;IFL;

(call anonymize(DB net))

(allow http anon (file (read)))
(allow http DB (file (write)))
(allow http net (file (read write))) 19

read
write

write

read

read

CIL

IFCIL - Example

;IFL; (S1) DB +> net : DB > anon +> net ;IFL;

;IFL; (F1) DB +> http +> net ;IFL;

;IFL; (F2) net +> http +> DB ;IFL;

IFCIL encoded as NuSMV configuration file :

● Permissions as Kripke Transition System

● Requirements as LTL formulas

20

read
write

write

read

read

One-way Translation Based Solution

● Users interact with the High
Level, only tools interact with
the Low Level representation

● Automatise simple
but error-prone tasks

● Prevent misunderstanding
due to different languages

● Support specification changes

High Level Language

Low Level Language

compile

- specify
- verify
- update

21

Collaborative Environments

Users own resources and
decide their AC policies

Traditional AC cannot express
exchange conditions

New feature: AC decisions
based on what the owner gets
in return

22

You can see my
pictures only if I
can see yours

You can see my
pictures only if I can
see yours, and you
are friend of a friend
of mine

friends

friends

Resources

Infinite or Reusable

● Private Data on Social
Networks

● Files on a File Sharing
Platform

● Read-only Accesses

23

Finite and Not Reusable

● Non Fungible Tokens
● Cryptocurrencies
● Memory Storage
● Computing Power
● Physical Assets

Resources

Infinite or Reusable

● Private Data on Social
Networks

● Files on a File Sharing
Platform

● Read-only Accesses

23

Finite and Not Reusable

● Non Fungible Tokens
● Cryptocurrencies
● Memory Storage
● Computing Power
● Physical Assets

MuAC

MuAC

- MuAC Policies
- Satisfactory Agreements

Mixed Linear Non-linear
Contract Logic (CLNL)

- CLNL Theories & Proofs

- specify
- verify
- update

24

compile

Blockchain Smart Contract

implement

MuAC Client

MuAC Policies

Users define their
policies in isolation.

Conditions about what
other users must give
in order to obtain the
permission for a given
resource.

Alan

Beth

Carmen

 : I get

friends

25

 : You give Me

 : You give

to Me or to One of
my friends

CLNL - Computing Agreements

 Alan gives to Beth if Beth gives to Alan

 Beth gives to Alan if Alan gives to Beth

Classical Logic Does not Work!

a ⇒ b, b ⇒ a ⊬ a

a ⇒ b, b ⇒ a ⊬ b

26

CLNL - Computing Agreements

 Alan gives to Beth if Beth gives to Alan

 Beth gives to Alan if Alan gives to Beth

Classical Logic Does not Work!

a ⇒ b, b ⇒ a ⊬ a

a ⇒ b, b ⇒ a ⊬ b

26

CLNL - Computing Agreements

 Alan gives to Beth if Beth gives to Alan

 Beth gives to Alan if Alan gives to Beth

Classical Logic Does not Work!

a ⇒ b, b ⇒ a ⊬ a ∧ b

26

CLNL - Computing Agreements

 @Alan,

 @Beth,

(@Alan @Beth) (@Beth @Alan),

(@Beth @Alan) (@Alan @Beth)

⊢ @Alan @Beth

27

CLNL - Computing Agreements

Assuming a request from Beth for

An agreement is mutually satisfactory iff a CLNL proof exists

[[Policies]], [[Actual State]] ⊢ [[New State (where Beth has)]]

Algorithm for finding such a proof (on a computational fragment)

28

MuAC as a Smart Contract for Exchanging NFTs

I want !

2) Computes
 the Proof

MuAC Client

1) Makes the
 Request

MuAC
Smart Contract

3) If is correct,
 updates the state

29

MuAC as a Smart Contract for Exchanging NFTs

29

I want !

2) Computes
 the Proof

MuAC Client

1) Makes the
 Request

MuAC
Smart Contract

3) If is correct,
 updates the state

Blockchain

MuAC as a Smart Contract for Exchanging NFTs

29

I want !

2) Computes
 the Proof

MuAC Client

1) Makes the
 Request

MuAC
Smart Contract

3) If is correct,
 updates the state

Heavy Part of the
computation !

Blockchain

Concluding Remarks - Two-Layers Approach…

Low Level

High Level Granting Coherence

Translation Based
- one-way : low level details in

charge of tools
- two-way : low level details in

charge of both humans and
tools

Verification Based :
low level details in
charge of humans

30

…Three Solutions for Three Contexts

Functions

iptables,
pf …

IFCL

Information
Flows

CIL

MuAC

CLNL

Blockchain

Network Security
Firewalls

System Security
SELinux

Collaborative
Environments
Access Grants

Exchanges

31

Publications

32

● L. Ceragioli, L. Galletta, M. Tempesta, From Firewalls to Functions and Back,
ITASEC 2019

● L. Ceragioli, P. Degano, L. Galletta, Are All Firewall Systems Equally Powerful?,
PLAS@CCS 2019

● L. Ceragioli, P. Degano, L. Galletta, Checking the Expressivity of Firewall Languages,
The Art of Modelling Computational Systems 2019 - LNCS11760

● C. Bodei, L. Ceragioli, P. Degano, R. Focardi, L. Galletta, F. Luccio, M. Tempesta, L.
Veronese, FWS: Analyzing, Maintaining and Transcompiling Firewalls,
Journal of Computer Security 29(1) - 2021

Publications

33

● L. Ceragioli, P. Degano, L. Galletta, MuAC: Access Control Language for Mutual
Benefits, ITASEC 2020

● L. Ceragioli, P. Degano, L. Galletta, Can my Firewall System Enforce this Policy?,
Computers & Security 117 2022

● L. Ceragioli, L. Galletta, P. Degano, D. Basin, IFCIL: An Information Flow Configuration
Language for SELinux, CSF 2022 - submitted

Future Work - Extending our Proposals

● Networks
○ Networks with multiple Firewalls

○ Software Defined Networks

● Systems
○ Other CIL features (Roles, MLS)

○ Combination of policies written in different languages

● Collaborative Environments
○ Numbered Resources (currencies)

○ Negative Conditions (conflict of interest)

34

Future Work - Incrementality and Compositionality

● Translation based solutions
○ Preserve low-level details when compiling

● Verification based solutions
○ Modules related information flows

○ Instant feedback on requirements violations while writing code

35

