
MuAC
Access Control Language for Mutual Benefits

 ITASEC 2020

Lorenzo Ceragioli (Università di Pisa)
Pierpaolo Degano (Università di Pisa)
Letterio Galletta (Scuola IMT Alti Studi Lucca)

Access Control - Based on …

- Some requester quality (attribute, trust, roles)

- Some relationship between owner and requester

- Something that the owner will have in return?

1

Context: collaboration… with an eye to mutuality

System-SEC System-SEC

LanguageBased-SEC

LanguageBased-SECNetwork-SEC

Network-SEC

2

Context: collaboration… with an eye to mutuality

System-SEC System-SEC

LanguageBased-SEC

LanguageBased-SECNetwork-SEC

Network-SEC

2

Policy - What to ask in return
You can ask something

● for you or for someone else
● from the requester or from someone else

3

Policy - What to ask in return
You can ask something

● for you or someone else
● from the requester or someone else

 - if one of your colleagues shares with me

 - if you share or with a colleague of mine

 - with every colleague of mine

3

MuAC Language

 : Me, Subject, user variables u, u’ …

 : Resource, resource variables r, r’ …

 : atomic predicates p, q, p’, q’ …

4

Direct Exchange Policies

Network-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

5

Direct Exchange Policies

Network-SEC

System-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Wants to use
Alice’s tools

5

Direct Exchange Policies

Network-SEC

System-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Network-SEC(Subject), computational-power(Resource)

He allows Network-SEC members access computation-power

Wants to use
Alice’s tools

5

Direct Exchange Policies

Network-SEC

System-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Network-SEC(Subject), computational-power(Resource)

He allows Network-SEC members access computation-power

OK!

Wants to use
Alice’s tools

5

Direct Exchange Policies

Network-SEC

System-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Network-SEC(Subject), computational-power(Resource),
Allows(Me, r, Subject), tool(r)

He allows Network-SEC members to access
computation-power if they allow him access tools

Wants to use
Alice’s tools

5

Direct Exchange Policies

Network-SEC

System-SEC

tool(Resource), Allows(Me, r, Subject), computational-power(r)

She is asking for a direct exchange of
computation-power for tools

Network-SEC(Subject), computational-power(Resource),
Allows(Me, r, Subject), tool(r)

He allows Network-SEC members to access
computation-power if they allow him access tools

OK!

Wants to use
Alice’s tools

5

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Network-SEC

6

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Network-SEC System-SEC

Wants to use
Alice’s

computational
power

6

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Network-SEC System-SEC

log(Resource), Network-SEC(u’), System-SEC(u),
Allows(u’, r, u), tool(r), Network-SEC(Subject)

He asks for someone of Network-SEC group to give tools
to someone in his group for his logs

Wants to use
Alice’s

computational
power

6

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Network-SEC System-SEC
log(Resource), Network-SEC(u’), System-SEC(u),

Allows(u’, r, u), tool(r), Network-SEC(Subject)

He asks for someone of Network-SEC group to give tools
to someone in his group for his logs

tool(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

He asks someone in System-SEC group
to give him logs for his tools

Network-SEC

Wants to use
Alice’s

computational
power

6

computational-power(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

She asks someone in System-SEC group to give her logs
for her computation-power

Group-related Policies

Network-SEC System-SEC
log(Resource), Network-SEC(u’), System-SEC(u),

Allows(u’, r, u), tool(r), Network-SEC(Subject)

He asks for someone of Network-SEC group to give tools
to someone in his group for his logs

tool(Resource), System-SEC(u),
Allows(Me, r, u), log(r), System-SEC(Subject)

He asks someone in System-SEC group
to give him logs for his tools

Network-SEC

OK!

Wants to use
Alice’s

computational
power

6

Context - Every user defines his policy in isolation

System-SEC System-SEC

LanguageBased-SEC

LanguageBased-SECNetwork-SEC

Network-SEC

To evaluate a request

● check owner policy

● check recursively other
policies that affect the
result (Subject, u, u’ …)

We rely on

Propositional Contract Logic

7

Propositional Contract Logic (PCL)
“A Calculus of Contracting Processes” by Bartoletti & Zunino - LICS 2010

Intuitionistic propositional logic with Contractual Implication

 : a promise that “ will be satisfied if also is”

Decidable (deduction is PSPACE complete)
The theorem prover with acceptable performance for common examples

8

Propositional Contract Logic (PCL)
“A Calculus of Contracting Processes” by Bartoletti & Zunino - Symposium on Logic in Computer Science, 2010

9

MuAC Language Semantics

Rules interpreted as sets of promises

Allows(Alice, log1.txt, Bob), … Allows(Bob, tool1.sh, Carl) Allow(Bob, log2.txt, Alice)

From configuration to PCL theory

Access request asks(Bob, log2.txt) allowed iff

 Allows(Bob, log2.txt, Alice)

where Alice is the owner of log2.txt

Subject Me

Resource

10

Future Work: still a lot to do!

Efficient algorithm for access control decision

- we only have a proof-of-concept algorithm

- there are implicit quantifications in rules (but not in PCL)

- maybe we can use DataLog

- distributed implementation

11

Future Work: still a lot to do!

Trust and usage control - dealing with malicious users

- trust is assumed between all users

- time is not considered

- Eve may grab what she wants and run (free-rider)

- Declare to share all she have for nothing
- Make a copy of what she wants as soon as possible
- Leave the system before someone can actually access her resources

12

Future Work: still a lot to do!

Language extension

- deny rules
- conflicts resolution

- not-Allows as condition
- Conflict-of-Interest policies
- Embargo policies Network-SEC

logs(Resource), not-Allows(u, r, Subject), LanguageBased-SEC(u)

To access her logs, she asks the requester to share nothing
with LanguageBased-SEC members

13

