
From Firewalls to Functions and Back

Lorenzo Ceragioli
Università di Pisa, Pisa, Italy

lorenzo.ceragioli@phd.unipi.it

Letterio Galletta
IMT School for Advanced Studies, Lucca, Italy

letterio.galletta@imtlucca.it

Mauro Tempesta
Università Ca’ Foscari, Venezia, Italy

TU Wien, Vienna, Austria
tempesta@unive.it

lorenzo.ceragioli@phd.unipi.it
letterio.galletta@imtlucca.it
tempesta@unive.it

What is a Firewall?

172.16.0.254
ext

10.0.1.1
eth0

eth1
10.0.2.1

Inspects the traffic on a node of the network, for each packet
accepts or drops it
possibly changes the addresses (NAT)

Based on a configuration
List of rules
Possibly using tags
Procedure-like constructs
Interaction among rules (Shadowing)

From Firewalls to Functions and Back 1 / 17

What is a Firewall?

172.16.0.254
ext

10.0.1.1
eth0

eth1
10.0.2.1

Inspects the traffic on a node of the network, for each packet
accepts or drops it
possibly changes the addresses (NAT)

Based on a configuration
List of rules
Possibly using tags
Procedure-like constructs
Interaction among rules (Shadowing)

From Firewalls to Functions and Back 1 / 17

Motivations

Firewalls are a basic tool for protecting network
Widespread
Configuration-based
Different configuration languages (iptables, pf, ipfw)
It’s Hard to configure and manage firewalls
Cross-platform policy porting is Harder

Misconfigurations cause unintended behaviour
Possible Threats

From Firewalls to Functions and Back 2 / 17

Motivations

Firewalls are a basic tool for protecting network
Widespread
Configuration-based
Different configuration languages (iptables, pf, ipfw)
It’s Hard to configure and manage firewalls
Cross-platform policy porting is Harder

Misconfigurations cause unintended behaviour
Possible Threats

From Firewalls to Functions and Back 2 / 17

Transcompiltation Pipeline

Previous works:
Transcompilation Pipeline between firewall languages

Supports iptables, pf, ipfw and (partially) CISCO-ios
General approach
Supports NAT
Formal semantics

Why
For automated policy porting (first general approach!)
For configuration refactoring
Synthesis of a high level declarative configuration
Basis for other policy management tasks

From Firewalls to Functions and Back 3 / 17

Transcompiltation Pipeline

Previous works:
Transcompilation Pipeline between firewall languages

Supports iptables, pf, ipfw and (partially) CISCO-ios
General approach
Supports NAT
Formal semantics

Why
For automated policy porting (first general approach!)
For configuration refactoring
Synthesis of a high level declarative configuration
Basis for other policy management tasks

From Firewalls to Functions and Back 3 / 17

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

configuration update
configuration testing
configuration generation
policy verification
various representation

compilation

From Firewalls to Functions and Back 4 / 17

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

configuration update
configuration testing
configuration generation
policy verification
various representation

compilation

From Firewalls to Functions and Back 4 / 17

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

configuration update
configuration testing
configuration generation
policy verification
various representation

compilation

From Firewalls to Functions and Back 4 / 17

Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

configuration update
configuration testing
configuration generation
policy verification
various representation

compilation

From Firewalls to Functions and Back 4 / 17

IFCL — Intermediate Firewall Configuration Language

Each firewall system
Has its own configuration language
Makes different evaluation steps to process packets
Lots of low level details

First do the NAT, than filtering or vice-versa?
How to express complex conditions (negated)?

General Model

Firewall = set of rules + the evaluating procedure

From Firewalls to Functions and Back 5 / 17

IFCL — Intermediate Firewall Configuration Language

Each firewall system
Has its own configuration language
Makes different evaluation steps to process packets
Lots of low level details

First do the NAT, than filtering or vice-versa?
How to express complex conditions (negated)?

General Model

Firewall = set of rules + the evaluating procedure

From Firewalls to Functions and Back 5 / 17

IFCL — Intermediate Firewall Configuration Language

Firewall = set of rules + the evaluating procedure

Control Diagram

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

S are the addresses of the firewall

From Firewalls to Functions and Back 6 / 17

IFCL — Intermediate Firewall Configuration Language

Firewall = set of rules + the evaluating procedure

Configuration

Assigns a rulesets to each node

Ruleset : list of rules r = (φ, a)
φ(p) : condition
a : action

ACCEPT
DROP
NAT(dn, sn)
MARK(m)
GOTO(R)
CALL(R)
RETURN

Control Diagram

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

S are the addresses of the firewall

From Firewalls to Functions and Back 6 / 17

IFCL — Intermediate Firewall Configuration Language

Firewall = set of rules + the evaluating procedure

Configuration

Assigns a rulesets to each node

Ruleset : list of rules r = (φ, a)
φ(p) : condition
a : action

ACCEPT
DROP
NAT(dn, sn)
MARK(m)
����GOTO(R)
����CALL(R)
����RETURN

Control Diagram

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

S are the addresses of the firewall

From Firewalls to Functions and Back 6 / 17

Transcompilation Pipeline

ipfw

qi

q0

q1

qf

ipfw

qf

q1q0

qi

q2 q3 pf

pf

formalization

synthesis

generation

translate

From Firewalls to Functions and Back 7 / 17

From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

Functions are an handy domain:
They allow simple and general solutions

From Firewalls to Functions and Back 8 / 17

From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

Functions are an handy domain:
They allow simple and general solutions

From Firewalls to Functions and Back 8 / 17

From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

Functions are an handy domain:
They allow simple and general solutions

From Firewalls to Functions and Back 8 / 17

From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

Functions are an handy domain:
They allow simple and general solutions

From Firewalls to Functions and Back 8 / 17

Rulesets and Firewalls as Functions

τ : P → T (P) ∪ {⊥} where

P network packets
T (P) transformations possibly applied to packets

⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes
translation: from IFCL to pf configuration language

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ

τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

r.synthesis

composition

generation

From Firewalls to Functions and Back 9 / 17

Rulesets and Firewalls as Functions

τ : P → T (P) ∪ {⊥} where

P network packets
T (P) transformations possibly applied to packets

⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes
translation: from IFCL to pf configuration language

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ

τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

r.synthesis

composition

generation

From Firewalls to Functions and Back 9 / 17

Rulesets and Firewalls as Functions

τ : P → T (P) ∪ {⊥} where

P network packets
T (P) transformations possibly applied to packets

⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes
translation: from IFCL to pf configuration language

Why:
Parametric w.r.t. IFCL specification
Support minimal control diagrams and MARK
Translation from IFCL to target language is trivial

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ

τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

r.synthesis

composition

generation

From Firewalls to Functions and Back 9 / 17

Function Representation

Functions τ : P → T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension

From Firewalls to Functions and Back 10 / 17

Function Representation

Functions τ : P → T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension

From Firewalls to Functions and Back 10 / 17

Function Representation

Functions τ : P → T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension

succinct representation
sets of packets verifying rule conditions
sets of packets verifying arc conditions
closed under transformations

From Firewalls to Functions and Back 10 / 17

Synthesis

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

{
From Firewalls to Functions and Back 10 / 17

Ruleset Synthesis

From a ruleset to a set of pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets not managed
t transformation assigned to P

Base Case: if R = [] just returns { (P, t) }

Else: take the first rule (φ, action)

P =
{
Ps packets that verifies φ
Pn packets that do not – managed by the other rules

if action terminates the packet processing then (Ps, t′)
else Ps also managed by the other rules (updated transformation t′)

From Firewalls to Functions and Back 11 / 17

Ruleset Synthesis

From a ruleset to a set of pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets not managed
t transformation assigned to P

Base Case: if R = [] just returns { (P, t) }

Else: take the first rule (φ, action)

P =
{
Ps packets that verifies φ
Pn packets that do not – managed by the other rules

if action terminates the packet processing then (Ps, t′)
else Ps also managed by the other rules (updated transformation t′)

From Firewalls to Functions and Back 11 / 17

Ruleset Synthesis

From a ruleset to a set of pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets not managed
t transformation assigned to P

Base Case: if R = [] just returns { (P, t) }

Else: take the first rule (φ, action)

P =
{
Ps packets that verifies φ
Pn packets that do not – managed by the other rules

if action terminates the packet processing then (Ps, t′)
else Ps also managed by the other rules (updated transformation t′)

From Firewalls to Functions and Back 11 / 17

Ruleset Synthesis

From a ruleset to a set of pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets not managed
t transformation assigned to P

Base Case: if R = [] just returns { (P, t) }

Else: take the first rule (φ, action)

P =
{
Ps packets that verifies φ
Pn packets that do not – managed by the other rules

if action terminates the packet processing then (Ps, t′)
else Ps also managed by the other rules (updated transformation t′)

From Firewalls to Functions and Back 11 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)

p′
ψ(p′)?

p′
(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)

p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?

p′
(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)

... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?

p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then

compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node

Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′
. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)

From Firewalls to Functions and Back 12 / 17

Example from ipfw to pf: formalization
ipfw -q nat 1 config ip 151.15.185.183
ipfw -q nat 2 config redirect port tcp 9.9.8.8:17 17
ipfw -q add 0010 nat 1 tcp from 192.168.0.0/24 to not 192.168.0.0/24
ipfw -q add 0020 nat 2 tcp from 151.15.185.183 to not 192.168.0.0/24 17
ipfw -q add 0030 allow tcp from 151.15.185.183 to not 192.168.0.0/24 out
ipfw -q add 0040 deny all from any to any

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24,
NAT(? : ?, 151.15.15.183 : ?));

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17,
NAT(9.9.8.8 : ?, ? : ?));

(true, DROP)

R1 : . . .

From Firewalls to Functions and Back 13 / 17

Example from ipfw to pf: formalization
ipfw -q nat 1 config ip 151.15.185.183
ipfw -q nat 2 config redirect port tcp 9.9.8.8:17 17
ipfw -q add 0010 nat 1 tcp from 192.168.0.0/24 to not 192.168.0.0/24
ipfw -q add 0020 nat 2 tcp from 151.15.185.183 to not 192.168.0.0/24 17
ipfw -q add 0030 allow tcp from 151.15.185.183 to not 192.168.0.0/24 out
ipfw -q add 0040 deny all from any to any

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24,
NAT(? : ?, 151.15.15.183 : ?));

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17,
NAT(9.9.8.8 : ?, ? : ?));

(true, DROP)

R1 : . . .

From Firewalls to Functions and Back 13 / 17

Example from ipfw to pf: ruleset synthesis

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24, NAT(? : ?, 151.15.15.183 : ?));
(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17, NAT(9.9.8.8 : ?, ? : ?));
(true, DROP)

τ0

Received packets Accepted packets
source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

From Firewalls to Functions and Back 14 / 17

Example from ipfw to pf: ruleset synthesis

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24, NAT(? : ?, 151.15.15.183 : ?));
(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17, NAT(9.9.8.8 : ?, ? : ?));
(true, DROP)

τ0

Received packets Accepted packets
source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

From Firewalls to Functions and Back 14 / 17

Example from ipfw to pf: composition

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

τ0
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

τ1
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
151.15.185.183 * * \{ 192.168.0.0/24 } * \{ - - 9.9.8.8 -

17 }

Received packets Accepted packets
source destination source destination

151.15.185.183 * * \{ 151.15.185.183 * \{17} - - - -
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 * \{17} 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 17 151.15.185.183 - 9.9.8.8 -
151.15.185.183
192.168.0.0/24 }

192.168.0.1 * * \{ 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

From Firewalls to Functions and Back 15 / 17

Example from ipfw to pf: composition

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

τ0
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

τ1
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
151.15.185.183 * * \{ 192.168.0.0/24 } * \{ - - 9.9.8.8 -

17 }

Received packets Accepted packets
source destination source destination

151.15.185.183 * * \{ 151.15.185.183 * \{17} - - - -
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 * \{17} 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 17 151.15.185.183 - 9.9.8.8 -
151.15.185.183
192.168.0.0/24 }

192.168.0.1 * * \{ 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

From Firewalls to Functions and Back 15 / 17

Generation

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

{
From Firewalls to Functions and Back 15 / 17

How to generate functions

Problem: not every ruleset can be assigned to each node!

To guarantee the final translation
Simple targets: ACCEPT, DROP and NAT
Assign Labels to nodes:

DROP
SNAT
DNAT

Different expressive power

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

sIP /∈ S

sIP ∈ S

dIP /∈ S
dIP ∈ S

dIP ∈ S
dIP /∈ S

Algorithm
For each pair (P, t) with t 6= ⊥

Find the path
For each node q

Preceding nodes → Pq
Labels in q → tq

Special management for DROP pairs (P,⊥)
For each node: packets still not managed
Drop as many of these as possible

From Firewalls to Functions and Back 16 / 17

How to generate functions

Problem: not every ruleset can be assigned to each node!

To guarantee the final translation
Simple targets: ACCEPT, DROP and NAT
Assign Labels to nodes:

DROP
SNAT
DNAT

Different expressive power

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

sIP /∈ S

sIP ∈ S

dIP /∈ S
dIP ∈ S

dIP ∈ S
dIP /∈ S

Algorithm
For each pair (P, t) with t 6= ⊥

Find the path
For each node q

Preceding nodes → Pq
Labels in q → tq

Special management for DROP pairs (P,⊥)
For each node: packets still not managed
Drop as many of these as possible

From Firewalls to Functions and Back 16 / 17

How to generate functions

Problem: not every ruleset can be assigned to each node!

To guarantee the final translation
Simple targets: ACCEPT, DROP and NAT
Assign Labels to nodes:

DROP
SNAT
DNAT

Different expressive power

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

sIP /∈ S

sIP ∈ S

dIP /∈ S
dIP ∈ S

dIP ∈ S
dIP /∈ S

Algorithm
For each pair (P, t) with t 6= ⊥

Find the path
For each node q

Preceding nodes → Pq
Labels in q → tq

Special management for DROP pairs (P,⊥)
For each node: packets still not managed
Drop as many of these as possible

From Firewalls to Functions and Back 16 / 17

Conclusion

The presented transcompilation approach
Is parametric w.r.t. the IFCL specification
Supports the use of tags
Supports firewalls with minimal control diagram
Preserves the NAT
Reveals different expressive power of firewall languages

Ongoing and Future Works
Coding and Testing
Non-trivial multi-cube merging procedure
Support for holistic network management
High-level tools for network management, compatible with old technology

From Firewalls to Functions and Back 17 / 17

Conclusion

The presented transcompilation approach
Is parametric w.r.t. the IFCL specification
Supports the use of tags
Supports firewalls with minimal control diagram
Preserves the NAT
Reveals different expressive power of firewall languages

Ongoing and Future Works
Coding and Testing
Non-trivial multi-cube merging procedure
Support for holistic network management
High-level tools for network management, compatible with old technology

From Firewalls to Functions and Back 17 / 17

	Synthesis
	Generation

