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What is a Firewall?

172.16.0.254
ext

10.0.1.1
eth0

eth1
10.0.2.1

Inspects the traffic on a node of the network, for each packet
accepts or drops it
possibly changes the addresses (NAT)

Based on a configuration
List of rules
Possibly using tags
Procedure-like constructs
Interaction among rules (Shadowing)
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Motivations

Firewalls are a basic tool for protecting network
Widespread
Configuration-based
Different configuration languages (iptables, pf, ipfw)
It’s Hard to configure and manage firewalls
Cross-platform policy porting is Harder

Misconfigurations cause unintended behaviour
Possible Threats
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Transcompiltation Pipeline

Previous works:
Transcompilation Pipeline between firewall languages

Supports iptables, pf, ipfw and (partially) CISCO-ios
General approach
Supports NAT
Formal semantics

Why
For automated policy porting (first general approach!)
For configuration refactoring
Synthesis of a high level declarative configuration
Basis for other policy management tasks
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Our Goal

Old Legacy Technology iptables
ipfw

pf

High level representation

decompilation

configuration update
configuration testing
configuration generation
policy verification
various representation

compilation
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IFCL — Intermediate Firewall Configuration Language

Each firewall system
Has its own configuration language
Makes different evaluation steps to process packets
Lots of low level details

First do the NAT, than filtering or vice-versa?
How to express complex conditions (negated)?

General Model

Firewall = set of rules + the evaluating procedure
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IFCL — Intermediate Firewall Configuration Language

Firewall = set of rules + the evaluating procedure

Control Diagram

qi

q0 q1

qf

sIP /∈ S sIP ∈ S

dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

S are the addresses of the firewall
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Configuration

Assigns a rulesets to each node
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Transcompilation Pipeline

ipfw

qi

q0

q1

qf

ipfw

qf

q1q0

qi

q2 q3 pf

pf

formalization

synthesis

generation

translate
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From Firewalls to Functions and Back: The Idea

Previous implementation of the pipeline synthesis:
Compute the models of a predicate (SAT-solver)
Black-box approach (no fine tuning)

Change of domain:
Function-based redefinition of the pipeline

(Firewalls _ Functions) :
source configuration 7→ function representing its meaning

(Firewalls ^ Functions) :
functional representation 7→ target configuration

Functions are an handy domain:
They allow simple and general solutions
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Rulesets and Firewalls as Functions

τ : P → T (P) ∪ {⊥} where

P network packets
T (P) transformations possibly applied to packets

⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes
translation: from IFCL to pf configuration language

. . .

qi

q0

q1

qf

τ1

τ0

qi

q0

q1

qf

τ

τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

r.synthesis

composition

generation
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⊥ discard of a packet

New pipeline stages:
ruleset synthesis: rulesets became functions
composition: computes the semantics of the firewall
generation: assign functions to the target nodes
translation: from IFCL to pf configuration language

Why:
Parametric w.r.t. IFCL specification
Support minimal control diagrams and MARK
Translation from IFCL to target language is trivial

. . .
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Function Representation

Functions τ : P → T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension
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Function Representation

Functions τ : P → T (P) ∪ {⊥} as sets of pairs (P, t)
t is a transformation
P is a multi-cube of packets

Cube :
Cartesian product of one segment
for each dimension

Multi-cube :
Cartesian product of one union of
segments for each dimension

succinct representation
sets of packets verifying rule conditions
sets of packets verifying arc conditions
closed under transformations
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Synthesis

. . .

qi

q0

q1

qf
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τ τ0 τ1

τ2 τ3

qf

q1q0

qi

q2 q3

. . .

{
From Firewalls to Functions and Back 10 / 17



Ruleset Synthesis

From a ruleset to a set of pairs (P, t)

We scan the ruleset rule-by-rule, keeping track of
P packets not managed
t transformation assigned to P

Base Case: if R = [ ] just returns { (P, t) }

Else: take the first rule (φ, action)

P =
{
Ps packets that verifies φ
Pn packets that do not – managed by the other rules

if action terminates the packet processing then (Ps, t′)
else Ps also managed by the other rules (updated transformation t′)
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Composition

τ

P1 t1

P2 t2

P3 t3

τ ′

P ′
1 t′1

P ′
2 t′2

P ′
3 t′3

q q′

p

(p, t)
p′

ψ(p′)?
p′

(p′, t′)

Globally p 7→ t updated with t′

. . .

ψ

Ideally, for each p ∈ P

compute t in the first node

compute p′:
(how p is when exits node q)

check ψ(p′)... if ti does then
compute t′ in the second node
Overall: p 7→ t updated by t′

Composition Algorithm:

The same,
but with Multi-cubes ...

(... plus details)
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Example from ipfw to pf: formalization
ipfw -q nat 1 config ip 151.15.185.183
ipfw -q nat 2 config redirect port tcp 9.9.8.8:17 17
ipfw -q add 0010 nat 1 tcp from 192.168.0.0/24 to not 192.168.0.0/24
ipfw -q add 0020 nat 2 tcp from 151.15.185.183 to not 192.168.0.0/24 17
ipfw -q add 0030 allow tcp from 151.15.185.183 to not 192.168.0.0/24 out
ipfw -q add 0040 deny all from any to any

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24,
NAT(? : ?, 151.15.15.183 : ?));

(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17,
NAT(9.9.8.8 : ?, ? : ?));

(true, DROP)

R1 : . . .
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Example from ipfw to pf: ruleset synthesis

R0 : (sIP ∈ 192.168.0.0/24 ∧ dIP /∈ 192.168.0.0/24, NAT(? : ?, 151.15.15.183 : ?));
(sIP = 151.15.185.183 ∧ dIP /∈ 192.168.0.0/24 ∧ dPort = 17, NAT(9.9.8.8 : ?, ? : ?));
(true, DROP)

τ0

Received packets Accepted packets
source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
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Example from ipfw to pf: composition

qi

q0 q1

qf

sIP /∈ S sIP ∈ S
dIP /∈ S

dIP ∈ S dIP /∈ S

dIP ∈ S

τ0
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -

τ1
Received packets Accepted packets

source destination source destination

192.168.0.0/24 * * \{ 192.168.0.0/24 } * 151.15.185.183 - - -
151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
151.15.185.183 * * \{ 192.168.0.0/24 } * \{ - - 9.9.8.8 -

17 }

Received packets Accepted packets
source destination source destination

151.15.185.183 * * \{ 151.15.185.183 * \{17} - - - -
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 * \{17} 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

192.168.0.0/24 \{192.168.0.1} * * \{ 127.0.0.1 17 151.15.185.183 - 9.9.8.8 -
151.15.185.183
192.168.0.0/24 }

192.168.0.1 * * \{ 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
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192.168.0.1 * * \{ 127.0.0.1 * 151.15.185.183 - - -
151.15.185.183
192.168.0.0/24 }

151.15.185.183 * * \{ 192.168.0.0/24 } 17 - - 9.9.8.8 -
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Generation
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qi
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qi
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How to generate functions

Problem: not every ruleset can be assigned to each node!

To guarantee the final translation
Simple targets: ACCEPT, DROP and NAT
Assign Labels to nodes:

DROP
SNAT
DNAT

Different expressive power

{DNAT} {DROP}

{SNAT} {DROP}

qf

q1q0

qi

q2 q3

sIP /∈ S

sIP ∈ S

dIP /∈ S
dIP ∈ S

dIP ∈ S
dIP /∈ S

Algorithm
For each pair (P, t) with t 6= ⊥

Find the path
For each node q

Preceding nodes → Pq
Labels in q → tq

Special management for DROP pairs (P,⊥)
For each node: packets still not managed
Drop as many of these as possible
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Conclusion

The presented transcompilation approach
Is parametric w.r.t. the IFCL specification
Supports the use of tags
Supports firewalls with minimal control diagram
Preserves the NAT
Reveals different expressive power of firewall languages

Ongoing and Future Works
Coding and Testing
Non-trivial multi-cube merging procedure
Support for holistic network management
High-level tools for network management, compatible with old technology
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