
Università di Pisa

Dipartimento di Informatica
Ph.D. Programme in Computer Science

Ph.D. Thesis

Access Control Policies

Across Abstraction Layers

Lorenzo Ceragioli

Supervisors:

Pierpaolo Degano
Letterio Galletta

Referees:

David Basin
Rosario Pugliese

Contents

1 Introduction 2
1.1 Two Layers Approach . 4

1.1.1 The Gap Between Specification and Implementation . . . 4
1.1.2 Our Proposal . 6

1.2 Three Solutions for Three Contexts 10
1.2.1 Networks Firewalls as Functions 10
1.2.2 Specifying Information Flow in Operating Systems 11
1.2.3 Permission Exchanges in Collaborative Environments . . 12

1.3 State of the Art . 12
1.4 Structure of the Thesis . 17
1.5 Published Work . 17

2 Network 19
2.1 Background . 21
2.2 Formalizing the Low Level . 23

2.2.1 Intermediate Firewall Configuration Language: IFCL . . . 24
2.2.2 Encoding Unix Firewalls 26
2.2.3 Legal Firewalls . 29
2.2.4 Operational Semantics . 30
2.2.5 Normal form . 33

2.3 Modeling the High Level . 35
2.3.1 Firewalls as functions . 35
2.3.2 Effective Representation of Firewalls 35
2.3.3 The FireWall Query Language FWQL 36

2.4 Decompilation . 37
2.4.1 Logical characterization of firewalls 38

2.5 Compilation . 43
2.5.1 Ruleset Generation . 44
2.5.2 Ruleset Association . 44

2.6 The Problem of Expressivity . 48
2.6.1 Denotational Semantics 48
2.6.2 Allowed Transformations 50
2.6.3 Individual Expressivity 50
2.6.4 Function Expressivity . 55

2.6.5 Checking the expressivity of a fw-function 57
2.7 Implementation . 62

2.7.1 FWS . 62
2.7.2 F2F . 73

2.8 Related Work . 79
2.9 Conclusions and Future Work . 83

3 System 84
3.1 Background . 87
3.2 Formalizing the Low Level . 91
3.3 Extending CIL with Information Flows 95

3.3.1 The High Level: IFL . 96
3.3.2 IFCIL . 98

3.4 Requirement verification . 101
3.4.1 The tool IFCILverif . 103

3.5 Related Work . 107
3.6 Conclusions and future work . 109

4 Collaborative Environments 111
4.1 Introducing the High Level: MuAC 113

4.1.1 MuAC Access Control System 113
4.1.2 Running Example . 114
4.1.3 MuAC Syntax . 116

4.2 The Low Level: A Logic for MuAC 117
4.2.1 Contractual Linear Implication 117
4.2.2 Contractual Linear Non-Linear Logic 121
4.2.3 Deciding CLNL* . 123

4.3 Binding Layers: MuAC Formalization 129
4.3.1 MuAC Semantics . 129
4.3.2 Formalizing MuAC System Evolution 130
4.3.3 Examples . 130

4.4 Implementing the MuAC System 132
4.4.1 Computing System Evolution 136
4.4.2 MuAC as a Smart Contract 137
4.4.3 Context of Application . 139

4.5 Dealing with Reusable Resources 140
4.5.1 MuAC Semantics Revisited 140
4.5.2 System Evolution Revisited 141
4.5.3 Discussion About Linearity 141

4.6 Related Work . 142
4.7 Conclusions and future work . 144

5 Conclusions 146

A Technical Details and Proofs of Chapter 2 160
A.1 IFCL Normal Form: Proofs . 160
A.2 Decompilation: Proofs . 163
A.3 Compilation: Proofs . 165
A.4 Computing the Representative Pairs 168
A.5 Firewall Expressivity: Proofs . 169

B Technical Details and Proofs of Chapter 3 179
B.1 Formalizing CIL . 179
B.2 IFL: Proofs . 182
B.3 Syntax and semantics of IFCIL 185
B.4 Verification: Proofs . 185

C Technical Details and Proofs of Chapter 4 188
C.1 CLNL* Immersion: Proofs . 188
C.2 CLNL* Decidability: Proofs . 193

C.2.1 Normalized CLNL* proofs 193
C.2.2 Deciding CLNL* . 199

Abstract

System administrators specify the access control policy they want and im-
plement the relevant configuration for enforcing it. Specifying policies and im-
plementing configurations require users to switch from one level of abstraction
to another, often changing language and tools. The gap between these two ab-
straction layers seems to be a widespread problem, and may cause poor security
and low efficiency.

Our thesis aims at proposing solutions, based on formal semantics and logic,
for security engineers to interact with access control systems at different ab-
straction layers for configuring, updating and verifying system behaviour. We
consider different contexts: networks, operating systems and collaborative en-
vironments. For each of them we formally model the low level of the executable
configurations and propose a high level language inspired by the needs of policy
designers.

For network security, we propose FWS, a tool that allows the administra-
tor to manage a firewall configuration written in a legacy language (iptables,
pf, ipfw) abstracting away from low level details like shadowing, tags and the
limitations of packet matching. The idea is to provide the administrator with
a declarative description of the behaviour, and with the means for reasoning
about the system security. The possibly modified declarative description can be
then compiled back to the preferred language. This also offers the possibility
for transcompilation, but contrary to the expectation, legacy languages are not
equally expressive. We study the expressive power of Unix firewall languages
and propose the tool F2F to check if a given configuration is expressible in
another firewall language.

For system security, we target SELinux configurations. We propose IFL,
a domain specific language for defining fine grained information flow require-
ments (including confidentiality, integrity and non-transitive properties). IFL
expresses both functional requirements, i.e., which permissions must be granted
to users for performing their authorized tasks, and security requirements, i.e.,
information flows to forbid because possibly dangerous. We extend CIL, a
SELinux policy language for writing structured configurations, with IFL re-
quirements. In this way, the administrator abstracts from the details of the
system, expressing desired high level properties of the configuration. A verifica-
tion procedure is given and implemented in the tool IFCILverif that statically
checks that all the requirements are met in a configuration. Moreover, we em-
pirically validate our formal semantics of CIL, and discover some unspecified
corner cases and disagreements between the documentation and the compiler.

Finally, we consider collaborative environments, in which the users interact
by sharing or exchanging assets for mutual advantage. We designed MuAC,
an high level language with which each user can express what they want in
return for allowing access to their assets. We address both the case of infinite

or reusable assets, where the asset is still available to the owner after he allows
access to it, and the case of finite resources that are consumed when exchanged.
The low level is a non-standard logical theory that also gives semantics to MuAC
policies, and the evaluation of access requests rely on logical deductions. Finally,
we propose a compilation from abstract policies to logical theories, and an al-
gorithm for deciding access requests by changing ownership of the resources or
updating an access control matrix, driving the system to behave correctly.

2

Acknowledgement

The work presented here was only possible thanks to the support of my advi-
sors Prof. Pierpaolo Degano and Dott. Letterio Galletta: my warmest thanks.
I would also like to express my gratitude to Prof. Nicola Zannone and Prof.
Joshua D. Guttman for their useful suggestions and comments on the first ver-
sion of this thesis. Finally, I want to thank Prof. David Basin and Prof. Luca
Viganò for being wonderful hosts during my visits.

1

Chapter 1

Introduction

Access control mechanisms are usually the first line of defence in computing
systems. They selectively restrict access to resources, distinguishing between
legitimate and illegitimate requests. These mechanisms perform two tasks:
preventing unauthorized users from gaining access to resources, and enabling
authorized users to access resources in a regulated manner.

This thesis will adopt the standard terminology: subjects are the users that
may want to perform certain actions; resources are the possible objects of re-
quests, they are the assets that we have to protect; operations are the possible
actions that the subjects may perform on some resource; requests are communi-
cations from a subject to the system in which he asks the permission to perform
an operation on a resource. Access control is strictly correlated to authentica-
tion. Anyway, we focus only on actual access control, abstracting from the issues
of authenticating access requests, for which different technologies are nowadays
available.

Providing a configuration is the most common way of describing how the
system should evaluate the requests. Some alternative methods exist, like rely-
ing on the ability of the device to reason or to perceive the environment [30].
Here we will focus on policy based access control.

Access control requires enforcement mechanisms that act on the target sys-
tem for preventing undesired behaviour. To reflect the needs and the security
concerns of the system, a configuration must be produced for these mecha-
nisms. We call low level the one that faithfully represents the system and the
enforcing mechanisms, where the prescription of the configuration are actually
implemented. For example, on a common Unix system, the typical enforc-
ing mechanism receives requests for performing operations on a given file, and
knows the owner of the file and the username and group of the requester, and
a configuration can only be based on very concrete models.

Above there is the high level that is used for abstractly reasoning about the
system security. It hides the implementation details making easier to define
strategies and desired properties. The high level is used when designing ab-
stract policies, that we call specifications, and that encode the rules according

2

to which access control must be regulated. Configurations and requirements
have the same purpose, i.e., defining the correct behaviour, but only the first
one can actually be implemented by the enforcement mechanisms of the un-
derlying system, whereas the second one is more adequate for expressing and
reasoning about security. Hereafter, we use the term policy to refer either to
the high or low level description.

Different tasks must be performed, e.g., defining the security properties,
verifying their correctness, implementing an executable configuration, testing
its performance and evaluating its robustness. Each of these requires different
languages and tools, and is better performed at one of the abstraction layers. In
the field of access control, the gap between these two abstraction layers seems
to be a widespread problem, causing poor security and efficiency.

Consider for example a Linux server with multiple services that shares a
common file system. In general, the different services may accede a separate part
of the operating system, but some interaction may be needed, either through
sockets or shared files. At the high level, the administrator collects the security
requirements of the system, that speak about isolation, confidentiality and non-
interference between different entities (users and services). The language used
for these requirements may be a logical one, that can be analyzed resorting to
standard techniques and tools. The access control system of the server may
be either SELinux or the usual Unix discretionary access control (or both),
and an actual configuration must be produced to enforce the desired behavior.
When writing the configuration, the administrator must encode the high level
requirements into a low level language, that is either very intricate (like the
one of SELinux), or provides no high level features (like Unix Access Control
Lists). In both cases, manually coding is time consuming and error prone, and
the configuration must be checked for possible misconfigurations.

We propose an approach for enabling security engineers to interact with
access control systems at different abstraction layers for configuring, updating
and verifying system behaviour. The main idea is to keep both the low and
the high level representations, and to maintain them coherent also when they
change. A special care is needed with respect to specific elements, like the
management of low level details and the limitations of the underlying system.

We apply our approach in three different contexts: network security, system
security and collaborative environment. For each of them we formally model
both high and low level, and grant coherence with different means.

Structure of the Chapter

In Section 1.1 we state the problem and present our approach in a general
setting. In Section 1.2 we briefly describe how we instantiate the two-layers
approach on different contexts: firewalls, SELinux configurations, and policies
for exchanging access rights in collaborative environments. In Section 1.3 we
compare our approach with similar ones in the literature. In Section 1.4 we
present the plan of the thesis. Finally, in Section 1.5 we briefly discuss the
candidate’s publications that share parts of the thesis.

3

1.1 Two Layers Approach

In this section we introduce the problem that we address, discuss its relevance
and which are the requirements for a good solution. Then we present our pro-
posed approach, and how to apply it in different contexts.

1.1.1 The Gap Between Specification and Implementation

The world of Access Control (AC) is large and various, with lots of challenges
related to the very specific domains. In Big Data, for example, one of the main
problems seems to be a missing common framework among different technolo-
gies [41], while in social networks the user and his relationships are central when
evaluating access requests [56].

Nevertheless, the separation between the abstract layer of policy specifica-
tions and their actual implementation seems to be a common problem in every
kind of access control, and in every domain [110, 22]. Very often the two tasks
are performed by different groups of people, having different background and
using different languages and technology. It is also possible that some specifica-
tions come from legal requirements to which the policy must comply, and thus
have been defined outside the organization itself. Communication among those
groups is difficult and may cause misunderstandings. Usually this leads to poor
security and efficiency [22]. Sometimes, the same group carries both the tasks
of designing and implementing the security policy. But also in this case, these
tasks are performed in two separate phases, and using different languages and
level of abstractions. Indeed, using the same languages and models for both
specification and implementation is not optimal, even when a single group takes
care of both. As in any activity, security engineers should use the right level
of abstraction for the task they are performing, otherwise there is the sensible
risk to miss important interactions or details that lead to violations. It is well
known that “the devil is in the detail,” especially in security. The productiv-
ity and reliance of systems increases if the engineers can actually select which
details are to be taken into account for each sub-task, at various steps of their
work. But the division has to be done properly. In particular there must be
no discrepancies between the different abstraction layers. Policy designer and
configuration implementer operate on the same system using different represen-
tations that must be consistent. Passing from a layer to another is always error
prone, hence reliable tools are needed.

Assume for example to have a network of terminals and servers connected to
the Internet. When specifying who can access the services, the policy designers
will use a representation that considers users, services, and classes of users and
services. A possible requirement could be that “users from the Internet cannot
access critical services.” The implementation may be a firewall configuration
that drops every packets having an external IP address and a server address in
the source and destination fields, respectively. Even in this very simple example
it is not trivial to understand if the implementation is correct, because it heavily
depends on low-level details. Indeed, consider an IP spoofing attack, a malicious

4

user from the Internet sends a packet to the server but using a forged source
IP address. If the configuration is implemented without any countermeasure
and mitigation for this kind of attacks, the firewall will let these packets pass
even if it should not. However, it is reasonable that the high-level specification
describes the policy without bothering about these low levels details. Ensuring
that all the possible cases are considered when implementing the specification
is tricky, especially because different requirements may interact. Furthermore,
other interactions between the two abstraction layers have to be considered.
Implementing the given specification and verifying the implementation with
respect to a high level requirement is not always the end of the story. Security
policies may evolve over time, hence updates and maintenance are also relevant.
The attack surface is indeed different at the two levels: for this reason it is not
always reasonable to assume that everything is to be managed at the high level.
Hence, the problem of bridging the gap between these two layers is relevant for
the management of access control configurations.

Two types of problems may occur when interfacing the two levels, some mis-
understanding about the low level may happen when working with the high level
or vice-versa. One of the common problems of the first type is that the abstract
model, used to design the security policies, hardly takes into account the limita-
tions that real systems have. These limitations could arise both when accessing
information about the access requester and when enforcing the decision. Be-
cause of this mismatch of expressivity, sometimes the implementer may have to
work with policies that cannot be enforced, forcing him to simplify, and some-
times also to resolve conflicts among different requests, which should instead be
performed at the specification level. In practice the implementer would have
to make policy-design decisions at deployment time, possibly without notifying
policy designers, and getting a feedback from them.

Moreover, deploying a security policy requires to translate the high level
specifications into low level configurations, expressed in implementation-dependent
languages, which are possibly obscure due to legacy technology. Manually per-
forming this task is often expensive and error prone since it requires the imple-
menter to understand the exact correlation between the high level formulation
and the low level constructs. Misbehaviours may result from a misunderstand-
ing of the original policy or from a mistake due to intricacies of the low level
language.

We present now some possible scenarios in which it is hard guaranteeing that
nothing important is lost in between of the two levels of policy specifications
and implementation.

Example 1.1. Suppose that in an organization different groups share a Unix
server, in which each file is associated with an owner and the set of permitted
operations to the group of the owner. At this level each user is part of a unique
group, and it is not possible to make distinctions among different members of
the same group.

Instead, it is common for people to be part of different groups. Moreover,
not every member of a certain group has the same access rights, rather per-

5

missions are determined by the specific roles inside the group. The high level
specifications are therefore role-based, whereas the low level is based on a more
primitive mechanism: access control list with groups.

To actually implement the policy in the server, each subject may be associ-
ated with different users, and users may be grouped depending on a combination
of groups and roles. The task of manually configuring the system to meet the
requirements by creating the user accounts and groups is intricate, and even a
small mistake can be difficult to spot. Moreover, updating and checking the cor-
rectness of the server configuration would be very tricky. For this reason these
operations should be carried out at the high level, and somehow propagated
accordingly to the low level.

Example 1.2. Consider a network that is protected by a firewall. Only some
specific devices inside the network are allowed to connect to all the internal
servers, whereas other servers are accessible by everybody. Moreover, users
from the internal network may freely access the Internet.

Requirements are usually collected in informal languages that speak of ab-
stracted entities like users, services and communication. The firewall conversely
runs a configuration speaking of packets fields and interfaces. When implement-
ing a specification it is not trivial to consider every possible case, with the risk
of obtaining an over-permissive or over-restrictive policy.

The standard mechanism is based on by hand implementation plus testing
for correcting misbehaviour. This is not the best approach since some corner
cases can evade the testing, and more in general, manually coding the policy is
not an efficient choice. Furthermore, the specification may also be impossible to
implement, for example because it requires the firewall to realize a given policy
of load balancing that is beyond the capabilities of the actual system. It is not
a valid solution to ask the implementer to patch it, deciding how to downgrade
the requirements without consulting the policy designers.

1.1.2 Our Proposal

We first give the desired properties that an approach must satisfy to correctly
bridge the gap between specifications and implementation. Then we present
three possible solutions for instantiating our two-layer approach in different real-
world contexts. Finally, we discuss the challenges we face in order to succeed in
our goal.

Desired Properties of the Two Layer Approach

We propose a methodology that includes fully-automated, formally-verified ap-
proaches for bridging the two abstraction layers, avoiding the waste of time and
decrease of security when performing it by hand. At high level, policy designers
know the limitations of the underlying system and their models should repre-
sent them correctly. Furthermore, the administrators in charge of deploying the
policy take care of low level details only, possibly delegating an automated tool
for translating the high level language into the one used by the actual system.

6

Policy Designer

Administrator

High Level

abstract specifications

Low Level

executable configurations

binding

Figure 1.1: Our two-layers approach in a picture.

The types of languages used in the two abstraction layers usually follow
completely different philosophies and styles. Moreover, they vary a lot, making
it difficult to bridge among them. Clearly, high level languages for access control
have the goal to ease the usage for general users. Some of them mimic natural
language [95], others are based on graphical representations [97, 71]. Other
proposals are based on formal logics [122], achieving a more precise semantics
but also requiring the user to be confident with such formalism. Both ease of
use and precision are indeed strong requirements.

Concrete languages for implementing access controls are usually domain spe-
cific, and largely depend on the underlying technology. Often they provide a
limited capability of verifying conditions on the requester (for example, it may
not be possible to make history dependent decisions, or to evaluate some class
of attributes), as well as of performing actions on the requester and on the en-
vironment. In lots of cases, efficiency is a key element for a good configuration,
because of the large amount of requests or low performance of the target device.
Because of backward compatibility with legacy code, it is not unusual for state-
of-the-art technologies to rely on very old and obscure languages that cannot
be substituted with more adequate alternatives. A shallow example follows.

Example 1.3. Consider a corporate building, and assume that doors are con-
trolled by smart readers (e.g., reading cards, PIN and fingerprints). The lan-
guage used by the designers of security policy likely speaks of agents with certain
attributes to be allowed or forbidden to access a room. Administrators work on
one single lock at the time, with specific languages that predicate on attributes
that must be satisfied or on raw access lists, depending on the available tech-
nology. Moreover the low level configuration may specify also how the doors
interact with the requester, specifying the capabilities of each reader. In such a
context, it may be the case that a policy could not be implemented as stated by
the designers, and must undergo a revision phase by the administrators. Possi-
bly, the low level layer also represents communications between the doors and
the control panel that decides if the access has to be granted or denied.

Summarizing, there are (at least) two separate layers concerning access con-
trol (see Figure 1.1):

• the high level of conceptual policy design that abstracts from low level

7

implementation details and it is more suited for planning and specifying
which behaviours to allow and which to prohibit;

• the low level in which configurations are implemented for the various enti-
ties that cooperate to realize the specification, each one with its own legacy
language. Here the tuning of low level configurations must be taken into
account, and practical limitations may occur.

The objective is to bridge between these separate layers. In practice, this serves
to guarantee that the two different groups, namely, the policy designers and the
system administrators, can communicate each other without errors.

Three Different Solutions

Different solutions may be applied to obtain this result. We group them into
one-way translation, two-way translation and verification based.

One-way translation based solutions resort to compilation for automatically
implementing the given specification that can be executed on the system. In this
way, the administrator interacts with the system at the high level, delegating
all the low level details to the compilation procedure. This is possible when the
high level specification deals with all the details that cannot be automatically
managed by the compilation.

Unfortunately, in some contexts, dealing with implementation details is a
task that cannot be fully automatized (yet). Usually, this is because the high
level abstracts from the low level details that need to be considered by human
experts. Thus the administrator has to interact with the system at the low
level, tuning or optimizing the executable configuration. In this case, both the
low and high level representations of the system behaviour change, and if not
managed correctly they can loose coherence.

A two-way translation solution works in this case, i.e., having both a com-
pilation and a decompilation procedures to be applied when the specifications
or the configuration change respectively. The administrator chooses the ade-
quate level to interact with depending on the specific task, and the changes are
propagated to the other level.

Verification based solutions do not rely on automatic updates and delegates
to the user the task of updating one level when the other changes. If the
requirements change the user has to manually update the low level configuration
in order to meet the requirements; if the configurations change, the user has to
manually update the high level specifications. To grant coherence, a procedure
is given for checking if the two representations of the systems coincide. These
solutions are adequate when the high level model abstracts lots of critical low
level details that we still do not know how to manage automatically. In this
case, using a compiled policy would be risky.

The choice between these three approaches is guided both by the complexity
of the context where the access control operates and by the distance between
the chosen high level and the actual system. Abstracting lots of details will
resort in a more handy high level, but it increases the amount of work that

8

is delegated to automatic tools. Low level details are an important part of
system administration, both for mitigating specific low-level attacks and for
efficiency. At the current state of the art, sometimes automatic tools may be
inadequate for this task. Because of this, low level details are taken into account
in different ways by the three solutions: they are managed automatically in
one-way translation, configured automatically and possibly modified by hand
in two-way translation, and entirely in charge of humans in verification based
solutions.

All three solutions guarantee coherence between the two representations and
allow the policy to evolve over time to match the new requirements of the system.

Also expressivity limitations are considered. As previously stated, depend-
ing on the capability of the underlying system, some access control policies may
be impossible to realize in practice. Expressing specifications that cannot be
satisfied by the underlying system would be poorly useful, and even dangerous if
administrator are unaware of the problem. Thus, we characterize the expressiv-
ity of the low level configuration language, and check if it matches the one of the
high level language. When this is not the case, the compilation or verification
procedure informs the policy designers, who can work out a solution when their
requirements are beyond the capabilities of the underlying system.

The Challenges to Face

To apply the two-layer approach in the contexts we target, we have addressed
different technical challenges.

First of all, we have to formally define the coherence between specifica-
tions and implementation. This is needed for proving both the correctness in
verification based solutions and the semantic preservation of compilation and
decompilation in translation based solutions. While the semantics of high level
languages is usually well defined, for low level configuration languages an offi-
cial formal specification is usually missing. Generally speaking, the meaning of
configuration languages is given using examples and intuition, and some par-
ticular cases are not addressed at all, let alone the code itself, when available.
Hence the definition of a formal semantics for the low level languages has been
the first challenge in each domain that we target. We propose formal models
of iptables, pf, ipfw, and SELinux CIL, and validate them through intensive
testing, especially focusing on corner cases. We found several examples where
the behaviour of the low level configuration languages is counterintuitive. More-
over, while formalizing SELinux CIL, we also discovered discrepancies between
the observed behaviour and the official documentation, which has been signaled
and verified by the developers (see Section 3.2).

A second concern is that it is usually algorithmically challenging to bind the
two layers, especially when decompiling or verifying the specifications. When
dealing with access control configurations, one can usually reduce to problems
over finite sets only. However, explicitly enumerating all the possible access
requests is not feasible in practice, because the number is huge. We resort
to standard programming languages techniques, like model checking and SAT

9

solver algorithms. Indeed, these kinds of problems are specific instances of more
general ones from various fields of computer science, but solutions are adjusted
for the peculiar context of access control.

Finally, defining high level languages for specifying relevant policies is an
interesting challenge per sé. We base our high level languages both on well
known concepts, e.g., information flows in SELinux, and new paradigms, like
contractual exchange policies in collaborative environments. In both cases, we
design Domain Specific Languages aiming at ease of use. When formalizing new
paradigms, we also develop non trivial semantics based on non-standard logic.

1.2 Three Solutions for Three Contexts

Now we briefly introduce the three different contexts that we target and discuss
how we instantiate the two-layers approach to solve specific problems.

1.2.1 Networks Firewalls as Functions

In network contexts, we target firewalls. Firewalls are one of the most used
tools for protecting computer networks and enforcing access control policies.
They grant control on which packets can enter a network and how they are
transformed by the so-called network address translation (NAT).

Roughly, low level executable configurations are lists of rules that transform
and filter the incoming packets. Each firewall system comes with its own con-
figuration language, with a specific syntax and a different way of evaluating
and applying the rules. In addition, features like control-flow instructions and
packet tagging mechanisms are used to better organize the configurations, but
may also complicate understanding and management. Moreover, some rules
may shadow others or prevent them from being triggered, depending on the
order in which they appear in the configuration. This makes it hard to read and
modify firewall configurations.

We formally model the most common firewall systems for Unix, i.e., iptables,
pf and ipfw. We also study their expressive power and show that they are not
equally expressive [10, 11, 9].

At the high level, we abstractly represent firewall policies as functions over
IP packets, and propose a SQL-like query language for interacting with them.
The policy designer can directly specify what to do with connection requests in
a declarative way.

A two-way translation is obtained by proposing a compilation from functions
to executable configurations and vice-versa. The administrators can interact
with the system at the level they need for their specific task. In addition,
the expressivity of configurations language is applied for checking if the high
level specification can be implemented in the target system. A couple of tools
are given and experimentally evaluated: FWS for compiling and decompiling
that also supports the administrators with additional features, and F2F for
comparing a policy with the expressivity of the low level configuration language.

10

In this particular instance of the two-layer approach, the low level language
is completely transparent to the high level user. Indeed, the high level language
is not based on the syntax of the configuration languages, but on their semantics
only. When interacting with the abstract specification, the administrator is not
required to know the underlying system. Only the semantics of configurations
has to be considered, expressed as a function over packets. This work is discussed
in Chapter 2.

1.2.2 Specifying Information Flow in Operating Systems

In the context of Operating Systems, we target Security Enhanced Linux (SELinux),
a set of extensions of the Linux kernel that implements a Mandatory Access
Control mechanism in Linux servers and in mobile devices [114]. SELinux con-
figurations are conceptually simple: the system administrator defines a set of
types, uses them to label all system resources and processes, and then defines the
permitted operations of processes of each type. However, its use is far from be-
ing simple. Writing, understanding, and maintaining SELinux security policies
is notoriously difficult as evidenced by numerous examples of misconfigurations
in widely used policies [76]. SELinux developers recently proposed CIL (Com-
mon Intermediate Language), a promising declarative language that supports
the definition of structured configurations, using, e.g., namespaces and macros.

Abstract policies for a system access control commonly predicate on permit-
ted and prohibited information flows between OS entities [65, 48]. We propose
IFL (Information Flow Language) a domain specific language (DSL) for ex-
pressing information flows requirements, including confidentiality, integrity, and
non-transitive properties. The administrator express both the permissions that
must be granted to users to perform their authorized tasks, as well as security
requirements preventing dangerous operations on critical entities.

Summarizing, we identify the high level of the system with information flow
specification, abstractly representing the expected behaviour of the system with
functional and security requirements. The low level is instead the one of CIL
configurations, where every single permission is listed for each entity.

The binding between the two layers is obtained by IFCIL, an extension of
CIL supporting information flow requirements, and a verification procedure for
statically checking that a configuration satisfies its requirements. Intuitively,
the languages of the two layers are merged, and the operators of CIL acts
on IFL requirements as with native CIL instructions. The different layers are
adequate at performing the different tasks: the administrator interact either
with the system specification by operating on the IFL requirement, either with
the executable CIL configuration, and the verification procedure ensures that
the two layers are coherent. The verification procedure is implemented in the
tool IFCILverif that we applied on real-world configurations available online.
This work is discussed in Chapter 3.

11

1.2.3 Permission Exchanges in Collaborative Environments

In the context of collaborative environments we target the problem of granting a
mutual benefit when exchanging access rights. In a distributed setting, each user
has a set of his own resources that are possibly shared with others. Resources
may be either infinite (or reusable), where the asset is still available to the owner
after he allows access to it, or finite, i.e. that are consumed when exchanged.
The access policy protecting these resources should aim at mutual advantages.
For example, different hospitals may share anonymized medical data to improve
the quality of statistics.

Traditional access control languages do not express conditions that foster
mutual benefits, but only check the roles or the attributes. Typically, the ex-
change of access rights and resources is negotiated by humans and implemented
by hand. We propose MuAC, a new high level policy language where access
control decisions are based on permission exchanges between the requester and
the owner of the resource. Polices of different users impact each other, even
though they are defined in isolation and only control the access to the resources
of a single user.

For the low level, we do not work on existing access control systems. Instead,
we propose a logical low level. MuAC relies on the contractual reasoning typical
of human agreements. Unfortunately, this kind of reasoning may induce circular-
ity while evaluating access requests, that are not correctly managed by classical
logic. To overcome this limitation, we introduce an adequate non-standard logic
for contracts.

For binding the abstraction layers, we give a compilation from MuAC policies
to logical theories, that grants the coherence between the high level and low level
representations of the system.

Notably, since this time the low level is not a preexisting access control
technology, we propose an implementation based on blockchain smart contracts,
and an off-chain client. Those allow the user to interact with the system at the
high level abstracting away low level details that are entirely in charge of the
proposed compilation and implementation. This work is discussed in Chapter 4.

1.3 State of the Art

Access control is a widely studied field, surveyed by many papers, e.g. [100, 112,
102]. Over the years, different models for defining access controls policies have
been proposed. Traditional models specifically identify subjects and resources.
They assign access rights directly enumerating the allowed operations for each
pair of subjects and resources. A general approach for describing this assignment
is an access matrix [83]. Rows of the matrix consist of subjects, columns of
resources that may be accessed. Each entry in the matrix indicates the access
rights of a particular subject for a particular resource. In practice, an access
matrix is usually sparse and is represented as a set of columns, yielding access
control lists (ACLs), or rows, yielding capability tickets. For each object, an

12

ACL lists users and their access rights. Conversely, for each user, a capability
ticket specifies authorized objects and operations. A common extension of these
models consider groups. Each user is thus inserted in a specific group and
acquires access rights, accordingly.

Traditional systems define the access rights of individual users and groups
of users. In contrast, Role Based Access Control (RBAC) is based on the roles
that users assume [53]. Roles typically represent job functions within an organi-
zation. This model is the standard from medium to large organizations. Rights
are assigned to roles instead of subject, allowing more flexibility and ease of
configuration with respect to the previous model. Users are assigned roles, ei-
ther statically or dynamically. When the assignment is dynamic, the mapping
between subjects and roles is temporary, i.e., last one session. However, despite
its multiple variants RBAC hardly permits the specification of fine-grained con-
trols. In fact, introducing fine-grained authorizations leads to a proliferation of
roles, and hence to serious problem when maintaining the system over time.

A relatively recent development in access control technology is the Attribute-
Based Access Control (ABAC) model [73]. In the ABAC model authorizations
are based on properties of both the resource and the subject. Rules are based on
attributes, i.e. arbitrary security-relevant information exposed by the system,
the involved subjects, the action to be performed, or by any other entity of
the evaluation context that are relevant to the rules in hand. The strength of
the ABAC approach is its flexibility and expressive power. Indeed it allows the
administrator to choose the level of detail he wants when writing policies: he
may use very specific attributes like username, or very generic ones like role
or age. Concerns about its performance have been the main obstacle against
its adoption [21]. However, in contexts like Web services and cloud computing,
this increased performance cost is less noticeable because each access request
has often a high cost. An important step for the spread of ABAC has been the
introduction of the eXtensible Access Control Markup Language (XAMCL)[2].
Here, the rules are based on arbitrary information from the system and organised
in structured collections called policies.

There is an additional orthogonal classification of access control models that
is based on the ownership of the controls: Discretionary Access Control (DAC)
and Mandatory Access Control (MAC). In the former, the controls belong to
the owner of the resource, while in the latter the system controls the access and
the resource owner cannot circumvent them.

Access control is a very broad research area that spans from physical security
to network security. Some main aspects are common to every domain, whereas
there are a lot of details that depend on the specific context. Below, we will
talk generally when possible, explicitly specifying when we do not.

Access control systems have attracted the attention of researchers in com-
puter security since long time. Among the several proposals, we only focus on
language-based approaches, in particular on works where the abstract policy of
the system is expressed in a high level language and the actual behaviour in a
low level configuration language. This idea of having two separate languages
is actually quite widespread. Usually the contribution of the considered papers

13

can be described as the propagation of some information from one layer to the
other, thus achieving something similar to what we advocate in Section 1.1.
In some cases, an explicit translation among the two languages is given, other
times more specific tasks are considered instead, like policy verification or visu-
alization.

A rough classification groups the works similar to our in three families. In
the first, the emphasis is on the high level specification. Some results are then
reflected in the low level system. In this family, a typical goal is the synthesis
of a low level policy, through some sort of compilation. In the second class,
we put those proposals that start from the low level system. Their aim is to
verify some high level properties, or to extract an abstract representation of the
behaviour of the system. Finally, the third class has approaches that combine
the two lines above.

We start by discussing papers in the first class. In general the intended
objective is allowing the security engineer to manage the system at high level
only [122, 14, 21].

Tsankov et al. [122] define global access policies for physical spaces, ex-
pressed using CTL formulae over paths inside the building. Then, the problem
of synthesizing a local attribute-based policy for each door or turnstile is for-
mally defined and proved NP-hard. An algorithm based on Satisfiability Modulo
Theories (SMT) solvers is presented and evaluated against three real configura-
tions and several artificially generated ones, showing good performances. Calo
et al. [30], investigate the self-generation of access control policies as an alter-
native to manual configuration when the environment is very dynamic and the
device is capable of assessing the variation of the environment. The general idea
is that the administrator manually describes either the overall behaviour, or the
dangerous states to prevent. Using this description and its own perception of the
environment, the system then generates the access policy, e.g., using machine
learning. Several dynamic access control approaches are presented, considering
different degrees of autonomy.

ABAC can be considered a generalization of RBAC, since attributes can
indeed model roles. Hence, ABAC languages allow more flexibility and may thus
be preferable for the specification of security requirements. In contrast, RBAC
systems are more efficient and are de facto standard in organizations. The
translation proposed in [21] allows deploying ABAC policies in RBAC systems,
actually taking the best from both: the flexibility of ABAC and the efficiency
of RBAC.

In cloud computing platforms, one can distinguish between security mech-
anisms “of the cloud”, i.e., implemented and managed by the cloud provider,
and security mechanisms “in the cloud”, i.e., offered by the cloud provider to
the customer to be configured with the desired access control policy. Well-
engineered security mechanisms are available in different cloud platforms, but
they are not simple to configure and depend on the chosen cloud provider. More-
over, the security of cloud applications across different platforms is difficult to
assess. Morelli et al. [92] propose a high level language that abstract away
from specific enforcement mechanisms of the cloud platform and is compiled to

14

policies for two of the most widely used platforms: AWS [1] and Openstack [3].
The high level language allows the customers to express their policies using a
simplified structured natural language based on the ABAC approach, that sub-
sumes the mechanisms offered by the two providers. A formal semantics of the
high level language is given, as well as an encoding in first order logic and a
SMT-based tool for proving security properties before compiling. Expressivity
limitations of the underlining access control systems are also considered: cloud
platforms are not able to fully support the complexity and granularity of the
proposed high level language. When the compilation is not possible, the tool
reports the skipping of the components not supported/recognized within the
specific platform.

In collaborative systems, several different entities prescribe access decisions
for the assets. Their policies may be in contrast, e.g., when a request is to be
served according to the policy of one entity and rejected according to another.
To allow the system to make a decision, conflicts must be resolved. Resolution
may be, for example, based on a hierarchy among the entities. The hierarchy is
based on the importance of the relationship that the different entities have with
the asset. In this case higher entities in the hierarchy are privileged, as in [46].
Den Hartog et al. [46] extend this approach, by keeping for each request the part
of the hierarchy that determines the final decision, and by notifying the user
when its policy is not enforced, carefully justifying the choice. Indeed, also in
collaborative systems it is quite common to have two level of representation [46,
47, 107, 29]. In the high level, several policy exists, one for each different entity,
whereas in the low level there is only the combined policy.

Also in the domain of firewalls, many papers take a top-down approach,
proposing ways to specify abstract filtering policies that can be possibly com-
piled into the actual firewall systems, e.g., [14, 15, 45, 61, 18, 55, 19]. Some of
these approaches only consider the simplest types of rules [14, 61, 55, 19]. This
is also because of the enormous amount of extensions, modules and utilities of
commercial products, which are rarely and poorly documented. Probabilistic
rules, Network Address Translation (NAT), load balancing options and stateful
policies are often totally or partially ignored by formal tools. Therefore, one
cannot avoid considering low level languages at all. An interesting approach
in [50], a formal framework for reasoning on iptables. In case some feature is
encountered that is not considered in the formal model, the behaviour of the
system is explicitly approximated in a controlled manner. In particular, the
authors provide a “cleaned” ruleset that an automatic tool can easily analyze,
using a formal semantics of iptables mechanized in Isabelle/HOL [98].

We now consider works in the second family. Rarely a full decompilation is
even taken into account. As a matter of fact, usually, specific tools exist for each
different task, and only the needed information is translated to the high level.
Some works aim at verifying arbitrary properties expressed with quite general
formalism, others just focus on checking for well-known errors or visualize the
configuration semantics in human readable ways. In general, it is not always
possible to apply those results to check if a modified configuration still satisfies
the requirements.

15

We first consider the domain of physical access control. O’Sullivan [99] de-
scribes both the topology of a building and requirements about reachability of
rooms, then he checks the presence of a number of predefined anomalies using
a SAT solver. Access Nets are introduced in [57] for reasoning about proper-
ties of physical spaces with pointwise access control mechanisms. A SMT-based
tool is presented to check reachability of rooms from subjects. Also temporal
constraints are considered. Given a Building Information Model description
of a physical space [84], the tool of [113], derives a 3D representation of the
behaviour of an access control policy, thus helping the administrator to under-
stand the actual impact of possible changes. Topology aware adaptive security
is applied in [124] to prevent a system from entering dangerous states, identified
by a high level description based on a CTL formula. The low level modeling
is very detailed. Besides paths inside the building, agents position and motion
are explicitly modeled using the Ambient Calculus [31]. The same kind of task
is performed by [123] on systems characterized by an interplay between cyber
and physical elements, using Bigraphical Reactive System [91]. Given an ABAC
policy, Rao et al. [106] extract a high level representation based on multi-level
grids. Several works on ABAC policy analysis target XACML [7], a de-facto
standard. Among them, [125, 126] address the problem of analyzing policies
with non-boolean variables and functions through a SMT solver. They propose
a query language that allows the specification and analysis of a vast range of
security properties that have been proposed in the literature (attribute hiding,
separation of duty, policy refinement, policy subsumption, change impact, sce-
nario finding). A proved correct translation is proposed from XACML policies
into SMT formulas. Types and functions available in XACML are thus mapped
in the theories offered by the SMT solver. Decidibility is informally discussed
showing that quantifier-instantiation procedures are usually successful, because
of the specific form of the formulas used for XACML policy analysis. Also
the complexity is discussed by taking into account the individual complexity
of the theories and how they compose, which often lead to NP-hard problems.
Despite the high theoretical complexity, the SMT solver performs well in the
experiments, and the authors argue that this depends on the kind of formu-
las derived from XACML policy analysis. The proposed approach is compared
with similar ones that use different SAT solvers, showing a major improvement
in terms of both memory usage and computational time.

As regards firewalls, Jayaraman et al. [78] propose an approach for validating
network connectivity policies, implemented by the tool SecGuru. They extract
logical specifications from real Cisco routers and solve them in Z3.

Few papers consider a bidirectional binding between the two layers, imple-
menting both compilation and decompilation among the two languages. Margheri
et al. propose FACPL [85], a formally-defined, fully-implemented ABAC lan-
guage. It closely resembles XACML, actually, it is possible to compile FACPL
into XACML and vice-versa. Moreover, the authors use a SAT-based tool for
verifying properties of a single policy and of the relationships among multiple
policies.

Some papers propose high level languages with new features for specific prob-

16

lems. They rarely deal with real implementations. Some focus on Relationship
Based Access Control (ReBAC) [56], others address the problem of collabora-
tive systems and conflict resolution [89], or delegation and revocation [42].

Several works consider the expressivity of different classes of access control
languages [24, 16, 43, 107]. Some of these also consider fragments of real world
languages like XACML [43, 107].

1.4 Structure of the Thesis

In Chapter 2 we present our work about networks, which allows to configure
and update a firewall both at the high level of abstract policies and the low
level of executable iptables, pf, and ipfw configurations. We implement both
a compiler and decompiler, and study the expressivity of the considered lan-
guages. In Chapter 3 we target operating system security, extending the low
level of SELinux configurations with high level features for specifying permit-
ted and prohibited information flows. We also give a verification procedure
for checking that requirements are satisfied by the low level. In Chapter 4 we
consider collaborative environments, and propose a new access control language
for expressing policies for exchanging access rights. We propose a logical low
level and a compilation from high level policies to logical theories, as well as a
procedure for deciding requests and a blockchain implementation. Finally, in
Chapter 5 we conclude and in Appendix A, B, and C we give the formal details
and the proofs of Chapter 2, 3 and 4 respectively.

1.5 Published Work

Hereafter we briefly present the candidate’s publications containing parts of the
thesis.

From Firewalls to Functions and Back by L. Ceragioli, L. Galletta, M.
Tempesta. [39]

This work present a preliminary proposal for dealing with firewall policies
represented as functions. It contains preliminary parts of Chapter 2.

Are All Firewall Systems Equally Powerful? by L. Ceragioli, P. Degano,
L. Galletta. [35]

This paper analyzes the expressive power of different firewall languages for
Unix-based systems. The two different kinds of expressivity proposed in Chap-
ter 2 are defined.

Checking the Expressivity of Firewall Languages by L. Ceragioli, P.
Degano, L. Galletta. [36]

17

We propose F2F, a tool that relies on the results of the previous work to
check if a given firewall policy can be implemented in or migrated to a given
firewall language. The tool is discussed in Chapter 2

FWS: Analyzing, maintaining and transcompiling firewalls by C. Bodei,
L. Ceragioli, P. Degano, R. Focardi, L. Galletta, F. L. Luccio, M. Tempesta, L.
Veronese. [26]

We propose FWS, a tool that allows to analyze, maintain and transcompile
firewall configurations. It implements compilation and decompilation from ex-
ecutable configurations and functions over packets represented as tables. The
modelization of Unix firewalls, and the technical details about compilation and
decompilations of Chapter 2 are discussed.

Can my firewall system enforce this policy? by L. Ceragioli, P. Degano,
L. Galletta. [38]

Several tools allow the user to specify firewall policies in various high level
languages, and to compile them into different target configuration languages.
We apply F2F to check when such a compilation is possible, giving detailed
information about the unexpressible parts of a policy and providing administra-
tors with hints for fixing the detected problems. It contains parts of Chapter 2.

MuAC: Access Control Language for Mutual Benefits by L. Ceragioli,
P. Degano, L. Galletta. [37]

This work present a preliminary version of Chapter 4 that relies on a pre-
existing logic and does not target finite resources, nor presents the blockchain
implementation we propose here.

18

Chapter 2

Network

In this chapter we target network security and address firewalls. Firewalls are
one of the most used tools for protecting computer networks and enforcing access
control policies. They grant control on which packets can enter a network and
how they are transformed by the so-called network address translation (NAT).
The firewall behavior is specified by a configuration that implements the wanted
policy. Roughly, a configuration is a list of rules that transforms and filters the
incoming packets. Each firewall system comes with its own configuration lan-
guage, with a specific syntax and a different way of evaluating and applying the
rules. We consider the most common firewall systems for Unix, i.e., iptables,
pf and ipfw. Different firewall languages can express different policies, and
have indeed different sets of advanced features [10, 11, 9]. As a matter of fact,
different systems have different expressive power, even only considering the very
basic actions (i.e. accepting, dropping and performing NAT) [35].

Firewall languages usually provide control-flow instructions like call and
goto, and a tag system that allows labeling the packets. These features may
be used to better organize the configurations, but may also complicate their
understanding and management. Moreover, some rules may shadow others or
prevent them from being triggered depending on the order in which they appear
in the configuration. This context-dependency makes it hard to read and modify
firewall configurations.

Conversely, specifications usually put requirements on such abstract entities
like users, services and connections. The specification language has to be easy
to read, and should hide implementation details.

Summarizing, the two abstraction layers we work with are:

• the low level (LL), the one of firewall systems for Unix, i.e., iptables, pf,
and ipfw, where the network and packets are represented in full detail,
and in which firewall configurations are written in their specific language
predicating over fields of packets and network interfaces;

• the high level (HL), the one of policy specifications, that allows the ad-
ministrator to interact with the semantics of the firewall in an abstract

19

way, directly specifying what to do when users request connections to ser-
vices, the options are either to discard or to allow them, and possibly
masquerading the real requester or redirecting the request.

Note that both layers are useful for the specific task they serve. On the one hand,
the low level configuration language is not suited for defining the specifications
of the system, thus making it difficult to understand if the configuration is
adequate to the requirements of the network. Actually, this language enable the
administrator to explicitly choose how the firewall should manage the packets,
hence increasing the efficiency.

On the other hand, high level languages are not usually designed for manag-
ing details at the level of packets, and can hardly support every single feature
of the real configuration languages. Instead they allow the designer to grasp the
emergent behaviour, and to specify and update the requirements in a readable
but precise way.

It is thus desirable to allow the administrators to interact with the system
at the level they need for their specific task, granting coherence between the
different representations, as depicted in Figure 2.1. In particular, this is obtained
with a bidirectional compilation-decompilation relation that given a low level
configuration returns an abstract representation for the high level and vice-versa.
We have already stated that different firewall systems have different expressive
power. Hence the specifications may be impossible to implement in the chosen
configuration languages. At the high level, the user must be informed of the
limitation of the underling system. In practice, the compiler should inform
the policy designer when the specification is not expressible, who can explicitly
decide either to change the target system, or to rewrite the specification.

To prove coherence between the two representation, i.e. correctness of the
bidirectional translation, it is important that both low and high level language
are enriched with a formal semantics. Low level languages are thus modeled
through a common modeling language, called IFCL, which has a formal semantics
that is thus inherited by the Unix firewall languages. For the high level, we
propose FWQL a SQL-like query language that operates on functions from
packets to transformations, abstractly representing firewall configurations. The
high level query language allows to visualize, update, and check the semantics
of the firewall. Updating the specification by removing, adding or modifying the
requirements is critical, because the use of the network may evolve over time.

Once the specification is compiled to an executable configuration, this can
be reworked by system administrators to improve efficiency and readability.
Refactoring may consist in the creation of specific rulesets for specific tasks, or
in reordering the rules in a meaningful way. Moreover, the administrators may
adjust low level details, like the fields that are used for assessing the legitimacy
of a request. Our proposal is compatible with tools that help the administrator
in these tasks.

Note that, in this particular instance of the two-layer approach, the low level
language is completely transparent to the high level user. When interacting
with the abstract specification, the administrator is not required to know the

20

High Level Layer

use FWQL
see the firewall as a function

Low Level Layer

use iptables, pf, ipfw
see the firewall as an executable configuration

• update
• verify
• specify

• tune
• test
• optimize

compile decompile
project

limitations

Figure 2.1: Schema of the two-layer approach for firewalls.

underlying system. Only the semantics of configurations has to be considered,
expressed as a function over IP packets.

We implement our proposal and we propose two tools: FWS, that realizes
the compilation and decompilation functions, and F2F, that checks of a given
policy can be expressed in the chosen low level language. We validate both the
tools on real-world configurations, showing that they operates with reasonable
time cost.

Structure of the chapter

In Section 2.1 we introduce the firewall configuration languages we consider. In
Section 2.2 we present IFCL and show how it encode them. In Section 2.3 we
present FWQL, and show how it works on functions representing the firewall
semantics. In Section 2.4 we show the decompilation of a firewall configuration
to a functional representation. In Section 2.5 we present the compilation from
functions over packets to executable firewall configurations. In Section 2.6 we
characterize the expressivity of different firewall languages, and show how to
check if the desired policy can be implemented in the target system. In Sec-
tion 2.7 we present our tools, the first one for compiling and decompiling, the
second one for checking the expressivity of firewall languages. In Section 2.8 we
compare our proposal with similar works. Finally, we conclude in Section 2.9.

2.1 Background

Usually, system administrators classify networks into security domains. Through
firewalls they monitor the traffic and enforce a predetermined set of access con-
trol policies among the various hosts and subnetworks (packet filtering). System
administrators can also use a firewall to connect a network with private IPs to

21

other (public IP) networks or to the Internet and to perform connection redi-
rections through Network Address Translation (NAT).

Firewalls are implemented either as proprietary, special devices, or as soft-
ware tools running on general purpose operating systems. Independently of
their actual implementations, they are usually characterized by a set of rules
that determine which packets reach the different subnetworks and hosts, and
how they are modified or translated.

Below, we briefly review three different firewall systems: iptables [10],
ipfw [9] and pf [11] that are the most used in Linux and Unix. We refer the
reader to the manuals of these systems for additional details. In the following,
we abstract away from the specific syntax of these languages. Nevertheless, the
reader can find examples of simple configurations in subsection 2.7.1.

iptables

It is one of the most used tools for packet filtering being the default in Linux.
It operates on top of Netfilter, the packets processing framework implemented
in the Linux kernel [109].

The basic notions of iptables are tables and chains. Intuitively, a table
is a collection of ordered lists of policy rules called chains. The most com-
monly used tables are: filter for packet filtering; nat for network address
translation; mangle for packet alteration. There are five built-in chains that are
inspected at specific moments of the packet life cycle [119]: PreRouting, when
the packet reaches the host; Forward, when the packet is routed through the
host; PostRouting, when the packet is about to leave the host; Input, when
the packet is routed to the host; Output, when the packet is generated by the
host. Tables do not necessarily contain all the predefined chains and further
user-defined chains can be present.

Chains are inspected top-down to find a rule applicable to the packet under
elaboration. Each rule specifies a condition and a target: if the packet matches
the condition then it is processed according to the specified target, which can
be either a built-in target or a user-defined chain. The most commonly used
targets are: ACCEPT, to accept the packet; DROP, to discard the packet; RETURN,
to stop examining the current chain and resume the processing of a previous
chain; DNAT, to perform destination NAT, i.e., a translation of the destination
address; SNAT, to perform source NAT, i.e., a translation of the source address.
When the target is a user-defined chain, two “jumping” modes are available: call
and goto. The difference between the two arises when a RETURN is executed or
the end of the chain is reached: the evaluation resumes from the rule following
the last matched call (just as for standard call-return of procedures). Some
extensions also allow marking packets with a tag and to verify the tag value.
Built-in chains have a user-configurable default policy (ACCEPT or DROP) which
determines the future of a packet when no rule applies.

22

ipfw

It is the standard firewall for FreeBSD [9]. A configuration consists of a single
ruleset that is inspected twice, when the packet enters the firewall and before it
exits. It is possible to specify whether a rule should be applied only in one of
the two directions using the keywords in and out.

Similarly to iptables, rules are inspected sequentially until the first match
occurs and the corresponding action is taken. The packet is dropped if there is
no matching rule. The most common actions in ipfw are the following: allow

and deny are used to accept and reject packets; nat applies destination NAT

to incoming packets and source NAT to outgoing packets; check-state accepts
packets that belong to established connections; skipto, call and return allow
to alter the sequential order of inspection of the rules in the ruleset. Differently
from iptables, the targets of skipto and call are rules instead of rulesets. A
packet is dropped if there is no matching rule.

Packet marking is supported also by ipfw: if a rule containing the tag

keyword is applied, the packet is marked with the specified identifier and then
processed according to the rule action.

pf

This is the standard firewall of OpenBSD [11] and is included in macOS since
version 10.7. Each rule consists of a predicate which is used to select packets and
an action that specifies how to process the packets satisfying the predicate. The
most frequently used actions are pass and block to accept and reject packets,
rdr and nat to perform destination and source NAT. Packet marking works as
in ipfw. Differently from the other firewalls, the action taken on a packet is
determined by the last matched rule, unless otherwise specified by using the
quick keyword. There is a single ruleset in pf that is inspected both when the
packet enters and exits the firewall. As in ipfw, keywords in and out can be
used to specify whether a rule should be applied only in one direction. When a
packet enters the host, DNAT rules are examined first and filtering is performed
after the address translation. Similarly when a packet leaves the host: first its
source address is translated by the relevant SNAT rules, and then the resulting
packet is possibly filtered. Packets belonging to established connections are
accepted by default, thus bypassing the filters.

2.2 Formalizing the Low Level

We define a common intermediate language for modeling firewall systems called
IFCL. IFCL is enriched with a formal semantics and subsumes the languages
that we target. First, we present IFCL and show how it encode a specif fire-
wall configuration in iptables, pf, or ipfw; then we give its semantics and a
normalization procedure for removing control-flow instructions.

23

2.2.1 Intermediate Firewall Configuration Language: IFCL

Our intermediate firewall configuration language IFCL is parametric with re-
spect to the steps performed by the system to elaborate packets. Let P be
the set of IP packets, formally the Cartesian product of domains Dw, one for
each possible field of a packet. For generality, we do not detail the format
of network packets, we only assume W to be finite and to contain the fields
dIP , dPort, sIP and sPort that are the destination (source) IP and port, re-
spectively. In the following we use sa(p) and da(p) to denote the source and
destination addresses of a given packet p. An address a consists of an IP address
IP (a) and possibly a port address port(a). An address range n is a pair con-
sisting of a set of IP addresses and a set of ports. Address a (and address ranges
n) are sometimes written explicitly as IP(a):port(a) (and IP(n):port(n)). An
address a = IP(a):port(a) is in the range n = IP(n):port(n), written a ∈ n, if
ip(a) ∈ ip(n) and port(a) ∈ port(n) when port(a) is defined, e.g., for TCP and
UDP packets. Usually, firewall languages allow to mark packets with tags. Such
tags are not propagated outside the firewall itself, and are only used to match
the packets inside the rulesets. We write tag(p) for the tag m associated with
p, assuming that the empty tag • identifies untagged packets.

To record the modifications on packets, we write p[da 7→ a] to denote a
packet identical to p except for the destination address da which becomes equal
to a. Similarly, p[sa 7→ a] denotes a packet p where the source address is a and
p[tag 7→ m] denotes p with a modified tag m.

Here, we consider stateful firewalls that keep track of the state s of network
connections and use this information to process a packet. An existing network
connection is described by several protocol-specific properties, e.g., source and
destination addresses or ports, and by the translations to apply. In this way,
filtering and translation decisions are not only based on administrator-defined
rules, but also on the information built by previous packets belonging to the
same connection. We omit a precise definition of a state, but we assume that it
tracks at least the source and destination ranges, NAT operations and whether a
connection is established or not. When receiving a packet p one checks whether
it matches the state s or not. We left unspecified the match between a packet
and the state because it depends on the actual shape of the state. When the
match succeeds, we write p `s α, where α describes the actions to be carried
out on p; otherwise we write p 6`s.

A firewall rule is made of two parts: a predicate φ expressing criteria over
packets, and an action t, called target, defining the destiny of matching packets.
Just as in real languages, predicates are formulas in a propositional logic that
mainly express identity or inclusion between ranges of IP addresses or ports, as
well as the protocol in usage and the current state of the firewall. Hereafter,
we shall write φ(p) whenever the fields of the packet p satisfy the constraints
expressed by the proposition φ. Here we only consider a core set of actions
included in most of the real firewalls. These actions not only determine whether
or not a packet passes across the firewall, but they also control the flow in which

24

the rules are applied. They are:

ACCEPT let a packet pass
DROP discard a packet
CALL(R) invoke the ruleset R (see below)
GOTO(R) jump to the ruleset R
RETURN exit from the current ruleset
NAT(nd, ns) apply address translation
MARK(m) mark with tag m
CHECK-STATE(X) examine the state

The targets CALL() and RETURN implement a procedure-like behavior; GOTO() is
similar to unconditional jumps. We only have the action DROP and not a REJECT,
because for our analysis there is no need of keeping rejected and dropped packets
apart. In the NAT action nd and ns are address ranges used to translate the
destination and source address of a packet, respectively; in the following we
use the symbol ? to denote an identity translation, e.g., n : ? means that the
address is translated according to n, whereas the port is kept unchanged. The
MARK action marks a packet with a tag m. The argument X ∈ {←,→,↔} of the
CHECK-STATE action denotes the fields of the packets that are rewritten according
to the information from the state. More precisely, → rewrites the destination
address, ← the source one and ↔ both.

Definition 2.1 (Firewall rule). A firewall rule r is a pair (φ, t) where φ is a
logical formula over a packet, and t is the target action of the rule.

A packet p matches a rule r with target t whenever φ holds.

Definition 2.2 (Rule match). Given a rule r = (φ, t) we say that p matches
r with target t, denoted pr t, if and only if φ(p). We write p 6r when p does
not match r.

We now define how a packet is processed given a possibly empty list of rules
(denoted with ε), called ruleset. Similarly to real implementations of firewalls,
we inspect the rules in the list, one after the other, until we find a matching
one, which establishes the target of the packet. For sanity, we assume that no
GOTO(R) and CALL(R) occur in the ruleset R, so avoiding self-loops. We also assume
that rulesets have a default target denoted by td ∈ {ACCEPT, DROP}, which accepts
or drops according to the system administrator’s decision.

Definition 2.3 (Ruleset match). Given a ruleset R = [r1, . . . , rn], we say that
p matches the i-th rule with target t, denoted pR (t, i), if and only if

ri = (φ, t) ∧ p |=ri t ∧ ∀j < i . p 6rj .

We also write p 6R if p matches no rules in R, formally if ∀r ∈ R . p 6r.

In our model we do not explicitly specify the steps performed by the kernel
of the operating system to process a single packet passing through the host. We

25

represent this algorithm through a control diagram, i.e., a graph where nodes
represent different processing steps and the arcs determine the sequence of steps.
The arcs are labeled with a predicate describing the requirements a packet has
to meet in order to pass to the next processing phase. Therefore, they are not
finite state automata. Our control diagrams are deterministic, i.e., every pair
of arcs leaving the same node has mutually exclusive predicates. For generality,
we let these predicates abstract, since they depend on the specific firewall.

Let Ψ be a set of predicates over packets, assuming that for all ψ ∈ Ψ and
for all p ∈ P, ψ(p) =

∧
w∈W ψw(pw).

Definition 2.4 (Control diagram). A control diagram C is a tuple (Q,A, qi, qf),
where

• Q is the set of nodes;

• A ⊆ Q×Ψ×Q is the set of arcs with no self-loops and such that whenever
(q, ψ, q′), (q, ψ′, q′′) ∈ A and q′ 6= q′′ then ∀p.¬(ψ(p) ∧ ψ′(p));

• qi,qf ∈ Q are special nodes denoting the start and the end of elaboration.

The firewall filters and possibly translates a given packet by traversing a
control diagram accordingly to the following transition function.

Definition 2.5 (Transition function). Let (Q,A, qi, qf) be a control diagram
and let p be a packet. The transition function δ : Q×Packet 7→ Q is defined as

δ(q, p) = q′ if and ony if ∃(q, ψ, q′) ∈ A. ψ(p) holds.

A firewall in IFCL is defined as follows.

Definition 2.6 (Firewall). A firewall F is a triple (C, ρ, c), where C is a control
diagram; ρ is a set of rulesets; and c : Q 7→ ρ is the correspondence mapping
from the nodes of C to the actual rulesets.

Note that the set of rulesets ρ, and the correspondence mapping c depend
on the specific firewall configuration, whereas the control diagram of a firewall
C only depends on the firewall system. In the following, we will write CL for the
control diagram of the firewall language L ∈ {iptables, pf, ipfw}.

2.2.2 Encoding Unix Firewalls

Here we encode the firewalls system considered so far as triples (C, ρ, c) of our
framework. Notably, the encoding provides a formal semantics for those systems
defined in terms of IFCL. In the following, let S be the set of local addresses of
a host, i.e., those associated with its network interfaces. The control diagrams
of iptables, pf and ipfw are in Figure 2.2, where unlabeled arcs carry the
label “true,” and labels DNAT, SNAT and DROP are associated with nodes capable of
modifying destination or source addresses and discarding packets respectively
(they will be used in Section 2.5 and Section 2.6).

26

qi

q0 q1

DNAT

q2 q3

DROP

q4 q5

SNAT

q6

DROP

qf

q7 q8

DNAT

q9

DROP

q10 q11

SNAT

q12 q13

sa(p) /∈ S

sa(p) ∈ S

da(p) /∈ S

da(p) ∈ S

da(p) /∈ S

da(p) ∈ S

(a) Control diagram of iptables

qi

q0 q2

q1 q3

qf

DROP

DNAT

DROP

SNAT

sa(p) ∈ S sa(p) /∈ S

da(p) /∈ S da(p) ∈ S

da(p) ∈ S da(p) /∈ S

(b) Control diagram of pf

qi

q0 q1

qf

DNAT

DROP

SNAT

DROP

sa(p) /∈ S sa(p) ∈ S

da(p) /∈ S

da(p) ∈ S da(p) /∈ S

da(p) ∈ S

(c) Control diagram of ipfw

Figure 2.2: Control diagrams of iptables and ipfw.

iptables Figure 2.2a shows the control diagram Ciptables of iptables. It
also implicitly defines the transition function according to Definition 2.5. In
iptables there are twelve built-in chains, each of which correspond to a single
ruleset. So we define the set ρp ⊆ ρiptables of primitive rulesets as the one

made of Rman
Inp , Rnat

Inp , Rfil
Inp, Rman

Out , Rnat
Out, Rfil

Out, Rman
Pre , Rnat

Pre, Rman
For , Rfil

For, Rman
Post

and Rnat
Post, where the superscript represents the chain name and the subscript

the table name. Needless to say, the set ρiptables\ρp contains the user-defined
chains.

The mapping function c : Q 7→ ρ is defined as follows:

c(qi) = c(qf) = R c(q0) = c(q12) = Rman
Pre c(q1) = Rnat

Pre

c(q2) = Rman
For c(q3) = Rfil

For c(q4) = c(q13) = Rman
Inp

27

c(q5) = Rnat
Inp c(q6) = Rfil

Inp c(q7) = Rman
Out

c(q8) = Rnat
Out c(q9) = Rfil

Out c(q10) = Rman
Post

c(q11) = Rnat
Post

where R is an empty ruleset with ACCEPT as default policy.
Finally, note that the IFCL action CALL() implements the iptables built in

target JUMP().

pf A pf configuration is basically a single list of rules and the rule applied
to a packet is the last matching one, except in the case of the so-called quick

rules: as soon as one of these matches the packet, its action is applied and the
remaining part of the ruleset is skipped.

Figure 2.2b shows the control diagram Cpf for pf. The nodes q0 and q1

represent the procedure executed when an IP packet leaves the host. Dually,
q2 and q3 are for when the packet reaches the host from the net. Given the pf

ruleset Rpf we include the following rulesets in ρpf :

• Rdnat contains the rule (state == 1 , CHECK-STATE(→)) as the first one, fol-
lowed by all the rules rdr of Rpf;

• Rsnat contains the rule (state == 1 , CHECK-STATE(←)) as the first one, fol-
lowed by all the rules nat of Rpf;

• Rfinp contains the rule (state == 1 , ACCEPT) followed by all the quick filter-
ing rules of Rpf without modifier out, and finally the rule (true, GOTO(Rfinpr));

• Rfinpr contains all the no quick filtering rules of Rpf without modifier
out, in reverse order;

• Rfout contains the rule (state == 1 , ACCEPT) followed by all the quick fil-
tering rules of Rpf without modifier in, and (true, GOTO(Rfoutr)) as last rule;

• Rfoutr includes all the no quick filtering rules of Rpf without modifier in
in reverse order.

Given the empty ruleset R with ACCEPT as default policy, the mapping function
cpf is:

cpf (qi) = R cpf (q0) = Rsnat cpf (q2) = Rdnat

cpf (qf) = R cpf (q1) = Rfout cpf (q3) = Rfinp

ipfw Also ipfw has a single ruleset and, differently from above, the rule ap-
plied to a packet is the first matching one.

The control diagram Cipfw of ipfw, displayed in Figure 2.2c. The node q0

represents the procedure executed when an IP packet reaches the host from the
net. Dually, q1 is for when the packet leaves the host.

We present the construction of the rulesets associated with the node q0.
Let R = [rid1

, . . . , ridk] be the unique ruleset of ipfw, where idi are numeric

28

identifiers associated with the rules, and the last rule ridk encodes the default
policy set by the user. The idea is to generate k different rulesets RIi , one for
each rule in R. If the rule ridi contains the keyword out, i.e., the rule is not
considered when the packet enters the firewall, we let RIi = [(true, GOTO(RI

i+1))].
Otherwise, we define RIi = [trs(ridi), (true, GOTO(R

I
i+1))], where the translation

trs is defined by cases below:

trs(r) =

(φ, GOTO(RI

n)) if r = (φ, skipto idn)

(φ, CALL(RI
n)) if r = (φ, call idn)

(φ, t) if r = (φ, t)

The construction of the rulesets ROi for the node q1 is similar, but in this case the
rules containing the keyword in are ignored. The mapping function c returns
RI1 for q0, RO1 for q1, and empty ruleset with ACCEPT as default policy for qi and
qf . These rulesets form the component ρipfw.

2.2.3 Legal Firewalls

Not every target can be inside the rulesets associated with nodes in the control
diagram of a firewall. Because of this, we require that each node q of CL also
carries information on which operations can be applied to packets when in node
q. For example, in the encoding of pf, the rules rdr are only assigned to the
node q2. Hence, a correspondence mapping associating the node q2 with a
ruleset where a target DROP appears is not valid for pf, yet it is for IFCL.

We represent this additional information in a handy manner by decorating
each node q with cap-labels representing the target allowed in q. Note that this
constrain also the rulesets called by the ruleset associated with q. We only focus
on ACCEPT, DROP and NAT, since marking, control-flow and state related actions are
considered in ad hoc ways.

Formally, we are making explicit that languages put constraints by restrict-
ing the image of the function c. Figure 2.2 shows the cap-labels within rectan-
gles (we assume ID, representing the ACCEPT target, be always present, therefore
omitted).

Definition 2.7 (Cap-labels and allowed actions). Given a control diagram C
with nodes Q, and the set of cap-labels L = {ID, DNAT, SNAT, DROP}, a cap-label
assignment is a function V : Q→ 2L.
Furthermore, we define the mapping actions that associates a cap-label l ∈ L
with the set of allowed actions as follows:

actions(ID) = {ACCEPT} actions(DROP) = {DROP}
actions(DNAT) = {NAT(nd, ?)} actions(SNAT) = {NAT(?, ns)}

We extend actions to homomorphically operate on sets L ⊆ L of labels, i.e.
returning the union of actions(l), for l ∈ L.

We call legal those firewalls that respect the cap-label assignment. Formally,

29

Definition 2.8 (Legal firewall). A firewall (C, ρ, c) with nodes Q is legal for
a cap-label assignment V if and only if for each node q ∈ Q, Actions(V (q))
includes all the actions appearing in c(q) and in the called rulesets, apart from
MARK, CHECK-STATE, CALL, GOTO and RETURN.

Given a language L, let hereafter VL be the cap-label assignment for L.

2.2.4 Operational Semantics

Now, we formally define the operational semantics of IFCL through two tran-
sition systems operating in a master-slave fashion. The master has a labeled

transition relation of the form s
p,p′−−→ s′. The intuition is that the state s of a

firewall changes to s′ when a new packet p reaches the host and becomes p′.
The configurations of the slave transition system are triples (q, s, p) where:

(i) q ∈ Q is a control diagram node; (ii) s is the state of the firewall;
(iii) p is the packet.

A transition (q, s, p)→ (q′, s, p′) describes how a firewall in a state s deals with
a packet p and possibly transforms it in p′, according to the control diagram
C. Recall that the state records established connections and other kinds of
information that are updated after the transition.

In the slave transition relation, we use the following predicate, which de-
scribes an algorithm that runs a ruleset R on a packet p in the state s

p, s |=S
R (t, p′)

This predicate searches for a rule in R matching the packet p through pR (t, i).
If it finds a match with target t, t is applied to p to obtain the packet p′ resulting
from possible transformations.

Recall that actions CALL(R), RETURN and GOTO(R) are similar to procedure calls,
returns and jumps in imperative programming languages. To correctly deal
with them, our predicate p, s |=S

R (t, p′) uses a stack S to implement a behavior
similar to the one of procedure calls. We will denote with ε the empty stack and
with · the concatenation of elements on the stack. This stack is also used to
detect and prevent loops in ruleset invocation, as it is the case in real firewalls.

In the stack S we overline a ruleset R to indicate that it was pushed by a
GOTO() and it has to be skipped when returning. For that, we use the following
pop∗ function in the semantics of the RETURN:

pop∗(ε) = ε pop∗(R · S) = (R,S) pop∗(R · S) = pop∗(S)

If the top of S is overlined, pop∗ behaves as a standard pop operation; otherwise
it extracts the first non-overlined ruleset. When S is empty, we assume that
pop∗ returns ε to signal the error.

Furthermore, in the definition of p, s |=S
R (t, p′) the notation Rk indicates

the ruleset [rk, ..., rn] (k ∈ [1, n]) resulting from dropping the first k − 1 rules
from the given ruleset R = [r1, ..., rn].

30

Table 2.1: The predicate p, s |=S
R (t, p′).

(1)
pR (t, i) t ∈ {ACCEPT, DROP}

p, s |=S
R (t, p)

(2)
pR (CHECK-STATE(X), i) p `s α p′ = establ(α,X, p)

p, s |=S
R (ACCEPT, p′)

(3)
pR (CHECK-STATE(X), i) p 6`s p, s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

(4)
pR (NAT(nd, ns), i)

p, s |=S
R (ACCEPT, nat(p, s, nd, ns))

(5)
pR (GOTO(R’), i) R′ 6∈ S p, s |=R·S

R′ (t, p′)

p, s |=S
R (t, p′)

(6)
pR (GOTO(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(7)
pR (CALL(R’), i) R′ 6∈ S p, s |=

Ri+1·S
R′ (t, p′)

p, s |=S
R (t, p′)

(8)
pR (CALL(R’), i) R′ ∈ S

p, s |=S
R (DROP, p)

(9)
pR (RETURN, i) pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p′)

p, s |=S
R (t, p′)

(10)
pR (RETURN, i) pop∗(S) = ε

p, s |=S
R (td, p)

(11)
p 6R S 6= ε pop∗(S) = (R′, S′) p, s |=S′

R′ (t, p′)

p, s |=S
R (t, p′)

(12)
p 6R (S = ε ∨ pop∗(S) = ε)

p, s |=S
R (td, p)

(13)
pR (MARK(m), i) p[tag 7→ m], s |=S

Ri+1
(t, p′)

p, s |=S
R (t, p′)

We also assume the function establ that, taken an action α from the state,
a packet p and the fields X ∈ {←,→,↔} to rewrite, returns a possibly changed
packet p′, e.g., in case of an established connection. Also establ depends on the
specific firewall we are modeling, and so it is left unspecified.

Finally, we assume as given a function nat(p, s, nd, ns) that returns the
packet p translated under the corresponding NAT operation in the state s. The
argument nd is used to modify the destination range of p, i.e., destination NAT

(DNAT), while ns is used to modify the source range, i.e., source NAT (DNAT).
Recall that a range of the form ? : ? is interpreted as the identity translation,
whereas one of the form a : ? modifies only the destination address. Also this
function is left abstract.

Table 2.1 shows the rules defining p, s |=S
R (t, p′). The first inference rule

deals with the case when the packet p matches a rule with target ACCEPT or DROP;
in this case the ruleset execution stops returning the found action and leaving
p unmodified. When a packet p matches a rule with action CHECK-STATE, we query
the state s: if p belongs to an established connection, we return ACCEPT and p′,
obtained rewriting p. Otherwise, p is matched against the remaining rules in
the ruleset. When a packet matches a NAT rule, we return ACCEPT and the packet
resulting by the invocation of the function nat. There are two cases when a
packet p matches a GOTO(). If the ruleset R′ is not already in the stack, we push

31

the current ruleset R onto the stack overlined to record that this ruleset dictated
a GOTO(). Otherwise, R′ is in the stack, we detect the loop and discard p. The
case when a packet p matches a rule with action CALL() is similar, except that
the ruleset pushed on the stack is not overlined. When p matches a rule with
action RETURN, we pop the stack and match p against the top of the stack. Finally,
when no rule matches, an implicit return occurs: we continue from the top of
the stack, if non empty. The MARK rule simply changes the tag of the matching
packet to the value m. If none of the above applies, we return the default action
td of the current ruleset.

We now define the slave transition relation as follows.

c(q) = R p, s |=ε
R (ACCEPT, p′) δ(q, p′) = q′

(q, s, p)→ (q′, s, p′)

The rule describes how we process the packet p when the firewall is in state
s and performs the step represented by the node q. We match p against the
ruleset R associated with q and if p is accepted as p′, we continue considering
the next step of the firewall execution represented by the node q′.

Finally, we define the master transition relation that transforms states and
packets as follows (as usual, below →+ stands for the transitive closure of →):

(qi, s, p)→+ (qf , s, p
′)

s
p,p′−−→ s] (p, p′)

This rule says that when the firewall is in the state s and receives a packet p,
it elaborates p starting from the initial node qi of its control diagram. If this
elaboration succeeds, i.e., if the node qf is reached, p is accepted as p′, and we
update the state s by storing information about p, its translation p′ and the
connection they belong to, by the function], left unspecified for the sake of
generality.

Example 2.1. Suppose to have the rulesets below:

Ruleset CB

(φ1, DROP)
(φ2, CALL(u1))
(φ3, ACCEPT)

Ruleset u1

(φ11, ACCEPT)
(φ12, CALL(u2))
(φ13, DROP)

Ruleset u2

(φ21, ACCEPT)
(φ22, RETURN)
(φ23, DROP)

and that the condition ¬φ1 ∧ φ2 ∧ φ11 holds for a packet p. Then, the semantic
rules (a), (b) and (c) are applied in order:

(a)
p |=u1 (ACCEPT, 1)

p, s |=
CB3

·ε
u1 (ACCEPT, p)

(b)
p |=CB

(CALL(u1), i) u1 6∈ S (a)

p, s |=εCB
(ACCEPT, p)

(c)
c(q) = CB (b) δ(q, p) = q′

(q, s, p)→ (q′, s, p)

Semantics validation We empirically validated the semantics inherited from
IFCL by the firewall systems we have considered in Section 2.1. The validation
process is composed of three main phases.

32

We first inferred the expected behavior of the various processing steps of
the real firewall system F in hand from its documentation, and collected a
set of configurations playing the role of test cases T . We then run F in a
simulated environment, built on some virtual machines. Also, we synthesize the
abstract specification of F through FWS. Furthermore, we generated synthetic
network traffic to make sure that we cover all the test cases in T . Finally, we
compare the logs of F against the results obtained by FWS, so as to check the
correspondence between the actual behavior of F and the one dictated by the
semantics it inherits from IFCL.

We focused on corner cases that are not clearly explained in the official
documentation of F , or not even taken into account. Feedback from system
administrators has been particularly helpful in detecting these cases. Often the
corner cases concern local packets, i.e., packets generated by the firewall and
directed to a local address of the firewall itself, in combination with NAT rules.

As an example, consider iptables. A local packet first enters the Output

chain, being generated by the host, and then the PostRouting chain. Instead
of leaving the firewall, it enters the PreRouting and Input chains, being also
a packet directed to a local address. In these two chains, the processing of this
kind of packets differs from the one of a generic packet coming from outside F .
Indeed a local packet does not traverse the nat table in the PreRouting and
Input chains, skipping the NAT processing. This behavior is correctly encoded
in the control diagram of Figure 2.2a. The validation phase sketched above
helped us in discovering this subtle behavior, which was not considered in the
preliminary version of the iptables control diagram [27].

2.2.5 Normal form

For convenience, we reduce configurations to a normal form that will simplify
the compilation and decompilation, as well as the study of the expressivity of the
different configuration languages. A configuration is in normal form if it does
not contain any control flow instruction, i.e., CALL(), GOTO(), and RETURN, used by our
intermediate language for dealing with involved control flows (see Example 2.1).

The following unfolding operation $% rewrites a ruleset into an equivalent
one with no such control flow rules.

Hereafter, let r;R be a non empty ruleset consisting of a rule r followed by
a possibly empty ruleset R; and let R1@R2 be the concatenation of R1 and R2.

The unfolding of a ruleset R is defined as follows:

$R% = $R%true
{R} •

$ε%f
Im = ε

$(φ, t);R%f
Im = (f ∧ φ′, t);$R%f

Im if t 6∈ {RETURN, CALL(R’), GOTO(R’), MARK(m)}

$(φ, RETURN);R%f
Im = $R%f∧¬φ′

I m

$(φ, CALL(R’));R%f
Im =

{
$R′%f∧φ′

I∪{R′}m@$R%f
Im if R′ /∈ I

(f ∧ φ′, DROP);$R%f
Im otherwise

33

$(φ, GOTO(R’));R%f
Im =

{
$R′%f∧φ′

I∪{R′}m@$R%f∧¬φ′
I m if R′ /∈ I

(f ∧ φ′, DROP);$R%f∧¬φ′
I m otherwise

$(φ, MARK(m′));R%f
Im = (f ∧ φ′, MARK(m′));$R%f∧φ′

I m′@$R%f∧¬φ′
I m

where φ′ is φ with its sub-predicate on the current tag replaced by its evaluation
on m.

The auxiliary procedure $R%f
Im recursively inspects the ruleset R. The

formula f accumulates conjuncts of the predicate φ′; the set I stores the rule-
sets traversed by the procedure and helps detecting loops; m records the tag
associated with the packets that satisfy f . If a rule neither affects the control
flow nor it is a MARK, we just substitute the conjunction f ∧φ′ for φ, and continue
to analyze the rest of the ruleset with the recursive call $R%f

Im.
In the case of a return rule (φ, RETURN) we generate no new rule, and we

continue to recursively analyze the rest of the ruleset, by updating f with the
negation of φ′. For the rule (φ, CALL(R’)) we have two cases: if the callee ruleset R′

is not in I, we replace the rule with the unfolding of R′ with f ∧φ′ as predicate,
and append {R′} to the traversed rulesets; if R′ is already in I, i.e., we have a
loop, we replace the rule with a DROP, with f ∧ φ′ as predicate; in both cases, we
continue unfolding the rest of the ruleset. We deal with the rule (φ, GOTO(R’)) as
in the previous one, except that the rest of the ruleset has f ∧¬φ′ as predicate.
Finally, the rule (φ, MARK(m′)) originates two lists. The first is for the packets
satisfying φ′ and thus the rule becomes (f ∧ φ′, MARK(m′)) and its tag m′. The
other list is for packets not satisfying φ′, so MARK(m′) never applies and the tag
m is left unchanged.

Example 2.2. Back to Example 2.1, unfolding the ruleset CB gives the follow-
ing rules:

$CB% =(φ1, DROP); (φ2 ∧ φ11, ACCEPT); (φ2 ∧ φ12 ∧ φ21, ACCEPT); (φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23, DROP);

(φ2 ∧ φ13, DROP); (φ3, ACCEPT); ε

We just illustrate the first three steps:

$CB% =$(φ1, DROP);CB2%true
{CB}•

=(φ1, DROP);$(φ2, CALL(u1));CB3%true
{CB}•

=(φ1, DROP);$u1%true∧φ2
{CB}∪{u1}

•@$CB3%true
{CB}•

Note that the packet p is accepted also by the unfolded firewall, provided that
¬φ1 ∧ φ2 ∧ φ11 holds.

An unfolded firewall is obtained by repeatedly rewriting the rulesets associ-
ated with the nodes of its control diagram, using the procedure above. Formally:

Definition 2.9 (Unfolded firewall). Given a firewall F = (C, ρ, c), its unfolded
version $F% is (C, ρ′, c′) where ρ′ = {$c(q)% | q ∈ C}, ∀q ∈ Q. c′(q) = $c(q)%.

We now prove that a firewall F and its unfolded version $F% are seman-
tically equivalent, i.e., they perform the same action over a given packet p in a
state s, and reach the same state s′. Formally:

34

Theorem 2.1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and

$F% its unfolding. Let s
p,p′−−→X s′ be a step of the master transition system

performed by the firewall X ∈ {F ,$F%}. Then

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→$F% s′.

2.3 Modeling the High Level

Nowadays, network administrators exploit policy-based management systems
and work with high-level and user-friendly policy languages that are then often
compiled to configurations of a target system (e.g., iptables on Linux). Following
this line, we propose FWQL, a firewall language that allows the administrator
to interact with a firewall. The policy implemented by the firewall is repre-
sented as a function, visualized as a table, listing the accepted packets and their
transformations in a succinct way. The administrator can thus interact with the
policy by investigating the treatment of specific packets to check the correctness
of their management, or update the table.

2.3.1 Firewalls as functions

A firewall either leaves a packet unchanged, or it modifies some of its fields.
We formalize this activity by the transformation functions associated with the
nodes of the control diagram. A transformation t of a field w is either the
identity function id (the value of w is left unchanged) or the constant function
λa′ returning the value a′ ∈ Dw (the value of w is now a′).

A packet transformation t = (tdIP : tdPort, tsIP : tsPort) ∈ TP is a quadruple
of transformations, two for the IP and port of the destination fields, and two for
the source fields. Packet transformations are applied and composed component-
wise.

For convenience, we extend the set of packets P with the distinguished el-
ement ⊥ to represent the dropped packets. Thus, transformations are blankly
extended, assuming t(⊥) = ⊥. Also, we denote with λ⊥ the transformation that
always drops packets.

Example 2.3. Let the packet p have da(p) = 8.8.8.8: 53 and sa(p) = 192.168.0.8 :
50000, and let t = (id : id, λ151.15.1.5 : id) be the transformation that changes
the source IP (performing a SNAT); then p′ = t(p) has da(p′) = 8.8.8.8 : 53 and
sa(p′) = 151.15.1.5 : 50000.

In the high layer, a firewall is a fw-function, i.e. a function τ : P→ TP.

2.3.2 Effective Representation of Firewalls

In set theoretical terms, a fw-function τ , is a set of pairs (p, t). To concisely
represent these pairs, we first group in a set P all the packets subject to the
same transformation t, and we present the function τ as a set of τ -pairs (P, t).

35

DNS server DNS server

. . .
SSH server

HTTPS server

. . .

LAN: 192.168.0.0 / 24

151.15.1.5

192.168.0.1

192.168.0.6

192.168.0.7

9.9.9.9 8.8.8.8

Figure 2.3: A network of example.

We then efficiently represent fw-functions using multi-cubes [78]. A multi-cube
generalizes the notion of cube, and can be considered as the cartesian product
of the union of intervals. A multi-cube compactly represents a set of packets,
and each union specifies the interval to which the values of the corresponding
field of a packet belong.

Since a set P in a τ -pair not always forms a multi-cube, we need an inter-
mediate step. In such a case, P is partitioned in a set of Pi each originating a
multi-cube.

A fw-function can be efficiently represented as a table. We will usually write
only the rows of accepted packets, assuming that the omitted ones are mapped
to λ⊥.

Example 2.4. Consider the following multi-cube:

([192.198.0.2, 192.198.0.10] : [8080, 8080],

[192.198.0.1, 192.198.0.1] : [0, 22] ∪ [25, 100])

It represents the set of packets with destination address in
[192.198.0.2, 192.198.0.10] and port 8080, and source address 192.198.0.1 with
source port in the intervals [0, 22] or [25, 100].

2.3.3 The FireWall Query Language FWQL

Since a firewall is essentially represented as a table, a SQL-like query language
can be used to verify properties, extract and visualize portions of the function,

36

create or update it. We will overview FWQL features with examples.
Consider the network in Figure 2.3. The firewall at the addresses S =

192.168.0.1, 151.15.1.5 is the only connection point between the Internet and a
Local Area Network (LAN). The LAN private addresses range over 192.168.0.0/24;
the internal hosts at 192.168.0.6 and 192.168.0.7 run an SSH and an HTTPS
server. On the Internet, two DNS servers are hosted at 8.8.8.8 and 9.9.9.9.

Assume that the fw-function of the firewall in hand is named TAB. The
following can be used to verify that every packet coming from a LAN host or
the firewall itself, and directed to 8.8.8.8 are redirected to the host at 9.9.9.9.

verify in TAB where

((srcIp = 192.168.0.0/24 or srcIp = 151.15.1.5)

and dstIp = 8.8.8.8)

that t_dst = 9.9.9.9

Assuming the previous command returns false, the user can look at the
subtable concerning only the packets of interest, with their associated transfor-
mations with the following query.

print * in TAB where

((srcIp = 192.168.0.0/24 or srcIp = 151.15.1.5)

and dstIp = 8.8.8.8)

Finally, the following command updates the transformation with the desired
one.

update t_dst = 9.9.9.9 in TAB where

((srcIp = 192.168.0.0/24 or srcIp = 151.15.1.5)

and dstIp = 8.8.8.8)

2.4 Decompilation

The decompilation from configuration to table is obtained through a pipeline of
stages

1. encoding of the configuration from the source language to IFCL;

2. normalization of the IFCL configuration;

3. generation of the table.

The encoding of stage 1 and the normalization follows the procedures de-
scribed in subsection 2.2.2 and subsection 2.2.5, respectively. The generation of
the table representing the semantics of a normalized firewall configuration writ-
ten in IFCL is obtained by first obtaining a declarative, logical characterization
of the configuration in hand. The rows of the table contains the models of the
logical formulas. Of course this transformation is independent of the firewall
language in hand.

The correctness of stage 2 follows from Theorem 2.1, which guarantees that
the unfolded firewall is semantically equivalent to the original one; and the cor-
rectness of stage 3 follows from Theorem 2.2, which ensures that the derived

37

Table 2.2: Translation of rulesets into the logical predicates PR for accepted
and DR for dropped packets

.
Pε(p, p̃) = dp(R) ∧ p = p̃

Pr;R(p, p̃) = (φ(p) ∧ p = p̃) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ, ACCEPT)

Pr;R(p, p̃) = ¬φ(p) ∧ PR(p, p̃) if r = (φ, DROP)

Pr;R(p, p̃) = (φ(p) ∧ p̃ ∈ tr(p, nd, ns,↔)) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ, NAT(nd, ns))

Pr;R(p, p̃) = (φ(p) ∧ p̃ ∈ tr(p, ∗:∗, ∗:∗, X) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ, CHECK-STATE(X))

Pr;R(p, p̃) = (φ(p) ∧ PR(p[tag 7→ m], p̃)) ∨ (¬φ(p) ∧ PR(p, p̃)) if r = (φ, MARK(m))

Dε(p) = ¬dp(R)

Dr;R(p) = ¬φ(p) ∧DR(p) if r = (φ, ACCEPT)

Dr;R(p) = φ(p) ∨ (¬φ(p) ∧DR(p)) if r = (φ, DROP)

Dr;R(p) = ¬φ(p) ∧DR(p) if r = (φ, NAT(nd, ns))

Dr;R(p) = ¬φ(p) ∧DR(p) if r = (φ, CHECK-STATE(X))

Dr;R(p) = (φ(p) ∧DR(p[tag 7→ m])) ∨ (¬φ(p) ∧DR(p)) if r = (φ, MARK(m))

formula characterizes exactly the accepted/dropped packets and their transla-
tions.

2.4.1 Logical characterization of firewalls

We construct two logical predicates that characterize the packets accepted and
those dropped by an unfolded ruleset, together with the relevant translations.

To deal with NAT, we define an auxiliary function tr that computes the set of
packets resulting from all possible translations of a given packet p. The param-
eter X ∈ {←,→,↔} specifies if the translation applies to source, destination or
both addresses, respectively, similarly to CHECK-STATE(X).

tr(p, nd, ns,↔) , {p[da 7→ ad, sa 7→ as] | ad ∈ nd, as ∈ ns}

tr(p, nd, ns,→) , {p[da 7→ ad] | ad ∈ nd}

tr(p, nd, ns,←) , {p[sa 7→ as] | as ∈ ns}

Furthermore, we model the default policy of a ruleset R with the predicate dp,
true when the policy is ACCEPT, false otherwise.

Given an unfolded ruleset R, we build two predicates: PR(p, p̃) that holds
when the packet p is accepted as p̃ by R, and DR(p) when p is instead dropped.
Their definition in Table 2.2 induces on the rules in R. Recall that formulas φ
also predicate on the firewall state, e.g., checking if the packet belongs to an
established connection. As a sanity check, we assume that this is always the case
when the target is CHECK-STATE. We briefly comment on the definition of PR(p, p̃).

38

The empty ruleset applies the default policy dp(R) and does not transform the
packet, reflected by the constraint p = p̃. The rule (φ, ACCEPT) considers two cases:
when φ(p) holds and the packet is accepted as it is; when instead ¬φ(p) holds, p
is accepted as p̃ only if the continuation R accepts it. The rule (φ, DROP) accepts
p only if the continuation does and φ(p) is false. The rule (φ, NAT(nd, ns)) works
similarly to the rule (φ, ACCEPT), expect that, when φ(p) holds, and it gives p̃ by
applying to p the NAT translations tr(p, nd, ns,↔). Finally, (φ, CHECK-STATE(X))
works similarly to the rule a NAT that applies all possible translations of kind
X (written as tr(p, ∗:∗, ∗:∗, X)). Intuitively, we over-approximate the state by
considering any possible translations, because we abstract away from the actual
established connections. At run-time, only the connections corresponding to the
actual state will be possible. The rule (φ, MARK(m)) works similarly to the rule
NAT, but when φ(p) holds it requires that the continuation accepts p tagged by
m as p̃. Apart from being monadic, the definition of DR(p) follows the same
schema.

Example 2.5. The predicates PR and DR of the ruleset in Example 2.2 when
dp(CB) = false is

P$CB%(p, p̃) = D$CB%(p) =

¬φ1 ∧ (φ1 ∨ (¬φ1 ∧ (

(φ2 ∧ φ11 ∧ p = p̃) ∨ (¬(φ2 ∧ φ11) ∧ (¬(φ2 ∧ φ11) ∧ (

(φ2 ∧ φ12 ∧ φ21 ∧ p = p̃) ∨ (¬(φ2 ∧ φ12 ∧ φ21) ∧ (¬(φ2 ∧ φ12 ∧ φ21) ∧ (

¬(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23) ∧ ((φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23) ∨ (

¬(φ2 ∧ φ13) ∧ (¬(φ2 ∧ φ12 ∧ ¬φ22 ∧ φ23) ∧ (

(φ3 ∧ p = p̃) ∨ (¬φ3 ∧ ((φ2 ∧ φ13) ∨ (¬(φ2 ∧ φ13) ∧ (

false ∧ p = p̃))))))))) ¬φ3 ∧ true))))))))

Note that if ¬φ1 ∧ φ2 ∧ φ11 holds then the formula trivially holds and therefore
the formula accepts the packet as the semantics does.

Also, consider the case in which φ2, φ12, φ22, φ23, φ3 hold for a packet p, while
all the other predicates do not. Then, p is accepted as it is: the rule (φ23, DROP)
is not evaluated since φ22 holds and the RETURN is performed (cf. Example 2.1).
Indeed, the predicate P$CB%(p, p) evaluates to the following, where we abbre-

viate true with T and false with F :

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (T ∧ (T ∨ (F ∧ F)))))))) = T

Instead, if φ13 holds too, the packet is rejected as expected:

T ∧ (F ∨ (T ∧ (F ∨ (T ∧ (T ∧ (F ∧ (T ∨ (F ∧ F)))))))) = F

Example 2.6. Let (sa(p) = 1 : 22, NAT({2, 3} : 22, ? : ?)); (da(p) = 2 : 22, DROP)
be the ruleset R, where NAT maps to a set of IP addresses. Now, (p, p̃) ∈ PR
where da(p) is any, sa(p) = sa(p̃) = 1 : 22, and da(p̃) = 2 : 22. Therefore, R
accepts p as p̃, but it drops p̃ itself, because it belongs to DR.

39

The predicate PR(p, p′) in Table 2.2 is semantically correct, because if a
packet p is accepted by a ruleset R as p′, then PR(p, p′) holds, and vice versa.
Formally:

Lemma 2.1. Given a ruleset R we have that

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s. p, s |=ε
R (ACCEPT, p′)

We eventually define the predicates associated with a whole firewall as fol-
lows.

Definition 2.10. Let F = (C, ρ, c) be a firewall with control diagram C =
(Q,A, qi, qf). The predicates PF (p, p̃) and DF (p) associated with F are defined
as follows:

PF (p, p̃) , P∅qi(p, p̃) and DF (p) , D∅qi(p) where

PIqf (p, p̃) , p = p̃ PIq (p, p̃) , ∃p′.Pc(q)(p, p′) ∧

 ∨
(q,ψ,q′)∈A

q′ /∈I

ψ(p′) ∧ PI∪{q}q′ (p′, p̃)

DIqf (p) , false

DIq (p) , Dc(q)(p) ∨ ∃p′.Pc(q)(p, p′) ∧

 ∨
(q,ψ,q′)∈A

ψ(p′) ∧
(
q′ ∈ I ∨ DI∪{q}q′ (p′)

)
for all q ∈ Q such that q 6= qf , and where Pc(q) and Dc(q) are the predicates
constructed from the ruleset associated with the node q of the control diagram.

Intuitively, in the final node qf we accept p as it is, and of course we drop
nothing. In all the other nodes, p is accepted as p̃ if and only if there is a
path starting from p in the control diagram that obtains p̃ through intermedi-
ate transformations. More precisely, for accepting we look for an intermediate
packet p′, provided that (i) p is accepted as p′ by the ruleset c(q) of node q; (ii)
p′ satisfies one of the predicates ψ labeling the branches of the control diagram;
and (iii) p′ is accepted as p̃ in the reached node q′. Instead, a packet is dropped
directly in the node q or in one of its successors, possibly because it has been
translated to p′′ via NAT. Note that we ignore paths with loops, because firewalls
have mechanisms to detect and discard a packet when its elaboration loops. To
this aim, our predicate uses the set I for recording the nodes already traversed.

We conclude this section by establishing the correspondence between the
logical formulation and the operational semantics of a firewall. Formally, F
accepts the packet p as p̃ if the predicate PF (p, p̃) is satisfied, and vice versa:

Theorem 2.2 (Correctness of the logical characterization). Given a firewall
F = (C, ρ, c) and its corresponding predicate PF , for all packets p we have that
PF (p, p′) ∨ DF (p) holds and

40

1. s
p,p′−−→ s] (p, p′) =⇒ PF (p, p′)

2. 6 ∃p′, s′. s p,p′−−→ s′ =⇒ DF (p)

3. PF (p, p′) =⇒ ∃s.s p,p′−−→ s] (p, p′)

Recall that the logical characterization abstracts away the notion of state,
and thus PF (p, p′) holds if and only if there exists a state s in which p is accepted
as p′. In particular, if the predicate holds for a packet p that belongs to an
established connection, p will be accepted only if the relevant state is reached
at runtime. This is the usual interpretation of firewall rules for established
connections.

Non-deterministic behaviour A configuration can exhibit a non-deterministic
behavior: there might exist paths that accept a packet and others that drop it.
Such a misbehavior can be detected using the logical characterization. Below,
we present a simple example of that.

Example 2.7. Consider the packets p and p̃ and the ruleset R of Example 2.6;
let R′ consist of (da(p) = 2 : 22, ACCEPT); (da(p) = 3 : 22, DROP); and assume that
the firewall F inspects R before R′. The ruleset R accepts p either as p̃ or as p̃′

with da(p̃′) = 3 : 22. Consequently, we have that both PF (p, p̃) and DF (p) are
true, since the first rule of R′ accepts p̃ and its second one drops p̃′.

Synthesis algorithm

Here, we present an algorithm that synthesizes the fw-function of a firewall con-
figuration F written in IFCL. This algorithm takes as input the predicates PF
and DF and computes all their models. To do that, we adopt the algorithm
of [78], which is based on the Z3 solver [90], and therefore we inherit sound-
ness and completeness. In particular we use their multi-cubes representation
to succinctly enumerate all the packets accepted and dropped by the firewall.
These multi-cubes P are used to succinctly represent the τ − pairs (P, t) of the
fw-function of the firewall where t 6= ⊥.

We model packets as tuples of Z3 bit-vector variables of appropriate size

(srcIP, srcPort, dstIP, dstPort, srcMac, dstMac, protocol, state)

that represent source and destination IPs and ports, source and destination MAC

addresses, the protocol and the packet state. Firewall predicates are expressed
as logical formulas on those packet variables. For example,

dstIp ≡ 10.0.2.15 ∧ dstPort == 22

selects packets with destination 10.0.2.15 and port 22. We write dstIp ≡
10.0.2.15 as a shortcut for equating dstIp with the numerical representation
of the IP address 10.0.2.15. Intervals are encoded with two ≤ constraints.

41

Algorithm 1 All-BVSAT?

Require: Formula ϕ over bit-vectors with free variables ~x
Ensure: Set of multi-cubes M that are models of ϕ
1: B ← ϕ
2: M← ∅
3: while B is satisfiable do
4: ~v ← a satisfiable assignment to B
5: for each multi-cube ~M ∈M do
6: Extend ~M with ~v if possible
7: B ← B ∧ (~x /∈ ~M)

8: if B ∧ ~x = ~v is still satisfiable then
9: ~C ← {v1} × ...× {vn}

10: for each i in 1..n do
11: Expand interval Ci

12: M←M∪ {~C}
13: B ← B ∧ (~x /∈ ~M)

14: return M

In order to succinctly enumerate packets, a multi-cube maps each packet
variable v to a union of disjoint intervals Iv to which the value of v belongs. For
instance, the solutions of the formula

(dstIp ≡ 10.0.2.15 ∨ dstIp ≡ 10.0.1.0/24) ∧ (dstPort == 22 ∨ dstPort == 443)

are expressed by the following multi-cube:

dstIp = {10.0.2.15} ∪ [10.0.1.0, 10.0.1.255], dstPort = {22} ∪ {443}

For each formula over bit-vector variables, we compute the satisfying multi-
cubes using Algorithm 1 of [78]. Intuitively, each iteration of the while loop
selects an assignment of variables ~v that is not covered by any of the existing
multi-cubes. First the algorithm tries to extend the existing multi-cubes with
the values in ~v; next, if the formula is still satisfiable, a new multi-cube is
created.

During the extension/creation of multi-cubes, the algorithm performs an
expansion step that extends as much as possible the intervals both downwards
and upwards. This step uses a variant of the binary search algorithm to find
the bounds of the maximal interval that satisfies the given formula.

Dealing with NAT Synthesis gets complicated with NAT, because it can in-
troduce many variables in the formulas, representing intermediate address val-
ues for the packet during different processing phases. Some variables, however,
are not touched by NAT and this needs to be represented in the predicates, as
discussed in the following.

An intuitive solution is to impose equality constraints on variables that are
not touched by NAT, but this approach may be inefficient. For instance, consider

42

the formula 1 ≤ v1 ≤ 5 ∧ v1 = v2: Algorithm 1 uses the SMT solver to find
a solution, e.g., v1 = v2 = {3}, and tries to expand the intervals associated to
v1 and v2, one after the other. However, increasing the interval of v1 violates
the equality constraint with v2. The results of the algorithm are thus 5 distinct
multi-cubes, i.e., v1 = v2 = {i ∈ [1..5]}.

A careful treatment of equality introduces new variables only for the packet
features that are modified by NAT rules and implicitly model equality constraints
by sharing the same variable in the input and in the output packet. For instance,
if a NAT rule modifies the destination address of the input packet p, the output
packet p̃ is represented with the same variables of p with the exception of the
destination address that uses a fresh variable. Since the introduction of these
fresh variables is only required for the packets that are subject to NAT, we
consider separate predicates covering the different cases: DNAT, SNAT and filtering.
In DNAT and SNAT all variables will be the same except for the destination and
source address, respectively. In filtering, all variables will coincide, as the input
and the output packets are the same.

In principle, this separation could lead to an explosion of the number of
predicates. However, when studying existing firewall systems, we found that the
maximum number of packets to be considered is three: the input packet, the
packet after applying destination NAT and the packet after applying source NAT.
In fact, in real systems NAT is applied at most twice during packet processing.
For this reason, the proposed approach works very well in practice.

2.5 Compilation

The compilation from fw-function to configuration is done in two stages:

1. generation of the IFCL rulesets from the table;

2. association of the IFCL rulesets to the nodes of control diagram of the
target language;

3. translation from IFCL to the target language.

However, there are cases in which the compilation fails because the configuration
is not expressible in the target system.

The resulting firewall automatically accepts all the packets that belong to
established connections with the appropriate translations. This is not a limita-
tion, since it is the default behavior of some real firewall systems (e.g., pf) and
it is quite odd to drop packets, once the initial connection has been established.
Moreover, this is consistent with the over-approximation on the firewall state
done in subsection 2.4.1.

We first introduce an algorithm that computes the rulesets of the target
firewall FC (stage 1). Then, we associate these rulesets with the nodes of its
control diagram (stage 2). Finally we discuss the translation from IFCL to the
target language (stage 3) and prove the correctness of the compilation.

43

Algorithm 2 Generation of the rulesets of the compiled firewall FC
Require: The fw-function τ
Ensure: The rulesets Rdnat, Rfil, Rsnat, Rmark of the compiled firewall FC
1: Rdnat = Rfil = Rsnat = Rmark = ε
2: for (P, t) in τ do
3: if t = id then
4: add (φP , ACCEPT) to Rfil
5: else if t 6= λ⊥ then
6: generate fresh tag m
7: add (φP ∧ tag(p) = •, MARK(m)) to Rmark

8: add (tag(p) = m, NAT(nd(t), ?)) to Rdnat
9: add (tag(p) = m, NAT(?, ns(t))) to Rsnat

10: add (tag(p) 6= •, ACCEPT) and (true, DROP) to Rfil
11: prepend Rmark to Rdnat, Rfil and Rsnat

2.5.1 Ruleset Generation

Algorithm 2 inputs the fw-function τ and generates the basic rulesets Rfil,
containing filtering, and Rdnat, Rsnat (with default ACCEPT policy) for DNAT and
SNAT rules. This separation reflects what is done in all the real systems we
have analyzed. Indeed, they can place NAT rules only in specific nodes of their
control diagrams, as represented by the labeling in Figure 2.2 e.g., in iptables,
DNAT is allowed only in rulesets q1 and q8, while SNAT only in q5 and q11.

For every τ−pair (P, id), Algorithm 2 generates an accepting rule with pred-
icate φP , that is verified if the packet is in P (line 4). Also, it produces rules
that assign different tags to packets that must be processed by different NAT

rules (lines 6 and 7). Each NAT τ−pair is split in a DNAT (line 8) and an SNAT

(line 9), where the predicate φ is a check on the tag of the packet. We abused
notation and used nd and ns on a transformation t to select the destination and
source part only. Packets subject to NAT are accepted in Rfil while the others
are dropped (line 10). We prepend Rmark to all rulesets making sure that pack-
ets are always marked, independently of which ruleset will be processed first
(line 11). Recall that the empty tag • identifies untagged packets.

Recall that the @ operator combines rulesets in sequence. Note that Rfil
drops by default and shadows any ruleset appended to it. In practice, the only
interesting rulesets are Rε, Rfil, Rdnat, Rsnat, Rdnat @Rfil, Rsnat @Rfil where
Rε is the empty ruleset with default ACCEPT policy.

2.5.2 Ruleset Association

The cap-label associated to a node of the control diagram uniquely determines
the ruleset we associate to it. As previously stated, we consider only nodes with
cap-label ID, and not associated with both DNAT and SNAT. The correspondence
between V (q) and c(q) is thus the following one:

V (q) = {ID} ⇒ c(q) = Rε V (q) = {ID, SNAT} ⇒ c(q) = Rsnat

44

V (q) = {DROP} ⇒ c(q) = Rfil V (q) = {ID, DNAT, DROP} ⇒ c(q) = Rdnat @Rfil

V (q) = {ID, DNAT} ⇒ c(q) = Rdnat V (q) = {ID, SNAT, DROP} ⇒ c(q) = Rsnat @Rfil

Example 2.8. Now we map the rulesets to the nodes of the control diagrams
of the real systems presented in subsection 2.2.2.
For iptables we have:

c(q1) = c(q8) = Rdnat c(q5) = c(q11) = Rsnat c(q3) = c(q6) = c(q9) = Rfil

while the remaining nodes get the empty ruleset Rε.
For pf we have:

c(q2) = Rdnat c(q0) = Rsnat c(q1) = Rfil c(q3) = Rfil

while the remaining nodes get the empty ruleset Rε.
For ipfw we have:

c(q0) = Rdnat@Rfil c(q1) = Rsnat@Rfil

while the remaining nodes get the empty ruleset Rε.

We now introduce the notion of compiled firewall.

Definition 2.11 (Compiled firewall). LetR be {Rε, Rfil, Rdnat, Rsnat, Rdnat @Rfil,
Rsnat @Rfil}. A firewall FC = (C, ρ, c) with control diagram C = (Q,A, qi, qf)
is a compiled firewall if

• c(qi) = c(qf) = Rε

• c(q) ∈ R for all q ∈ Q

• every path π from qi to qf in the control diagram C traverses a node
q ∈ Q \ {qi, qf} such that c(q) ∈ {Rfil, Rdnat @Rfil, Rsnat @Rfil}

Intuitively, the above definition requires that only the rulesets in R are
associated with the nodes in the control diagram and that all paths pass at
least one through a node with the filtering ruleset. Note that the firewalls
obtained through the association we have chosen for iptables, pf and ipfw

satisfy these conditions.

From IFCL to the target language

Producing the target configuration requires to translate the IFCL firewall ob-
tained by Algorithm 2 into the target language. We proceed like in the encoding
phase, presented in subsection 2.2.2, but in the opposite direction. The trans-
lation is done in two steps: first the rulesets are separately translated, then
they are composed according to the control diagram, hence obtaining the final
configuration. Composing the translations of the rulesets is a trivial syntactical
work. For the most, this is also the case with the translation of rulesets, but
there are some subtleties to consider.

45

It is worth noting that Algorithm 2 generates a very specific kind of rulesets,
characterized by no control flow instructions at all, a heavy usage of tags, and
a restricted usage of CHECK-STATE, for accepting all the packets that belong to
established connections. Therefore, we do not need a general translation, one
that works for this cases suffices.

Rules are usually considered one at a time. The only problem that arises
from rule conditions is that concrete languages cannot express arbitrary unions
of ranges of addresses. For this reason, the translation has to break the rules
having such conditions into a sequence of rules expressing the same intervals,
but using subnet notation. In practice, our implementation employs refactoring
to reduce the size of the obtained configuration.

Among targets, the only one that causes problems is MARK. This because of
two reasons: (i) in some languages (like iptables) it is not possible to write an
instruction for marking a packet without immediately applying also NAT, ACCEPT,
or DROP

1, (ii) some languages (like pf), do not allow you to check for the packet
to have no tag associated (as in ”tag(p) = •” of Algorithm 2, line 7).

These problems are solved by postprocessing the compiled firewall rulesets
as follows. For (i), before any rule r having condition tag(p) = •, we insert a
sequence of rules (tag(p) = m,Goto(Rr)), one for each m generated by Algo-
rithm 2, where Rr is the continuation of the ruleset after rule r. In this way, the
original condition on tag becomes redundant and can be removed. Actually, it
is possible to take advantage from the fact that in Rmark all the rules containing
tag(p) = • are consecutive, and that conditions in every pair of different rules
are mutually exclusive, since they came from a fw-function. Thus you can insert
the list of (tag(p) = m,Goto(Rr)) rules just once, before the first occurrence of
tag(p) = •.

For addressing (ii), we first move the accepting (in Rfil) or translating (in
Rdnat and Rsnat) rules immediately after the corresponding tagging rule. Fi-
nally, the whole pair (tagging rule, accepting/translating rule) is translated into
a single rule of the target language.

Translating the targets NAT, ACCEPT, DROP, and the used instance of CHECK-STATE

causes no problems. As we say above, we can leave out CALL(), GOTO() and RETURN,
since compiled firewalls do not contain such targets in general form. The sim-
ple instances of GOTO() introduced in (i) can be translated trivially in all the
considered languages.

Some other postprocessing is introduced for optimization purpose. For ex-
ample, if there is a set of nodes that are traversed by all the packets only once
and before any translation or dropping, as in nodes q0 and q7 of iptables, then
we anticipate the tagging instructions of Rmark in these nodes and remove them
from the following ones.

1This because mark instructions are often implemented as options on rules instead of actual
targets on their own.

46

Correctness of the compiled firewall

We start by showing that a compiled firewall FC accepts the same packets as
the original fw-function τ , possibly with a different translation. The differences
may show up because the source and the target firewall systems may impose
different constraints on which kinds of packets can be translated, and when.

Theorem 2.3. Let FC be a compiled firewall of τ and let p be a packet, then

τ(p) 6= λ⊥ ⇔ ∃p′.PFC
(p, p′).

It is convenient introducing a few auxiliary definitions. Let T = {id, dnat,
snat, nat} be the set of translations of a packet while it traverses a firewall. The
first, id, represents the identity, dnat and snat are for DNAT and SNAT, while
nat represents both. Also, let (T , <) be the partial order such that id < dnat,
id < snat, dnat < nat and snat < nat. Finally, given a packet p and a
firewall F , we assume πF (p) to be the unique path in the control diagram of
F along which p is processed. This is the case when NAT to multiple addresses
is not allowed, which is the most common situation in practice. The following
function computes the translation capability of a path π, i.e., which translations
can be performed on packets processed along π.

Definition 2.12 (Translation capability). Let π = 〈q1, . . . , qn〉 be a path on the
control diagram of a compiled firewall F = (C, ρ, c). The translation capability
of π is

tc(π) = lub
⋃
qj∈π

γ(c(qj))

where lub is the least upper bound operator on (T , <) and γ is defined as

γ(R) = {id} for R ∈ {Rε, Rfil}
γ(Rt) = {t} for t ∈ {dnat, snat}

γ(R1 @R2) = γ(R1) ∪ γ(R2)

Let p ≈ p′ hold if and only if p′ = p[tag 7→ m] for some tag m; given a packet p
and its translation p′, let tβ be defined as follows, where β ∈ T :

tid(p, p
′) = p tdnat(p, p

′) = p[da 7→ da(p′)]

tnat(p, p
′) = p′ tsnat(p, p

′) = p[sa 7→ sa(p′)]

The following theorem describes the relationship between a compiled firewall
FC and the firewall FS . Intuitively, if FS and FC both accept a packet p, then
the translations applied by FC are the ones of FS that are also available on the
path πFC

(p) in the control diagram of FC , along which p is processed. This
means that the translations of FC are as close as possible to the ones of FS .

Theorem 2.4. Let p be a packet accepted by both FS and FC ; let β =
tc(πFC

(p)); and let p′′ ≈ tβ(p, p′) for some p′. We have that

PFS
(p, p′)⇔ PFC

(p, p′′)

with p′ = p′′ when β = nat or p = p′.

47

Putting together Theorem 2.3 and 2.4, we have that the compiled firewall
drops all and only the packet that the source drops, and that all the packet ac-
cepted by the source firewall are accepted by the compiled one with a translation
that is as close as possible to the original one.

Example 2.9. Consider again Example 2.8. Any path π in iptables has
tc(π) = nat, which implies p′ ≈ p′′, i.e., FC behaves exactly as FS . Interestingly,
the paths π1 = 〈qi, q0, q1, qo〉 and π2 = 〈qi, q2, q3, qo〉 in pf have tc(π) equal to
snat and dnat, respectively. In fact, pf cannot perform snat and dnat on packets
directed to and generated from the host, respectively. The same holds for ipfw.

2.6 The Problem of Expressivity

Here, we introduce two formal notions of expressivity that characterize the set
of fw-functions expressible by each language. We provide a logical definition
of these notions that will be turned in an operational style and then checked
by our implementation. The first notion is individual expressivity in which we
assume that the firewall manages single packets in isolation. The second is
function expressivity that characterizes what is expressible, taking care of how
a transformation on a packet may affect that of another packet. We only use
below the basic targets ACCEPT, DROP and NAT and avoid ad hoc constructs. Indeed,
control flow instructions are implicitly considered in the following, because they
are macro-expanded in IFCL (see subsection 2.2.5). Tags are also implicitly
considered. Indeed, since they can appear everywhere in the rulesets, and are
used to distinguish packets, their application allows to consider each packet
as if it were managed in isolation by the firewall, as in individual expressivity.
Conversely, if one prohibits the usage of tags, the resulting expressivity is the
one of function expressivity. The choice of focusing only on this specific subset
of targets is also driven by the empirical evidence that most of the policies freely
available use these targets only [49]. Also, we formally relate the expressivity of
the languages considered so far, according to these two notions. For convenience,
we first define a new, more abstract semantics of IFCL, which is proven equivalent
to the operational one.

2.6.1 Denotational Semantics

We first define the semantics of normalized rulesets.

Definition 2.13. Let R be a normalized ruleset. The semantics of R is

LR M : P→ TP

48

where

L ε Mp =

{
id if dp = ACCEPT

λ⊥ otherwise

L (φ, ACCEPT);R M(p) =

{
id if φ(p)

LR M(p,m) otherwise

L (φ, DROP);R M(p) =

{
λ⊥ if φ(p)

LR M(p) otherwise

L (φ, NAT(nd, ns));R M(p) =

{
trnat(nd, ns) if φ(p)

LR M(p) otherwise

where trnat(adIP : adPort, asIP : asPort) = (tdIP : tdPort, tsIP : tsPort) with

ti =

{
id if ai = ?

λai otherwise

We now define the denotational semantics of the firewalls expressed in normal
form. This new semantics is a fw-function, i.e. a function from packets to
transformations. The idea is to compose the transformations applied to a packet
p in each node of the path it follows in the control diagram.

Definition 2.14. Let P → TP be the set of fw-functions, and let F = (C, ρ, c)
be a firewall. The semantics of F : P→ TP is defined as

LF M = �F{qi}(qi)

where for any I ⊆ Q

�(C,c)
I (q)(p) =

�(C,c)
I∪{q′}(q

′)(p′) ◦ t if q 6= qf ∧ t 6= λ⊥ ∧ q′ /∈ I
t if q = qf ∨ t = λ⊥

λ� if q′ ∈ I

with t = L c M(q)(p), p′ = t(p) and q′ = δ(q, p′).

Note that in the definition above, while traversing the nodes of the control dia-
gram, we not only apply the transformations to packets, but we also accumulate
and compose them. Indeed, our goal is to characterize the overall transforma-
tion a packet undergoes, rather than simply determine whether it is accepted or
not. Recall that in each step the packet p can change and that λ⊥ immediately
drops it. The special transformation λ� is applied as soon as a loop is detected,
and for that the index I accumulates the nodes already visited. According to
our experiments with the real firewall systems described in Section 3.1, cycling
packets are usually dropped, i.e. λ� = λ⊥, but no official documentations state
this in clear. Thus, best practice suggests to avoid considering configurations
where packets cycle. For this reason in the following we only consider firewalls
F where no packets cycle: LF M(p) 6= λ� for any packet p.

49

2.6.2 Allowed Transformations

In subsection 2.2.3 we presented cap-labels as a way to encode the actions that
may appear associated with nodes of a control diagram. Such labels also restrict
the transformations that may be associated with packets by the semantics of a
ruleset in a given node.

Definition 2.15 (Allowed transformations). The mapping ε associates a cap-
label l ∈ L with the set of allowed transformations as follows:

ε(ID) = {(id : id , id : id)} ε(DROP) = {λ⊥}
ε(DNAT) = Λ× {id : id} ε(SNAT) = {id : id} × Λ

where Λ = {λa : λa′ | a ∈ IP , a′ ∈ Port}.
We extend ε to homomorphically operate on sets L ⊆ L of labels, i.e. re-

turning the union of ε(l), for l ∈ L.

The following lemma follows immediately by the definitions, and state that a
firewall F is legal if and only if the semantics of the rulesets associated with any
node q has a subset of V (q) as image.

Lemma 2.2. A firewall (C, ρ, c) with nodes Q is legal for a cap-label assignment
V if and only if for each node q ∈ Q, ε(V (q)) includes the image of L c(q) M.

Consequently, the expressivity of a firewall language L can be established
by just examining the control diagram CL and how the cap-label assignment VL
constraints the semantics of the rulesets associated with nodes.

For convenience, in the following we will consider functional firewalls, i.e.
pairs composed by a control diagram C with nodes Q, and a functional config-
uration, i.e. function f : : Q→ P→ TP.

Definition 2.16 (Functional firewalls). A functional firewall is a pair (C, f)
where C is a control diagram, and f : : Q → P → TP. A functional firewall is
legal for a cap-label assignment V if and only if for each node q ∈ Q, ε(V (q))
includes the image of f(q).

A trivial consequence of Lemma 2.2 is that a functional firewall (C, f) is legal
for V if and only if a firewall (C, ρ, c) exists, that is legal for V and such that,
for each node q ∈ Q, f(q) = L c(q) M.

2.6.3 Individual Expressivity

The individual expressivity of a firewall language describes which transforma-
tions a legal configurations can apply to packets. Below we first define it inten-
sionally. We then characterize it constructively in terms of traces, i.e., labeled
paths along the control diagram of the language, so providing the bases of the
algorithms of Section 2.6.3.

50

Expressible Pairs

We start with an intensional characterization of the transformations that can
be legally applied to each single packet.

Definition 2.17. The set of expressible pairs of a language L is

EL = { (p, t) | ∃f. f is legal for VL ∧ L (CL, f) M(p) = t }

We now give a constructive characterization of this expressivity through
the notion of trace, i.e., a pair composed by a “complete” acyclic path that a
packet may traverse in a control diagram and by the sequence of cap-label of
the traversed nodes. A complete path starts from the initial node and either
ends in the final node or in one dropping the packet; in addition, for each node
q the cap-label is among the permitted ones V (q). Formally,

Definition 2.18. A trace of a language L is a pair h = (π, v) where π =
q0 · q1 . . . · qn, v = l0 · l1 . . . · ln, with q0 = qi, are such that ∀i, j. i 6= j ⇒ qi 6= qj ,
and ∀j. (qj , ψ, qj+1) ∈ A for some ψ, lj ∈ VL(qj), ∀j 6= n. (qj 6= qf ∧ lj 6= DROP)
and either qn = qf or ln = DROP. Finally, let HL be the set of the traces of L.

By abuse of notation, given a trace (π, v) we call a configuration f legal for
v when ∀p ∈ P, qj ∈ π. f(qj)(p) ∈ ε(lj).

Example 2.10. The following are traces of pf:

(qi · q0 · q1 · qf , ID · ID · ID · ID), (qi · q2 · q3, ID · DNAT · DROP)

Instead the following two are not traces of pf:

(qi · q0 · q1 · qf , ID · DNAT · ID · ID), (qi · q0 · q1, ID · SNAT · ID)

The first is not because of the second cap-label, DNAT /∈ Vpf(q1), the second
because it is not complete: neither the path ends with qf nor the sequence of
its labels ends with DROP.

We now define the capability of a trace h = (π, v) that describes how a packet
may be transformed by the nodes of π. Intuitively, we consider all the possible
compositions of the transformations allowed by the cap-labels. Recall that the
arcs of control diagrams are guarded by predicates that must be satisfied when
a packet flows through them. These predicates determine which packets and
transformations must be considered. Given a trace h = (π, v), let ψj be the
predicates labelling the arcs outgoing qj in the path qi · q1 . . . · qn ∈ π.

Definition 2.19. The capability of a trace h = (π, v) is the set Ẽh ⊆ P × TP,
containing the pairs (p, t) such that

∃ t1, . . . tn. tn ◦ · · · ◦ t1 = t ∧ ∀j. tj ∈ ε(lj) ∧ j < n→ ψj(pj)

where ∀j. pj = (tj ◦ · · · ◦ t1)(p).
Finally, the capability of the traces of a language L is

ẼL =
⋃

h∈HL

Ẽh

51

Example 2.11. Consider the trace of pf

h = (π, v) = (qi · q0 · q1 · qf , ID · SNAT · ID · ID)

and, assuming that a packet is fully specified by its destination and source
addresses, let

p1 = (8.8.8.8 : 22, 192.168.0.1 : 50000)

t1 = (id : id, λ151.15.1.5 : λ50000)

Then the pair (p1, t1) is in Ẽh, because the transformations

id · (id : id, λ151.15.1.5 : λ50000) · id · id

verify the conditions of Definition 2.19.
Instead, the pair (p2, t2) where

p2 = (9.9.9.9 : 22, 192.168.0.1 : 50000)

t2 = (λ8.8.8.8 : λ22, id : id)

is not in Ẽh, because no DNAT occurs in v = ID · SNAT · ID · ID.
Finally, the pair (p3, t3) where

p3 = (192.168.0.1 : 80, 23.23.23.23 : 50000)

t3 = (λ192.168.0.8 : λ80, id : id)

is not in Ẽh, because sa(p3) /∈ S.

The following theorem assures that a pair (packet, transformation) is ex-
pressible by L if and only if it is expressible by one of its traces h; in other
words, the capability of the traces of a language coincides with the set of its
expressible pairs. More precisely, Definition 2.17 and 2.19 are equivalent.

Theorem 2.5. EL = ẼL.

Algorithmically Characterizing Individual Expressivity

The operational characterization of individual expressivity is based on Algo-
rithm 3 and on Theorem 2.6 and 2.7 below.

Algorithm 3 checks whether a packet p can follow a given trace h = (π, v)
by following the path π and verifying if p satisfies all the predicates ψj la-
belling the arc outgoing qj . It uses the auxiliary functions length, head and tail
on sequences with the usual meaning, and the following Ext predicate (recall
from Definition 2.4 that ψw is the predicate ψ restricted on the field w)

Ext(ψ,L) =
∧

w/∈
⋃

l∈L γ(l)

ψw where γ(l) =

{dIP , dPort} if l = DNAT

{sIP , sPort} if l = SNAT

W if l = DROP

∅ if l = ID

52

A few comments are in order. The cap-labels encountered along the trace
h play an important role, and are accumulated in the auxiliary set CL (line 6).
Actually, the function Ext weakens the predicate ψj by removing the conditions
affected by the elements of CL; the resulting predicate is then applied to p to
verify if the arc outgoing qj can be taken (line 8). As soon as the algorithm
traverses a node q with cap-label DNAT (SNAT respectively), all the predicates on
the destination (source, respectively) addresses are not checked against p any
longer. This is because, after leaving q, the original values of the destination
fields (source fields, respectively) of p have been changed, thus the relevant
predicates will be evaluated on the updated fields. The arc predicates are also
accumulated into ψ (line 7) and checked for consistency through a call to a SAT
procedure (line 8). Intuitively, in a node labeled by SNAT the packet source can
always be associated with a value satisfying the constraints of the next arcs in
the trace, unless some predicates are contradictory. Since Algorithm 3 considers
each node and label of the trace only once, its complexity is linear in the length
of the trace, because in the worst case, it visits the nodes in h only once.

The individual expressibility of a language can be characterized by the fol-
lowing theorem, where the function CHECK FLOW is computed by Algorithm 3,
and the function REV(h) reverses the trace h. Note that the packet p traversing
the trace h must became t(p) and keep satisfying the predicates on the arcs also
after some of its fields have been transformed. If different from those in t(p), the
new values of a field can thus be arbitrary chosen, provided that the predicates
are satisfied, because the values of the destination (source, respectively) fields
between two DNAT (SNAT) are immaterial. Therefore, it suffices checking the des-
tination fields (source, respectively) from the last DNAT (SNAT) label onward. This
is actually obtained by reversing the trace h and applying again Algorithm 3.
Below, we use the function ε̂ that extends ε to the second component of traces
v as follows:

ε̂(l · v) = ε̂(v) ◦ ε(l)

Note that ε̂(v) = λ⊥ if the last element of v is DROP.

Theorem 2.6. Given a trace h = (π, v), the pair (p, t) is in Ẽh iff

t ∈ ε̂(v) ∧ CHECK FLOW(h, p) ∧ CHECK FLOW(REV(h), t(p))

Example 2.12. Consider the pair (p1, t1) and the trace h of Example 2.11. To
make sure that (p1, t1) ∈ EH(h), we first check that t1 ∈ ε̂(v) = ε(SNAT); then,
CHECK FLOW(h, p1) returns true because sa(p1) ∈ S and da(p1) /∈ S; finally,
CHECK FLOW(REV(h), p1) is also true because the fields changed by t1 do not
appear on the arcs of the path of p1.

The pair (p3, t3) instead is not in EH(h), because sa(p3) /∈ S.

Comparing the Individual Expressivity of Languages

To compare the individual expressivity of different languages, we finitely enu-
merate their expressible pairs. For that, we use the intuition behind Algorithm 3

53

Algorithm 3 Checks if a packet p may follow the trace h = (π, v)

1: function check flow(p, (π, v))
2: CL← ∅
3: ψ ← true
4: while length(π) > 1 do
5: (qj , lj)← (head(π), head(v))
6: CL← CL ∪ {lj}
7: ψ ← Ext(ψ, lj) ∧ ψj
8: if ¬

(
Sat(ψ) ∧ Ext(ψj , CL)(p)

)
then return false

9: (π, v)← (tail(π), tail(v))

10: return true

and Theorem 2.6 to partition the set of pairs (p, t) in equivalence classes ω so
that if (p1, t1) ∈ ω is expressible (not expressible, respectively), then all the
pairs in ω are expressible (not expressible, respectively) as well. As we will
see, a language can have different such equivalence classes, which can be effi-
ciently determined. Since their number is small, one can easily enumerate the
expressible pairs of different languages and compare them. Formally:

Definition 2.20. Let T = {ε(ID), ε(DNAT), ε(SNAT), ε(DROP),Λ×Λ} be a partition
of the set of transformations TP; let ΨL be the set of the predicates labeling
the arcs of the control diagram of a given language L; and let g : P → 2ΨL be
defined as

g(p) = {ψ ∈ ΨL | p satisfies ψ}
Then, for any X1 and X2 subsets of ΨL and for any Y ∈ T, let Ω contain the
following sets of pairs (p, t)

ωX1,Y,X2
= {(p, t) | t ∈ Y ∧ g(p) = X1 ∧

(
t(p) 6= ⊥ ⇒ g(t(p)) = X2

)
}

Intuitively, two pairs (p, t) and (p′, t′) belong to the same equivalence class if
and only if p and p′ satisfy the same set of predicates X1; their (not dropping)
transformations t(p) and t′(p′) also satisfy the same predicates X2; and both t
and t′ are represented by the same sequence of cap-labels.

Example 2.13. The two pairs (p1, t1) and (p2, t2) where

p1 = (8.8.8.8 : 80, 192.168.0.1 : 50000)

t1 = (λ7.7.7.7 : λ80, id : id)

p2 = (9.9.9.9 : 80, 192.168.0.1 : 50000)

t2 = (λ151.15.1.5 : λ80, id : id)

are not in the same equivalence class.
Indeed, even though g(p1) = g(p2) = {sa(p) ∈ S, da(p) /∈ S}, and t1, t2 ∈
ε(DNAT), we have that t1(p1) verifies da(p) /∈ S whereas t2(p2) does not, hence
g(t1(p1)) 6= g(t2(p2)).

54

We have the following theorem:

Theorem 2.7. Ω is a partition of P × TP such that the elements of ωX1,Y,X2

are either all expressible or all not expressible.

Using the equivalence classes we succinctly enumerate and compare the ex-
pressible pairs of firewall languages, summarized in Table 2.3. The first three
columns show the equivalence class under consideration; the last columns de-
scribe whether the pair representative for each class is expressible or not by a
language. The details for selecting a representative pair of a given class are
in Section A.4.

Note that the predicates on the arcs of the control diagrams of iptables,
ipfw and pf only check the IP addresses (see subsection 2.2.2). A packet can
traverse an arc depending on whether the source or destination of the packet
belongs to S. Therefore, we simply use the set Ψ? = {da(p) ∈ S, da(p) /∈
S, sa(p) ∈ S, sa(p) /∈ S}, the satisfiable subsets of which follow:

{da(p) ∈ S, sa(p) ∈ S} {da(p) ∈ S, sa(p) /∈ S}
{da(p) /∈ S, sa(p) ∈ S} {da(p) /∈ S, sa(p) /∈ S}

The theorem below states that only IFCL and iptables express all the pairs,
while pf and ipfw have the same expressive power. Its proof directly follows by
inspecting Table 2.3.

Theorem 2.8. Epf = Eipfw (Eiptables = EIFCL = P× TP

2.6.4 Function Expressivity

Individual expressivity only considers packets in isolation. However, a firewall
handles many different packets at the same time, each subject to different trans-
formations. The interaction of the transformations applied to different packets
must thus be considered. Surprisingly, this affects the ability of the various
languages to define configurations, as shown by Example 2.14 below. We first
say that a fw-function τ is expressible by a language if the semantics of one of
its firewalls is τ .

Definition 2.21. Given a language L with control diagram CL and a cap-label
assignment VL, a fw-function τ : P→ TP is L-expressible iff ∃f legal for VL such
that L (CL, f) M = τ.
Call TL the set of the fw-functions expressible by L.

Note that this notion differs from individual expressivity because it considers
all the pairs (p, τ(p)) at the same time. The following theorem gives a necessary
condition for function expressibility.

Theorem 2.9. Given a language L and a fw-function τ

τ ∈ TL only if ∀p ∈ P. (p, τ(p)) ∈ EL.

55

Table 2.3: The expressible pairs of iptables, pf and ipfw. The first two
columns contain the predicates in the subset X1 (the − stands for both ∈ and
/∈ S); the third column contains the set of transformations Y ; the fourth and
fifth columns contain the predicates in the subset X2; the sixth column contains
the representative pair (p, t) for the given class or � if the class is empty; the
other columns have 3 if the class containing (p, t) is expressible or 7 if not.

X1 Y X2 (p, t) EL
da(p) sa(p) da(t(p)) sa(t(p)) ((da(p), sa(p)), t) pf/ipfw iptables

1 ∈ S ∈ S ε(ID) ∈ S ∈ S ((a : r, a : r), id) 3 3
2 ∈ S /∈ S ε(ID) ∈ S /∈ S ((a : r, b : r), id) 3 3
3 /∈ S ∈ S ε(ID) /∈ S ∈ S ((b : r, a : r), id) 3 3
4 /∈ S /∈ S ε(ID) /∈ S /∈ S ((b : r, b : r), id) 3 3
5 − ∈ S ε(ID) − /∈ S �
6 ∈ S − ε(ID) /∈ S − �
7 ∈ S ∈ S ε(DNAT) ∈ S ∈ S ((a : r, a : r), (λa : λr, id : id)) 3 3
8 ∈ S ∈ S ε(DNAT) /∈ S ∈ S ((a : r, a : r), (λb : λr, id : id)) 7 3
9 ∈ S /∈ S ε(DNAT) ∈ S /∈ S ((a : r, b : r), (λa : λr, id : id)) 3 3

10 ∈ S /∈ S ε(DNAT) /∈ S /∈ S ((a : r, b : r), (λb : λr, id : id)) 3 3
11 /∈ S ∈ S ε(DNAT) ∈ S ∈ S ((b : r, a : r), (λa : λr, id : id)) 7 3
12 /∈ S ∈ S ε(DNAT) /∈ S ∈ S ((b : r, a : r), (λb : λr, id : id)) 7 3
13 /∈ S /∈ S ε(DNAT) ∈ S /∈ S ((b : r, b : r), (λa : λr, id : id)) 3 3
14 /∈ S /∈ S ε(DNAT) /∈ S /∈ S ((b : r, b : r), (λb : λr, id : id)) 3 3
15 − ∈ S ε(DNAT) − /∈ S �
16 − /∈ S ε(DNAT) − ∈ S �
17 ∈ S ∈ S ε(SNAT) ∈ S ∈ S ((a : r, a : r), (id : id, λa : λr)) 3 3
18 ∈ S ∈ S ε(SNAT) ∈ S /∈ S ((a : r, a : r), (id : id, λb : λr)) 3 3
19 ∈ S /∈ S ε(SNAT) ∈ S ∈ S ((a : r, b : r), (id : id, λa : λr)) 7 3
20 ∈ S /∈ S ε(SNAT) ∈ S /∈ S ((a : r, b : r), (id : id, λb : λr)) 7 3
21 /∈ S ∈ S ε(SNAT) /∈ S ∈ S ((b : r, a : r), (id : id, λa : λr)) 3 3
22 /∈ S ∈ S ε(SNAT) /∈ S /∈ S ((b : r, a : r), (id : id, λb : λr)) 3 3
23 /∈ S /∈ S ε(SNAT) /∈ S ∈ S ((b : r, b : r), (id : id, λa : λr)) 3 3
24 /∈ S /∈ S ε(SNAT) /∈ S /∈ S ((b : r, b : r), (id : id, λb : λr)) 3 3
25 ∈ S − ε(SNAT) /∈ S − �
26 /∈ S − ε(SNAT) ∈ S − �
27 ∈ S ∈ S Λ× Λ ∈ S ∈ S ((a : r, a : r), (λa : λr, λa : λr)) 3 3
28 ∈ S ∈ S Λ× Λ ∈ S /∈ S ((a : r, a : r), (λa : λr, λb : λr)) 3 3
29 ∈ S ∈ S Λ× Λ /∈ S ∈ S ((a : r, a : r), (λb : λr, λa : λr)) 7 3
30 ∈ S ∈ S Λ× Λ /∈ S /∈ S ((a : r, a : r), (λb : λr, λb : λr)) 7 3
31 ∈ S /∈ S Λ× Λ ∈ S ∈ S ((a : r, b : r), (λa : λr, λa : λr)) 7 3
32 ∈ S /∈ S Λ× Λ ∈ S /∈ S ((a : r, b : r), (λa : λr, λb : λr)) 7 3
33 ∈ S /∈ S Λ× Λ /∈ S ∈ S ((a : r, b : r), (λb : λr, λa : λr)) 3 3
34 ∈ S /∈ S Λ× Λ /∈ S /∈ S ((a : r, b : r), (λb : λr, λb : λr)) 3 3
35 /∈ S ∈ S Λ× Λ ∈ S ∈ S ((b : r, a : r), (λa : λr, λa : λr)) 7 3
36 /∈ S ∈ S Λ× Λ ∈ S /∈ S ((b : r, a : r), (λa : λr, λb : λr)) 7 3
37 /∈ S ∈ S Λ× Λ /∈ S ∈ S ((b : r, a : r), (λb : λr, λa : λr)) 7 3
38 /∈ S ∈ S Λ× Λ /∈ S /∈ S ((b : r, a : r), (λb : λr, λb : λr)) 7 3
39 /∈ S /∈ S Λ× Λ ∈ S ∈ S ((b : r, b : r), (λa : λr, λa : λr)) 7 3
40 /∈ S /∈ S Λ× Λ ∈ S /∈ S ((b : r, b : r), (λa : λr, λb : λr)) 7 3
41 /∈ S /∈ S Λ× Λ /∈ S ∈ S ((b : r, b : r), (λb : λr, λa : λr)) 3 3
42 /∈ S /∈ S Λ× Λ /∈ S /∈ S ((b : r, b : r), (λb : λr, λb : λr)) 3 3
43 ∈ S ∈ S ε(DROP) − − ((a : r, a : r),⊥) 3 3
44 ∈ S /∈ S ε(DROP) − − ((a : r, b : r),⊥) 3 3
45 /∈ S ∈ S ε(DROP) − − ((b : r, a : r),⊥) 3 3
46 /∈ S /∈ S ε(DROP) − − ((b : r, b : r),⊥) 3 3

56

The following example shows that the condition above is not a sufficient one.

Example 2.14. The fw-function τ defined below is not pf-expressible, although
all the pairs (p, τ(p)) are expressible in pf.

τ(p)=

(λ8.8.8.8 : id, λ151.15.1.5 : id) if psIP =192.168.0.8∧
pdIP =6.6.6.6

(λ8.8.8.8 : id, id : id) if psIP =192.168.0.8∧
pdIP =7.7.7.7

λ⊥ otherwise

All the pairs (p, τ(p)) are expressible in pf (in subsection 2.6.5 we present an
algorithm to check that this is actually the case). To show that function τ is
not expressible by pf, we assume by contradiction that it is. Take two packets
p and p′, both with source IP 192.168.0.8, that only differ on their destination
IP which are 6.6.6.6 for p and 7.7.7.7 for p′. They must traverse the nodes
qi, q2, q3, q0, q1 and qf , and both are transformed by DNAT in q2 into p′′ with
destination IP 8.8.8.8. When p and p′ arrive in node q0 they have been already
transformed in p′′, and when applying SNAT the two cannot be taken apart. But
τ says that one has to be subject to SNAT and the other has not.

Function expressivity enables us to further compare iptables, ipfw and pf

that originate a partial order, the top of which is IFCL that can express all the
fw-functions.

Theorem 2.10.

• Tpf (Tipfw (TIFCL

• Tiptables (TIFCL

• Tpf * Tiptables, Tiptables * Tpf

• Tipfw * Tiptables, Tiptables * Tipfw

2.6.5 Checking the expressivity of a fw-function

In this section we describe an algorithm for checking if a policy can be expressed
by a given firewall language.

Preprocessing of the fw-function

In addition, we make sure that every τ -pair (Pi, t) is such that all (p, t) with
p ∈ Pi belong to the same equivalence class of Ω. This further partition of
τ -pairs is based on the fact that each subset ωX1,Y,X2

∈ Ω can be represented
as {(PX1,t,X2 , t)|t ∈ Y } lifting Definition 2.20 to sets of packets and taking a
single transformation t. We can then componentwise split each (Pi, t) into its
intersections with the pairs (PX1,t,X2

, t).

57

Algorithm 4 Check function expressivity of L

1: function check function(τ , C, V)
2: for all q ∈ Q do g(q)← ∅
3: for all (P, t) ∈ τ do
4: h← compute trace(C, V, ([P], t))
5: if h = Null then print (P, t) not expressible
6: else g ← check pair(h, (P, t), g)

7: function compute trace(C, V, (p, t))
8: for all h ∈ HL do
9: if t ∈ ε̂(v) ∧ CHECK FLOW(h, p)∧

CHECK FLOW(REV(h), t(p)) then return h

10: return Null

11: function check pair(h, (P, t), g)
12: (P@, t., t/)← (P, t, (id : id, id : id))
13: for all (q, l) ∈ h do
14: (t@, t.)← split(t., l)
15: for all ((P̃@, t̃/, t̃@), (P̃ , t̃)) ∈ g(q) s.t. t̃@ 6= t@ do
16: P×@ ← P@ ∩ P̃@

17: if P×@ 6= ∅ then
18: P× ← P ∩ t−1

/ (P×@)

19: P̃× ← P̃ ∩ t̃−1
/ (P×@)

20: print (P×, t), (P̃×, t̃) clash in q : (P×@ , t@, t̃@)

21: g(q)← g(q) ∪ {((P@, t/, t@), (P, t))}
22: t/ ← t@ ◦ t/
23: P@ ← t@(P@)

24: return g

After the steps above, given a τ -pair (P, t) we can pick up a single packet p ∈
P , denoted by [P], with the guarantee that any other packet in P is transformed
in the same manner and follows the same trace.

Example 2.15. Consider the following fw-function τ , where Internet stands
for any public address not in the protected LAN.

τ(p)=

(λ192.168.0.6 : id, id : id) if psIP ∈Internet ∧
pdIP =151.15.1.5 ∧ pdPort=22

λ⊥ if psIP ∈Internet ∧
(pdIP ∈192.168.0.0/24∨
pdPort 6=22)

(id : id, id : id) otherwise

The set of packets to be dropped is not a multi-cube, and is represented as the

58

union of P⊥1 = 192.168.0.0/24 : × Internet : and P⊥2 = : × Internet :
[0− 21]∪ [23− 65536], where stands for “any value.” Note also that (P⊥1, λ⊥)
is not included in any equivalence class, and thus it is split into ([192.168.0.2,
192.168.0.255] : × Internet : , λ⊥) and ({192.168.0.1} : × Internet : , λ⊥)
(we omit here the invalid address 192.168.0.0).

Mechanically Checking Expressivity

We now describe Algorithm 4. Roughly, it iterates on all the τ -pairs (P, t)
representing a fw-function τ . For each pair, it creates an extended configuration
g that associates each node q with the required transformation tq (occurring in
the cap-labels of q). In doing so, the algorithm checks that no clash occurs.
Intuitively, a configuration has clashes when in a given node of the control
diagram it prescribes to apply “incompatible” transformations to a packet, e.g.,
drop and transform it at the same time, or change its destination field to two
different addresses. Formally,

Definition 2.22 (Clashes). Given a language L, two pairs (p, t) and (p̃, t̃) collide
in a node q ∈ CL with clash (p@, t@, t̃@) iff, for all configurations f legal for VL

L (CL, f) M(p) = t ⇒ f(q)(p@) = t@

L (CL, f) M(p̃) = t̃ ⇒ f(q)(p@) = t̃@

and t̃@ 6= t@.
Also, we say that two τ -pairs (P, t) and (P̃ , t̃) collide in q ∈ CL with clash
(P@, t@, t̃@) iff, for all configurations f legal for VL

(∀p ∈ P. L (CL, f) M(p) = t) ⇒ ∀p@ ∈ P@. f(q)(p@) = t@

(∀p̃ ∈ P̃ . L (CL, f) M(p̃) = t̃) ⇒ ∀p@ ∈ P@. f(q)(p@) = t̃@

and t̃@ 6= t@.

The CHECK FUNCTION in Algorithm 4 takes as input an fw-function τ and
a firewall language L, represented by its control diagram C and the cap-label
assignment V . First, the function initializes the extended configuration g we
want to build as “empty” and then iterates the following steps over all τ -pairs
(P, t) of τ . For each τ -pair (P, t) we look for a trace h of C that can express
it. If there is none, the transformation t cannot be associated with the packets
represented by P (line 5). Otherwise, two cases may arise. The first is when
two packets processed in a node q of C clash, as detailed below (line 17). The
other possible case is when the configuration g can be correctly updated with
the new τ -pair (P, t).

The auxiliary function COMPUTE TRACE returns a trace that can expresses
(p, t), if any, when p = [P] is one of the packets of P (cf. Theorem 2.6).

The auxiliary function CHECK PAIR is called with a trace h returned by
COMPUTE TRACE; a τ -pair; and an (incomplete) extended configuration g. An

59

extended configuration maps each node to a pair and intuitively extends a con-
figuration with the transformations annotated by the τ -pair in which they occur.
Roughly, CHECK PAIR visits sequentially each node q of h; computes the trans-
formations that are applied in it; and updates the configuration g accordingly.
More precisely, CHECK PAIR computes the transformations t/ and t@, and a
new multi-cube P@ for each node q. The transformation t/ describes how the
packets have been rewritten along the sub-path of h from qi to q. Whereas
t@ is the transformation to be applied in q to packets in the multi-cube P@,
obtained from the initial one P applying t/. For each node, t@ is extracted
from the transformation t. that records the part of t still to be considered. We
get t@ through the SPLIT function, a sort of inverse of function composition,
that given a t. and a cap-label l returns the transformation satisfying l and
removes it from t.. Summing up, each node q is associated with pairs of the
form ((P@, t/, t@), (P, t)). Suppose now that a node is associated with two such
pairs, one with t@ to be applied to P@ and the other with a different trans-
formation t̃@ to be applied to P̃@. A clash occurs if the two multi-cubes have
non-empty intersection (line 16). Indeed, the packets in the intersection will be
transformed in two conflicting ways by t@ and t̃@, and the clash is reported to
user (line 17). The lines 18 and 19 recover the packets of P and P̃ clashing in
q, by computing the pre-image of P×@ under the transformation applied from qi
to q. The last three lines update g, t/ and P@, respectively.

Example 2.16. Consider the following two τ -pairs, where Internet stands for
any public address not in the protected LAN, and stands for “any port”

(P1, t1) =

({151.15.1.5} : {22} × Internet : , (λ192.168.0.6 : id, id : id))

(P2, t2) =

([192.168.0.2, 192.168.0.255] : × Internet : , λ⊥)

Choose [P1] = (151.15.1.5 : 22 × 6.6.6.6 : 55) as the representative for P1. It
follows the trace ([qi, q2, q3, qf], [ID, DNAT, ID, ID]). After evaluating q3, the call to

CHECK PAIR results in the extended configuration g where
−→
id stands for (id : id, id :

id)

g(qi) = (P1,
−→
id,
−→
id), (P1, t1)

g(q2) = (P1,
−→
id, t1), (P1, t1)

g(q3) = (({192.168.0.6} : {22} × Internet :), t1,
−→
id), (P1, t1)

In the same way, choose [P2] = (192.168.0.3 : 11× 7.7.7.7 : 44) that follows the
trace ([qi, q2, q3], [ID, ID, DROP]). When q2 is reached, the call to CHECK PAIR results
in updating g as follows

g(qi) = g(qi) ∪ (P2,
−→
id,
−→
id), (P2, t2)

g(q2) = (P2,
−→
id,
−→
id), (P2, t2)

60

When (q3, DROP) is considered, P×@ = (P@ ∩ P̃@) = P̃@ 6= ∅, where P@ = P2 and

P̃@ = ({192.168.0.6} : {22}×Internet :), making (P1, t1) and (({192.168.0.6} :
{22} × Internet :), t2) to clash in q3.

To compute the cost of Algorithm 4 we consider the specific policy τ on
which it runs. More prcisely, in the formula below we take care of the number:
of HL, the traces of L; of QL, the nodes in the control diagram of L; of the
τ -pairs of τ ; and of the intervals in the field w ∈ W of P . For each τ -pair
(P, t), the algorithm inspects the traces of L to select h, the one that expresses
(P, t). For that, Algorithm 3 is invoked that requires QL iterations at most.
Then, for each node of h (containing all the nodes of QL in the worst case)
the intersections in lines 16, 18, and 19 are computed between the actual pair
and those that visit the same node (all the other τ -pairs in the worst case).
Finally, the intersection between two multicubes P and P̃ requires intersecting
the intervals Pw and P̃w for each field w ∈ W . Summing up, we obtain the
following formula:

|τ | · |QL| · (|HL|+ |τ | · |W | ·max{|Pw| | (P, t) ∈ τ}).

Algorithm 4 is correct, as stated below. However, its correctness relies on
two assumptions that are verified by all the languages that we have studied
so far, including iptables, pf and ipfw. The first is that each pair (p, t)
can be expressed by no more than one trace h ∈ HL. The only exception is
when t = λ⊥. We choose to only keep the traces (qi . . . qn), (li . . . DROP) such
that ∀j < n. DROP /∈ V (qj) and lj = ID (recall that ID is associated with every
node of C). Roughly, these traces are the shortest that drop a packet without
transforming any of its fields. Taking the shortest traces does not affect the
expressivity of a language, and there is no point in changing discarded packets.
The other assumption is that the trace h contains no repeated DNAT or SNAT labels,
and makes the extraction of t@ from t. well-defined, in particular when t = λ⊥.

Theorem 2.11. For each firewall language L and fw-function τ , the Algo-
rithm 4 is correct because it prints all and only

1. the τ -pairs (P, t) not expressible by L;

2. the τ -pairs (P, t) and (P̃ , t̃) that clash on some node q.

This theorem has some important practical consequences, as granted by the
following corollary.

Corollary 2.1. A fw-function τ is expressible by L if and only if Algorithm 4
prints nothing.

Thus, if the administrators solve all the inexpressible pairs and the reported
clashes, then they obtain a configuration for the desired system. The inex-
pressible pairs can be simply removed if they are not relevant, otherwise the
administrator can patch the configuration through calls to external code, e.g.,

61

NFQUEUE target in iptables [10]. There are two different ways to solve clashes,
depending on whether the intended behaviour of the system is implemented.
One is selecting the more appropriate transformation t@ and t̃@ for every clash-
ing t-pairs. Actually, acting on the transformations may change the semantics
of the firewall. The other solution is semantics-preserving: one may use other
features of the language to distinguish between the two clashing sets of packets,
e.g., using tags or external code. In Section 2.7.2 we show on an example that
our implementation alerts an administrators when this is the case, and proposes
a tag-based solution.

2.7 Implementation

Our approach for managing firewalls is validated by two tools: FWS that imple-
ments the compilation and decompilation, and F2F that checks the expressivity
of a fw-function in a given firewall language. Below, we first describe them, then
we validate them on real-world configurations.

2.7.1 FWS

The tool FWS [13] allows the administrator to (i) decompile a configuration
obtaining a fw-function displayed as a table, and (iii) compile a table into a
configuration in the chosen target language. FWS can be also used for migrating
a firewall policy from a system to another, e.g., from iptables to pf. Some
extra features are given for analyzing configurations:

• Synthesis, i.e., the tool prints only the subset of τ -pairs related to some
addresses, so reducing the time needed for decompiling when interested
only in a portion of the network;

• Reachability, i.e., the tool checks whether or not a certain address is reach-
able from another one, possibly through NAT;

• Policy implication and equivalence, i.e., the tool checks if the packets ac-
cepted by one configuration are at least/exactly the same accepted by
another configuration;

• Policy difference, i.e., the tool shows what packets are accepted by one
configuration and denied by another. This feature is particularly useful
when maintaining a policy to check how updates affect the firewall behav-
ior, because one can see which packets are accepted and which filtered out
when a specific rule is added;

• Related rules, i.e., the tool list which rules affect the processing of the
packets identified by a user-provided query;

• Policy non-determinism, i.e., the tool checks if there are packets non-
deterministically accepted or dropped.

62

Net

10.0.1.0/24

10.0.2.0/24

10.0.1.15
HTTPS

10.0.2.15
SSH

172.16.0.254
ext10.0.1.1

eth0

10.0.2.1
eth1

Figure 2.4: A case study of a firewall with three interfaces.

Finally, we show how a system administrator can use FWS to refactor and port a
configuration. We describe a typical network of a small company, and we state
some requirements that specify the desired security policy. We then consider
two firewall configurations in iptables and ipfw. Finally, we apply FWS to
decompile the actual configurations in a tabular, human-readable format and
check whether they meet the requirements.

We use the following running example as a scenario for presenting the main
features of FWS.

Example 2.17 (Network structure and policy requirements). consider the net-
work shown in Figure 2.4. The internal network (10.0.0.0/16) consists of two
subnetworks:

• network lan0 (i.e. 10.0.1.0/24) contains servers and production machines,
including a HTTPS server (web server: 10.0.1.15) that runs the company
website on port 443;

• network lan1 (i.e. 10.0.2.0/24) contains the employees’s computers, in-
cluding the system administrator’s (ssh server: 10.0.2.15) where a SSH

service is running on port 22.

The firewall has three network interfaces: eth0 connected to lan0 with IP
lan0 ip (10.0.1.1); eth1 connected to lan1 with IP lan1 ip (10.0.2.1); and
ext connected to the Internet with public IP ext ip (23.1.8.15).

We want to enforce the following requirements on the internal and external
traffic:

1. internal networks can freely communicate;

2. connections to the public IP on ports 443 and 22 are translated (DNAT)
to web server and ssh server, respectively. This condition permits ex-
ternal hosts to access the website by connecting to the public IP address

63

NAT rules
*nat
Default policy ACCEPT in nat chains
:PREROUTING ACCEPT [0:0]
:INPUT ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]
:POSTROUTING ACCEPT [0:0]

Req. 2: Redirect incoming SSH and HTTPS connections
to hosts 10.0.2.15 and 10.0.1.15 (DNAT)
-A PREROUTING -p tcp -d 23.1.8.15 --dport 22 -j DNAT --to 10.0.2.15
-A PREROUTING -p tcp -d 23.1.8.15 --dport 443 -j DNAT --to 10.0.1.15
Req. 4: Connections towards the Internet exit
with source address 23.1.8.15 (SNAT)
-A POSTROUTING -s 10.0.0.0/16 ! -d 10.0.0.0/16 -j SNAT --to 23.1.8.15

COMMIT

Filtering rules
*filter
Default ACCEPT in output (Req. 5), DROP in the other chains
:INPUT DROP [0:0]
:FORWARD DROP [0:0]
:OUTPUT ACCEPT [0:0]

Allow established packets
-A FORWARD -m state --state ESTABLISHED -j ACCEPT
-A INPUT -m state --state ESTABLISHED -j ACCEPT
Req. 1: Allow arbitrary traffic between internal networks
-A FORWARD -s 10.0.0.0/16 -d 10.0.0.0/16 -j ACCEPT
Req. 3: Allow HTTP/HTTPS outgoing traffic
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 80 -j ACCEPT
-A FORWARD -s 10.0.0.0/16 -p tcp --dport 443 -j ACCEPT
Req. 2: Allow SSH/HTTPS incoming traffic to the corresponding hosts
-A FORWARD -p tcp -d 10.0.2.15 --dport 22 -j ACCEPT
-A FORWARD -p tcp -d 10.0.1.15 --dport 443 -j ACCEPT

COMMIT

Figure 2.5: The policy of Example 2.17 in iptables.

ext ip at port 443, that is redirected to the corresponding internal host;
similarly for accessing the SSH server;

3. connections from the internal hosts to the Internet are allowed only to-
wards HTTP and HTTPS web servers, i.e., with destination ports 80 and
443, respectively;

4. source addresses of packets from the internal hosts to the Internet are
translated (SNAT) to the external IP address of the firewall. This allows
hosts with private IPs to access the Internet;

5. the firewall can connect to any other host.

Below, we encode the requirements above as queries that are checked by
FWS.

64

Table 2.4: Results of FWS when checking the iptables configuration of Fig-
ure 2.5; * denotes any value, and *\S denotes any value except for those included
in S.

(a) Requirement 1

SrcIP SrcPort DstIP DstPort Protocol State
lan0 * lan1 * * NEW

lan1 * lan0 * * NEW

(b) Requirement 2

SrcIP SrcPort DstIP DstPort DNAT IP Protocol State
* * ext_ip 22 ssh_server tcp NEW

* * ext_ip 443 web_server tcp NEW

(c) Requirements 3 and 4

SrcIP SrcPort SNAT IP DstIP DstPort Protocol State
internal * ext_ip * \ {internal} 443, 80 tcp NEW

(d) Requirement 5

SrcIP SrcPort DstIP DstPort Protocol State
ext_ip * * * * NEW

Compliant configuration in iptables

We provide a configuration in iptables for Example 2.17. Then, we use FWS

to decompile and analyze the configuration and check if it complies with the
requirements 1-5 above.

Figure 2.5 shows the policy for our example in the standard iptables-save

format used to store iptables rules in a configuration file. The first sequence
of commands delimited by *nat and COMMIT keywords sets the default policies
of all nat chains to ACCEPT, inserts into the nat PREROUTING chain the rules for
redirecting the incoming connections to the internal servers (requirement 2) and
adds to the nat POSTROUTING chain the rule for SNAT (requirement 4).

The second block from lines *filter to COMMIT specifies a default DROP policy
for the INPUT and FORWARD chains and a default ACCEPT policy for the OUTPUT

chain, letting the firewall communicate with any host (requirement 5). The first
two filtering rules allow the packets belonging to connections flagged as estab-
lished to go through and towards the firewall, i.e., whenever a new connection
is allowed any further packet belonging to the same connection will also be al-
lowed. This is not explicitly required by the policy but is necessary to ensure
functionality of connection-oriented protocols. Then, we have ACCEPT rules corre-
sponding to the requirements 1, 3 and 2, respectively. Notice that requirement 2
has also rules in the nat table above.

We now use FWS to check that the configuration of Figure 2.5 meets the re-
quirements 1-5. First, we load the policy p into FWS by specifying the iptables
rules and a configuration file that encodes what is shown in Figure 2.4. We then
ask the tool if arbitrary traffic is allowed among internal networks, raising the

65

query

synthesis(p) in forward/filter where

((srcIp = lan0 and dstIp = lan1) or

(srcIp = lan1 and dstIp = lan0)) and state = NEW

where srcIp, dstIp represent the fields for source and destination address of
the IP packet entering the firewall interfaces, and state tells if a connection is
new or established. The query checks whether hosts with srcIp in lan0 can
start new connections towards those with dstIp in lan1, or vice versa, as stated
by requirement 1. The operator = constrains a variable to be equal to a value or
inside a certain interval; the operators and and or stand for logical conjunction
and disjunction.

The output we obtain from the tool is in Table 2.4a, where * denotes any
value. The table contains all the allowed connections matching the query, con-
firming that requirement 1 is satisfied. Note that FWS supports the projection
of the result to a subset of the available columns using the project directive.
Hence, from now onwards the results will be projected to the minimum set of
columns that represent the considered packets. Moreover, we omit the columns
DNAT IP, DNAT Port, SNAT IP and SNAT Port when no translation occurs.

We now check that external hosts can access the web and the SSH servers only
by connecting to the firewall IP address ext ip at port 443 and 22 respectively
(requirement 2). To do that, we ask which packets reach the web server and
ssh server hosts:

synthesis(p) in forward/nat where

dnatIp in (web_server , ssh_server) and state = NEW

The operator in constrains a variable to be equal to a value or inside one of
the intervals in the list, hence the notation above is just syntactic sugar for
dnatIp = web server or dnatIp = ssh server. The variable dnatIp represents
the destination address of the packet after a DNAT translation. The result
in Table 2.4b confirms that requirement 2 is satisfied: indeed, the servers are
reachable from any host connecting to the firewall on ports 443 and 22, only.

The next query checks the requirements 3 and 4 together:

synthesis(p) in forward where

srcIp = internal and not (dnatIp = internal) and state = NEW

Intuitively, the query asks for the new connections that are allowed from an
internal source to an external destination. The answer in Table 2.4c shows
that both the requirements are met. Indeed, the notation ∗ \ { internal} rep-
resents all destination addresses except those in the internal subnet. Finally,
by checking requirement 5 with the query

synthesis(p) in output where srcIp = ext_ip and state = NEW

we obtain the output of Table 2.4d showing that the firewall can reach any host.
We can thus conclude that the configuration in Figure 2.5 is correct with

respect to the requirements.

66

NAT setup. The first line defines the SNAT for packets leaving
the firewall through the interface ext (Req. 4), the other two
lines specify to perform DNAT on packets arriving
to the ports 22 and 443 of the firewall (Req. 2)
ipfw -q nat 1 config if ext unreg_only reset redirect_port \
tcp 10.0.1.15:443 443 redirect_port tcp 10.0.2.15:22 22

Allow established packets
ipfw -q add 0001 check -state
Req. 1: Allow arbitrary traffic between internal networks
ipfw -q add 0010 allow all from 10.0.0.0/16 to 10.0.0.0/16
Req. 2: Apply DNAT on packets arriving to the external
interface of the firewall
ipfw -q add 0100 nat 1 ip from any to 23.1.8.15 in recv ext
Req. 2: Allow SSH/HTTPS incoming traffic to the corresponding
hosts and responses from these services
ipfw -q add 0200 allow tcp from any to 10.0.1.15 443
ipfw -q add 0201 skipto 1000 tcp from 10.0.1.15 443 to any
ipfw -q add 0300 allow tcp from any to 10.0.2.15 22
ipfw -q add 0301 skipto 1000 tcp from 10.0.2.15 22 to any
Req. 3, 4: Allow HTTP/HTTPS outgoing traffic
ipfw -q add 0500 skipto 1000 tcp from 10.0.0.0/16 to any \
80,443 setup keep -state
Req. 5: Allow arbitrary outgoing traffic by the firewall
ipfw -q add 0501 allow ip from me to any setup keep -state
Default DROP policy
ipfw -q add 0999 deny all from any to any
Req. 4: Apply SNAT to outgoing connnections
ipfw -q add 1000 nat 1 ip from any to not 10.0.0.0/16 out
ipfw -q add 1001 allow ip from any to any

Figure 2.6: The policy of Example 2.17 in ipfw.

Noncompliant configuration in ipfw

Figure 2.6 implements the example policy in ipfw. On purpose, we introduce
subtle but realistic differences with respect to the one in iptables and we show
how FWS spots them in a clear and concise way.

The first command declares NAT rules, named nat 1, that will be activated
by the following rules. Note that the next commands have numbers (after
the add keyword) that can be used for jumps, as we will see below. We refer
to those numbers in the description. Command 0001 accepts all the packets
that belong to already established connections (command check-state). As
for iptables this is important to ensure functionality of connection-oriented
protocols. Command 0010 enables traffic between internal networks (require-
ment 1). Command 0100 applies nat 1 to the packets received via the interface
ext, implementing the DNAT of requirement 2. The actual connections to hosts
10.0.1.15 (web server) and 10.0.2.15 (ssh server), respectively on ports 443
and 22, are enabled by the next commands 0200, 0201, 0300 and 0301. No-
tice that packets coming from those hosts are handled by jumping (command
skipto 1000) to the last but one line, which applies nat 1, translating source
address to 23.1.8.15 (ext ip) (SNAT). Then, packets are accepted by command
1001. Next line (command 0500) implements the requirements 3 and 4 similarly
to previous rules, i.e., by jumping to 1000 which enforces the SNAT on outgoing

67

Table 2.5: Results of FWS when checking the ipfw configuration of Figure 2.6

(a) Requirement 1

SrcIP SrcPort DstIP DstPort Protocol State
lan0 * lan1 * * NEW

lan1 * lan0 * * NEW

(b) Requirement 2

SrcIP SrcPort DstIP DstPort DNAT IP Protocol State
* \ { lan0, * ext_ip 22 ssh_server tcp NEW

lan1,
loopback }

* \ { lan0, * ext_ip 443 web_server tcp NEW
lan1,
loopback }

(c) Requirements 3 and 4

SrcIP SrcPort SNAT IP DstIP DstPort Protocol State
ssh_server 22 ext_ip * \ {internal} * tcp NEW

internal * ext_ip * \ {internal} 443, 80 tcp NEW

web_server 443 ext_ip * \ {internal} * tcp NEW

(d) Requirement 5

SrcIP SrcPort DstIP DstPort Protocol State
ext_ip * * * * NEW

connections. Command keep-state is the counter-part of check-state: the
connection is saved in the firewall state so that packets belonging to the same
connection will be allowed through the firewall by rule 0001. Rule 0501 allows
the firewall host to communicate to any host. Finally, command 0999 rejects
any packet that does not match any previous rule, implementing a default deny
policy.

We now use FWS to check if the configuration of Figure 2.6 meets the re-
quirements 1-5 of Example 2.17. We pose exactly the same queries done for the
iptables configuration in Figure 2.5. In fact, one of the advantages of our ap-
proach is that the analysis is fully independent of the particular firewall system
and of the language analyzed.

Queries for the requirements 1 and 5 give exactly the same results we got
for iptables (cf. Table 2.5a, 2.5d and Table 2.4a, 2.4d). Instead, we get an
interesting difference while considering requirement 2. For the ipfw configura-
tion we obtain that the web server and ssh server hosts cannot be reached
by the internal network and by the firewall host via DNAT (cf. Table 2.5b). This
is because in the ipfw configuration, rule 0100 is defined for interface ext, i.e.,
for packets received from the Internet. In fact, requirement 2 could be inter-
preted in this stricter way by a system administrator, as hosts web server and
ssh server are anyway reachable from internal hosts even without DNAT. FWS

spots this subtle difference in the two configurations. To make the ipfw config-
uration behave as the iptables one (for requirement 2), it is enough to remove

68

recv ext from rule 0100.
In checking the requirements 3 and 4, FWS reports that the hosts web server

and ssh server can start new connections from source ports 443 and 22, re-
spectively, to any other host. This is due to rules 0201 and 0301 that enable the
two hosts to answer connections done through the DNAT and provides an alter-
native way to make connection-oriented protocols work without exploiting the
check-state command. In principle, this should be considered non-compliant
with requirement 3 as new connections from 443 and 22 from the two hosts will
access any port and not just 80 and 443, as requested. Again, FWS spots this
difference in the policy. This error can be rectified by removing rules 0201 and
0301 and by adding the keep-state keyword to the rules 0200 and 0300.

Interestingly, FWS can compute the equivalence of configurations written for
different firewall systems/languages. In this particular case, FWS outputs that
the fixed ipfw configuration and the iptables one are equivalent, as far as the
five requirements are in order.

Maintaining firewall configurations

In this section, we show how FWS can be used to maintain the iptables policy
of Figure 2.5.

Suppose that the company has added a new machine to the lan0 subnet,
which has been assigned the IP address 10.0.1.22. Differently from the other
hosts of the network, we want to allow Internet access (with SNAT) to this machine
only over HTTPS. The other requirements on the traffic should be preserved.
For this purpose, we add the following rule to the FORWARD chain, which drops
connections to port 80 from host 10.0.1.22:

-A FORWARD -s 10.0.1.22 -p tcp --dport 80 -j DROP

However, we must be careful about the position where to place this rule in
order to fulfill the desired requirement and avoid to unintentionally block legal
traffic. We discuss below three cases and show how FWS helps in determining
the correct position.

The first case is when we place the new rule at the end of the FORWARD chain,
which has no effect: the policy equivalence analysis of FWS reports that the new
policy is equivalent to the previous version. To understand the reason why, we
use the related rules analysis to detect which rules are relevant for processing
HTTP packets. The output of the tool only includes the following filtering rule
from the FORWARD chain:

-A FORWARD -s 10.0.0.0/16 -p tcp --dport 80 -j ACCEPT

The above rule accepts all the HTTP traffic from the internal networks and is
evaluated before the new DROP rule. Hence, our new rule should be placed before
this one.

The second case is when we insert the new rule before those of the other
requirements, e.g., after the rules that allow packets of incoming connections.
Now, FWS reports that the policy is not equivalent to the previous one. We check

69

Table 2.6: Maintenance of the iptables configuration. The rules in lines with
a + are added, while those with a − are eliminated.

(a) Policy differences after the wrong update

+/- SrcIP SrcPort DstIP DstPort Protocol State
+ internal \ * internal 80 tcp NEW

{10.0.1.22}

- internal * internal 80 tcp NEW

+/- SrcIP SrcPort SNAT IP DstIP DstPort Protocol State
+ internal \ * ext_ip * \ 80 tcp NEW

{10.0.1.22} {internal}

- internal * ext_ip * \ 80 tcp NEW
{internal}

(b) Policy differences after the correct update

+/- SrcIP SrcPort SNAT IP DstIP DstPort Protocol State
+ internal \ * ext_ip * \ 80 tcp NEW

{10.0.1.22} {internal}

- internal * ext_ip * \ 80 tcp NEW
{internal}

the impact of our changes by running the policy difference analysis projected
over the HTTP traffic:

diff(iptables , updated) in forward where

protocol = tcp and dstPort = 80

The answer to the query is shown in Table 2.6a. The first column is + or - for
lines that appear in the synthesis or disappear after the updates, respectively.
We see that host 10.0.1.22 is now unable to connect to the Internet, as desired
(second table of Table 2.6a). However, our update also prevents communica-
tions over HTTP with other machines on the internal networks, thus violating
requirement 1 (first table of Table 2.6a).

The correct place where to add the new rule is between the rule for require-
ment 1 and those for requirement 3. In this way we allow HTTP traffic from
10.0.1.22 to the internal networks, only. If we repeat the check for policy differ-
ence, we see that now the only difference is just in the HTTP traffic towards the
Internet, as desired (cf. Table 2.6b).

Checking for non-determinism

Now we show how FWS can detect policy non-determinism. Suppose that the
web server host has a slow backend so we replicate it for ensuring an acceptable
quality of service. The new servers are assigned IP addresses 10.0.1.16 and
10.0.1.17. In this scenario iptables can also be used for load balancing at the
connection level, by specifying a range of IP addresses in the DNAT target:

-A PREROUTING -p tcp -d 23.1.8.15 --dport 443 -j DNAT --to 10.0.1.15 -10.0.1.17

This rule redirects new connections to a different server in the range following a
round-robin discipline. The packets after the DNAT need to be explicitly accepted
in the FORWARD chain:

70

Table 2.7: A packet dropped by a non-deterministic configuration

SrcIP SrcPort DstIP DstPort DNAT IP Protocol State
* \ {internal} * ext_ip 443 10.0.1.16 tcp NEW

Table 2.8: Tests performed on the policy of the Venice CS department (530
rules); times expressed in m:s.cs

Analysis Multi-cubes Time

N1 → N2 35 0:53.73
N1 → N3 28 0:37.77
N1 → Out 25 1:20.65

N2 → N1 45 0:45.32
N2 → N3 39 0:34.27
N2 → Out 31 0:57.40

N3 → N1 47 2:19.16
N3 → N2 17 0:05.68
N3 → Out 8 0:09.45

Out→ N1 52 6:02.08
Out→ N2 10 0:11.41
Out→ N3 8 0:08.12

Complete policy 138 17:09.31

-A FORWARD -p tcp -d 10.0.1.15 -10.0.1.17 --dport 443 -j ACCEPT

Suppose now that the host 10.0.1.16 is isolated from the network for maintenance
or to mitigate a breach. A naive solution is dropping every connection directed
to the server:

-I FORWARD 1 -p tcp -d 10.0.1.16 --dport 443 -j DROP

However, this rule introduces non-determinism in the firewall behavior: a con-
nection to ext ip on port 443 is dropped if the DNAT target is 10.0.1.16, while
it is accepted if another server is selected. Our tool identifies these situations
and synthesizes the affected packets. The following query performs this check,
and the output in Table 2.7 confirms that the examined configuration is non-
deterministic:

nondet(p) in forward

Validation

We have used our tool on several policies to assess how our approach scales to
real-world scenarios. We have performed our tests on a desktop PC (running
Ubuntu 16.04.2) equipped with an Intel i7-3770 CPU and 16 GB of RAM.

A departmental policy The network of the computer science department
of Ca’ Foscari is logically partitioned in the main network N1, the labs network
N2 and a mixed network N3. The firewall acts as a router between these net-
works and is connected to the Internet via other routers. The policy is written

71

in iptables, consists of 530 rules (including both SNAT and DNAT) and contains
5 user-defined chains. In Table 2.8 we report the execution times and the sizes
of the obtained specifications when running our tool on the policy projected on
specific source and destination networks, as well as the time required to decom-
pile the entire firewall policy. The analysis on specific source and destination
networks takes less that one minute most of the times and six minutes in the
worst case.

Other real-world policies The authors of [51] have collected a set of anonymized
iptables configurations from several institutions and from the Internet. Ta-
ble 2.9 reports the time needed to perform a compilation and decompilation of
these policies, together with their size and the number of multi-cubes of the
synthesized specification.

Our experiments show that the cost of decompilation increases linearly on
the number of rules of the configuration (see Figure 2.7b), and decreases lin-
early on the number of multi-cubes (see Figure 2.7a). This is expected: ob-
taining a low number of multi-cubes from a large configuration requires a lot of
multicubes extensions, that is performed in line 6 of Algorithm 1 and requires
multiple calls to the SMT solver. The cost with respect to both rules and multi-
cubes is shown in Figure 2.8a, where it is clear that the worst case is indeed a
large configuration that is decompiled as a small number of multi-cubes, like for
veroneau.net. A similar rule does not emerge for compilation, see Figure 2.7d,
Figure 2.7c and Figure 2.8b. The cost of the compilation is always above 3
seconds in our experiments, also for quite large configurations, thus it is likely
that implementation-dependent cost shadows the actual asymptotic cost of the
algorithm.

As expected by a compiled code, the configuration obtained may have a
weaker structure than the configurations written by hand. Pragmatically, sys-
tem administrators group the rules in the rulesets according to some usage crite-
rion, also taking into account the features of the network, e.g., its topology, the
services it hosts, etc. Yet, the administrators are required some efforts to main-
tain this structure, while at the moment our tool has no information for keeping
such a structure. Furthermore, the compilation of a multi-cube may result in
multiple rules, because most of the target languages cannot directly express
conditions on sets of ranges of addresses. For this reason, the transcompiled
configuration may be longer than the original one. However, FWS is intended
to provide its users with means for understanding and checking a configuration
in its synthesized version through the provided query language, rather than
inspecting the target configuration as it is.

The repository also contains the firewall configuration of the lab the authors
of [51] are affiliated to. The firewall has 22 network interfaces and its policy
consists of 4841 iptables rules. In Table 2.10 we provide a summary of the time
required to produce a synthesis of the policy with no checks on MAC addresses
for each possible pair of input/output interfaces and to communicate with the
Internet. Most of the analyses terminate in less than 3 minutes and just a couple

72

Table 2.9: Tests performed on real-world policies; times expressed in m:s.ms

Description Rules Multi-cubes Decompilation Compilation

Policy from Github 15 11 00:00.765 00:00.072
Ticket from OpenWRT 65 11 00:01.519 00:00.029
Kerberos server 8 14 00:01.635 00:00.111
Policy from a blog 28 25 00:02.572 00:02.092
Eduroam laptop 21 15 00:01.018 00:00.061
Memphis testbed 34 15 00:01.233 00:00.049
Kornwall 52 23 00:02.362 00:00.067
Shorewall 77 48 00:28.154 00:02.398
Home router 76 36 00:05.879 00:02.783
Medium-sized company 90 20 00:25.289 00:00.397
veroneau.net 263 7 05:55.690 00:01.696

Table 2.10: Tests performed on the Chair for Network Architectures and Services
firewall policy

Analysis <1m 1-3m 3-5m 5-10m 10-20m

Subnet → Subnet 0 405 37 20 0
Subnet → Internet 14 5 1 1 0
Internet → Subnet 5 13 1 0 2

of cases involving particularly complex subnets take more than 10 minutes to
be completed. In these particular cases, the time for the synthesis increases,
because the policy contains thousands of rules mapping IP to MAC addresses.
In fact, a typical use case is to check that these bindings are correctly enforced.
This can be achieved through queries on singles IPs which complete in less than
2 minutes.

We have performed some tests to evaluate the expressiveness of the output
produced by FWS. For instance, in the Home router example, we can check
which hosts in the private LAN are reachable via the public IP address of the
router by running the query

dstIp == 117.195.222.105 && state == NEW

FWS succinctly reports that external hosts can access the internal server 192.168.1.130
on ports 22, 80, 443 and 1194 via DNAT. For hosts in the private LAN 192.168.1.0/24,
both SNAT and DNAT are applied to connections towards the public IP address to
avoid the problem of asymmetric routing (also known as NAT reflection). For
lack of space, we do not discuss the remaining examples that are available on-
line [121].

2.7.2 F2F

We implement a tool, called F2F [12] that applies Algorithm 4. To support the
user in analyzing and porting real-world policies, the tool gets as input a policy
expressed in one of the configuration languages of subsection 2.2.2 or as a fw-
function in a tabular form. Also, the user chooses the wanted target language.
When the user provides a configuration, the tool computes its semantics as a

73

(a) Decompilation time over multi-cubes. (b) Decompilation time over rules number.

(c) Compilation time over multi-cubes. (d) Compilation time over rules number.

Figure 2.7: Time cost of decompilation and compilation policies of Table 2.9.

preprocessing step, thus obtaining a fw-function. Then, it checks if the policy is
expressible by the target language, and notifies the user with exact information
if this is not the case.

Figure 2.9 sketches the workflow of F2F in the case of porting a configuration
from ipfw to pf. In the top part there is the source configuration that is then
encoded in IFCL, from which the tool extracts the semantics as a fw-function.
The bottom part depicts the control diagram and the label assignment for pf,
and the step computing its expressivity. The tool than checks whether the
semantics of the source configuration is expressible in pf, and if this is not the
case, it produces a report with the inexpressible and clashing pairs.

For the computation of the semantics we rely on a tailored version of FWS.

74

(a) Decompilation time. (b) Compilation time.

Figure 2.8: Decompilation and Compilation time over rules and multi-cubes.

Source
Configuration

Target
System

file.conf

ipfw

pf

qi

q0

q1

qf

τ
P1 t1
P2 t2
P3 t3
P4 t4

DNAT DROP

SNAT DROP

qf

q1q0

qi

q2 q3

HL
Ω

CHECK FLOW

COMPUTE TRACE

CHECK FUNCTION

[fontsize=\ssmall]

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | Self || id : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 127.0.0.1 | * | 151.15.1.5 | 80 | tcp || - : - | 10.0.0.8 : - ||

|| 151.15.1.5 | | | | || | ||

|| 10.0.0.1 | | | | || | ||

|| 192.168.0.1 | | | | || | ||

===

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 192.168.0.1 | * | 127.0.0.1 | 123 | udp || 151.15.1.5 : - | 193.204.114.232 : - ||

|| | | 151.15.1.5 | | || | ||

|| | | 10.0.0.1 | | || | ||

|| | | 192.168.0.1 | | || | ||

===

PROBLEM FOUND!

In pf the following rule schema is not expressible!

==

| sIp | dIp || tr_sIp : tr_sPort | tr_dIp : tr_dPort |

==

| Self | ~Self || SNAT (Self) : id | DNAT (~Self) : id |

==

Hence the following is impossible to achieve:

==

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

==

|| 192.168.0.1 | * | 0.0.0.0 - 10.0.0.0 | 123 | udp || 151.15.1.5 : - | 193.204.114.232 : - ||

|| | | 10.0.0.2 - 127.0.0.0 | | || | ||

|| | | 127.0.0.2 - 151.15.1.4 | | || | ||

|| | | 151.15.1.6 - 192.168.0.0 | | || | ||

|| | | 192.168.0.2 - 255.255.255.255 | | || | ||

==

Inexpressible
Pairs !

Clashing
Pairs !

Figure 2.9: Schema of F2F.

Validation on a Case Study: FirewallBuilder

Consider again the scenario in Figure 2.3 showing a typical network of a small
company, and assume the administrator produces a configuration for pf using
the policy management system FirewallBuilder. Below we show how F2F may
fit a policy creation and management workflow, helps the administrator in un-
derstanding the limitations of FirewallBuilder and of pf, and supports possible
fixes of the detected problems. We also consider iptables and ipfw and we
show that they have similar weaknesses.

FirewallBuilder FirewallBuilder is a well-known tool for Unix-based systems
that supports the administrator to write firewall policies in a tabular form and
then compiles them to the most common firewall languages. Two separate tables
are given, the first one for network translation and the second one for packet

75

$ sudo ./f2f table Example/interfaces Example/table.conf pf

!!! Inexpressible Pair Found !!!

==

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

==

|| 192.168.0.1 | * | 0.0.0.0 - 151.15.1.4 | 53 | * || 151.15.1.5 : id | 8.8.8.8 : id ||

|| | | 151.15.1.6 - 192.167.255.255 | | || | ||

|| | | 192.168.1.0 - 255.255.255.255 | | || | ||

==

!!! Inexpressible Pair Found !!!

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 151.15.1.5 | * | 0.0.0.0 - 151.15.1.4 | 53 | * || id : id | 8.8.8.8 : id ||

|| | | 151.15.1.6 - 192.167.255.255 | | || | ||

|| | | 192.168.1.0 - 255.255.255.255 | | || | ||

===

!!! Clashing Pairs Found !!!

(P1, t1):

==

|| sIp | sPort | dIp | dPort | prot || tr ||

==

|| 0.0.0.0 - 151.15.1.4 | * | 192.168.0.7 | 443 | * || DROP ||

|| 151.15.1.6 - 192.167.255.255 | | | | || ||

|| 192.168.1.0 - 255.255.255.255 | | | | || ||

==

(P2, t2):

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 0.0.0.0 - 151.15.1.4 | * | 151.15.1.5 | 443 | * || id : id | 192.168.0.7 : id ||

|| 151.15.1.6 - 192.167.255.255 | | | | || | ||

|| 192.168.1.0 - 255.255.255.255 | | | | || | ||

===

in node q3:

with [P@ || t1@ || t2@]:

==

|| sIp | sPort | dIp | dPort | prot || tr1 || tr2_src | tr2_dst ||

==

|| 0.0.0.0 - 151.15.1.4 | * | 192.168.0.7 | 443 | * || DROP || id : id | id : id ||

|| 151.15.1.6 - 192.167.255.255 | | | | || || | ||

|| 192.168.1.0 - 255.255.255.255 | | | | || || | ||

==

Hint: Apply tags to P1 in node q2 and use them to choose the transformation in node q3

!!! Clashing Pairs Found !!!

(P1, t1):

==

|| sIp | sPort | dIp | dPort | prot || tr ||

==

|| 0.0.0.0 - 151.15.1.4 | * | 192.168.0.6 | 22 | * || DROP ||

|| 151.15.1.6 - 192.167.255.255 | | | | || ||

|| 192.168.1.0 - 255.255.255.255 | | | | || ||

==

(P2, t2):

===

|| sIp | sPort | dIp | dPort | prot || tr_src | tr_dst ||

===

|| 0.0.0.0 - 151.15.1.4 | * | 151.15.1.5 | 22 | * || id : id | 192.168.0.6 : id ||

|| 151.15.1.6 - 192.167.255.255 | | | | || | ||

|| 192.168.1.0 - 255.255.255.255 | | | | || | ||

===

in node q3:

with [P@ || t1@ || t2@]:

==

|| sIp | sPort | dIp | dPort | prot || tr1 || tr2_src | tr2_dst ||

==

|| 0.0.0.0 - 151.15.1.4 | * | 192.168.0.6 | 22 | * || DROP || id : id | id : id ||

|| 151.15.1.6 - 192.167.255.255 | | | | || || | ||

|| 192.168.1.0 - 255.255.255.255 | | | | || || | ||

==

Hint: Apply tags to P1 in node q2 and use them to choose the transformation in node q3

Figure 2.10: F2F output when checking the example policy for pf.

76

Table 2.11: An example policy for a typical network.

dstIP dstPort srcIP srcPort DNAT SNAT

not (151.14.1.5 53 192.168.0.0/24 any 8.8.8.8 : id 151.15.1.5 : id
192.168.0.0/24)
not (151.14.1.5 53 151.15.1.5 any 8.8.8.8 : id id : id

or 192.168.0.0/24)
not (151.14.1.5 not 53 151.15.1.5, any id : id 151.15.1.5: id

or 192.168.0.0/24) 192.168.0.0/24
192.168.0.1, 22 192.168.0.2 - any id : id id : id
151.15.1.5 192.168.0.255

192.168.0.2 - any 192.168.0.2 - any id : id id : id
192.168.0.255 192.168.0.255

151.15.1.5 443 not (151.14.1.5 any 192.168.0.7 : id id : id
or 192.168.0.0/24)

151.15.1.5 22 not (151.14.1.5 any 192.168.0.6 : id id : id
or 192.168.0.0/24)

rdr from <NotCompany > to 151.15.1.5 port 443 -> 192.168.0.7
rdr from <NotCompany > to 151.15.1.5 port 22 -> 192.168.0.6
nat from { 151.15.1.5 , 192.168.0.0/24 } to <NotCompany > port 54 -> 151.15.1.5
nat from { 151.15.1.5 , 192.168.0.0/24 } to { 6.6.6.6 , 8.8.8.8 } -> 151.15.1.5
nat from { 151.15.1.5 , 192.168.0.0/24 } to <NotCompany > -> 151.15.1.5
nat from { 151.15.1.5 , 192.168.0.0/24 } to <NotCompany > port 54 -> 151.15.1.5
rdr from 192.168.0.0/24 to <NotCompany > port 53 -> 8.8.8.8
nat from 192.168.0.0/24 to 8.8.8.8 port 53 -> 151.15.1.5
rdr from 151.15.1.5 to <NotCompany > port 53 -> 8.8.8.8

pass quick from <NotCompany > to 192.168.0.7 port 443
pass quick from <NotCompany > to 192.168.0.6 port 22
pass quick from { 151.15.1.5 , 192.168.0.0/24 } to <NotCompany >
pass quick from 192.168.0.2 - 192.168.0.255 to 192.168.0.2 - 192.168.0.255
pass quick from 192.168.0.2 - 192.168.0.255

to { 151.15.1.5 , 192.168.0.1 } port 22
block quick from any to any

Figure 2.11: FirewallBuilder output when compiling the example policy for pf,
where <NotCompany> is a table containing all the IP addresses that are not used
by the company.

77

filtering. Since FirewallBuilder does not come with a clear definition of its se-
mantics, the user not always knows how these tables are used to determine the
destiny of packets. Also, the tables may contain rules that are superfluous or
conflicting depending on which table is used first, e.g., when a packet p is trans-
formed with t in the translation table, and p or t(p) is discarded in the filtering
table. This may lead to clashes when producing the target configuration.

Policy Requirements and Specification We start by putting forward the
requirements that firewall policy of the scenario of Figure 2.3 must meet:

1. LAN hosts freely communicate with each other;

2. LAN hosts access the firewall via SSH (port 22), only;

3. The company hosts (a LAN host or the firewall) can freely send packets
to the Internet;

4. Packets from the Internet are discarded, if not directed to the public IP
of the firewall with port 22 or 443;

5. Packets from the Internet directed to port 22 or 443 are redirected to the
internal SSH server (at address 192.168.0.6) or to the HTTPS server (at
address 192.168.0.7);

6. When a company host tries to connect to a DNS service on the Internet,
on port 53, the packet is redirected to 8.8.8.8;

7. The source address of all the packets leaving a company host towards the
Internet is replaced with the public IP of the firewall.

These requirements originate the policy represented in Table 2.11, expressed in
a declarative form as the list of the accepted packets and their transformations.

Implementing the Policy and Detecting Problems Typically, defining
a policy using FirewallBuilder is straightforward but there may be some cases
where the administrator needs to guess how the translation and filtering ta-
bles are used to manage packets. For example, consider the last line of Ta-
ble 2.11 that conflicts with the implicit indication to discard the packets from
the Internet and with destination 192.168.0.6. If the administrator assumes that
the translation table is checked before the filtering one, the packets directed to
192.168.0.6 must be accepted, thus obtaining the pf configuration in Figure 2.11
(which is actually the output of the tool, with a little of maquillage for legibility).
However, the configuration fails in encoding the desired policy since Require-
ment (4) is not met. If instead the filtering table is inspected first, the last line
of the policy is simply ignored. Summing up, in neither cases FirewallBuilder
implements correctly the policy in Table 2.11, and in addition no warning is
notified.

F2F instead signals a clash when running on the considered configuration.
The output in Figure 2.10 shows that in node q3 the packets from the Internet

78

directed to the internal server in 192.168.0.6 are indistinguishable from the ones
originally directed to the firewall because of the DNAT in node q2. Our tool suggest
the administrator to use tags in the node q2 for distinguishing the two clashing
(multi-cubes of) packets. As a matter of fact, there are two clashes, and the
tool suggests tags to fix both.

F2F signals other problems in the analyzed configuration, because there are
also two sets of inexpressible pairs. The first set is (P, t), where P contains the
packets from the external interface of the firewall towards the Internet on port
53, and t is a DNAT to the address 8.8.8.8. In other words, the firewall can access
any DNS server on the Internet, not only the one prescribed by the policy. Even
though the inexpressible pairs are considered by FirewallBuilder when producing
its output configuration, the resulting rules are simply ignored by pf. Note that
the administrator gets no warning about this problem and could wrongly think
that the configuration enforces them (as it seems at first sight). Of course, this
misconfiguration is possibly dangerous for security. Moreover, pf cannot apply
the translations t above to the packets in P , thus the administrator can only fix
this problem resorting to external tools. The second set of inexpressible pairs
is quite similar to what just described.

Problems with ipfw and iptables Similar problems arise if one compiles
the policy in Table 2.11 to ipfw and to iptables. More in details, the gener-
ated ipfw configuration suffers from no clashes but from the same inexpressible
pairs. Whereas, the iptables configuration presents the same clashes, but no
inexpressible pairs.

Performance on real configurations

We evaluated the F2F effectiveness against real world configurations [49]. The
experiments are performed on a desktop computer with an i7-7700 processor
(3.60GHz) and 8Gb RAM, running Ubuntu 20.04.3 LTS. The results are in Ta-
ble 2.12: the first column reports the name of the configuration; the second one
the number of lines of the configuration; the third one the time taken by F2F to
compute the IFCL-configuration, to extract its fw-function, and to check both
kinds of expressivity; finally the last one is the time for checking the expressiv-
ity only. Performance is acceptable for all the configurations, and the time for
checking expressivity is negligible. When checking pf and ipfw, we found two
inexpressible pairs in the configuration eduroam laptop: in both pairs a DNAT is
applied to a packet from an address in S to one not in S (lines 11 and 12 of Ta-
ble 2.3). For the same systems, we also found two clashes in the configuration
medium sized company, between packets to be both translated and dropped.

2.8 Related Work

The literature has many proposals for simplifying and analyzing firewall config-
urations. Some are based on formal methods, others consist of ad hoc configura-

79

Table 2.12: Experimental results of F2F against real-world configurations.

Configuration Lines Total time (s) Checking time (s)

ticket openwrt 128 7.00 0.05
sqrl shorewall 106 190.10 0.48
random srv 16 7.43 0.05
memphis testbed 46 6.51 0.05
medium sized company 639 75.54 0.20
kornwall 88 54.73 0.54
home router 130 20.67 0.21
github myiptables 53 5.35 0.03
eduroam laptop 57 7.97 0.10
blog a 51 11.03 0.13

tion and analysis tools (we only consider here the publicly available ones). These
works can be divided depending on the kind of approach they take. Some take
a top-down approach, proposing ways to specify abstract filtering policies that
can be possibly compiled into the actual firewall systems, or checked against
them.

Many works take a top-down approach, proposing ways to specify abstract
filtering policies that can be possibly compiled into the actual firewall systems,
e.g., [14, 15, 45, 61, 8, 55, 19]. Lots of these approaches only consider the
simplest types of rules [61, 55, 19]. NAT, stateful policies and tags are often
totally or partially ignored by formal tools.

Other papers take a bottom-up approach and adopt formal methods. To the
best of our knowledge, ours is the only one providing at the same time: (i) a lan-
guage for analyzing multiple firewall systems; (ii) an effective technique for syn-
thesizing abstract policies; (iii) a support for NAT; (iv) a formal characterization
of firewall behavior. Some researchers focused on analyzing iptables: Jeffrey
et al. introduce in [79] a formal model of firewall policy, based on iptables,
and investigate the properties of reachability and cyclicity of firewall policy
configurations. The proposal by Diekmann et al. [50] has some similarities with
ours. In particular, the authors provide a “cleaned” ruleset that an automatic
tool can easily analyze, using a formal semantics of iptables mechanized in
Isabelle/HOL [98]. Furthermore, they propose a semantics-preserving ruleset
simplification (e.g., chain unfolding) with a treatment of unknown match con-
ditions, due to a ternary logic. The subset of iptables they consider includes
only filtering and access control flow actions, but not packet modification such
as NAT. Differently from theirs, our approach supports NAT, packet tagging, is
able to detect non-determinism in policies, and it is based on a generic language
that can target languages different from iptables. The tool ITVal [86] parses
iptables rules and supports SQL-like queries to discover host reachability. Dif-
ferently from our FWS, ITVal is specific for iptables and aims at answering
reachability queries, only. In particular, it neither synthesizes an abstract fire-
wall specification nor ports configurations to different languages and it does not
detect non-determinism.

Other proposals in the literature are more general and target, in principle,

80

various firewall systems. Below, we discuss the main differences with respect
to our work. A model-driven approach is proposed in [101] to derive network
access-control policies from real firewall configuration. A proof of concept is
given only for iptables. Moreover, compared to our proposal this paper does
not address NAT. In [44] the authors propose an algorithmic solution to detect
and correct specific anomalies on stateful firewalls. However, the proposed ap-
proach does not aim at synthesizing an abstract specification, as we do. The
tool FIREMAN [131] detects inconsistencies and inefficiencies of firewall policies.
It does not support NAT though. In [96] the Margrave policy analyzer is applied
to the analysis of IOS firewalls. The approach is rather general and extensible to
other languages, but the analysis focuses on finding specific problems in policies
rather then synthesizing a high-level policy specification. A framework for the
static analysis of networks is proposed in [81]. It provides sophisticated insights
about network configurations but does not specifically analyze real firewall con-
figurations and, as for the previous papers, there is no synthesis of high-level
specifications. Fang [87] is another tool for querying real policies in order to
discover anomalies. Its authors state that it synthesizes an abstract policy that
resembles the one we propose here, but we have been unable to use the tool
and the paper does not describe its internals, making any comparison with our
approach impossible.

Ranathunga et al. [105] introduce an algebraic description of firewall con-
figurations where rules are monoid-endomorphisms transforming sequences of
packets. Rulesets are obtained by suitably combining these endomorphisms.
The authors exploit this representation to define algorithms for policy check-
ing, implication and differences, which are implemented in the Malachite tool.
Differently from ours, their proposal does not seem to automatically generate
the algebraic representation from real configurations. Furthermore, Malachite
seems only to analyze the policy without generating back a clean configuration.

Hallahan et al. [67] propose Firemason, a tool that verifies a firewall con-
figuration against a given specification, producing a counterexample if it does
not. When this happens, Firemason can also synthesize a fix using behavioral
examples provided by users that describe the correct behavior. Similar to our
proposal, Firemason internally converts a configuration into a logical formula
and uses Z3 to perform the verification step and to generate the fix for the con-
figuration. Differently from FWS, Firemason can handle rate limit rules, but
currently it supports only iptables, and therefore offers no features to auto-
matically port configurations. Finally, it does not implement any analysis to
spot possibly non-deterministic behavior.

Another approach to modeling and verifying firewall policies consists in using
Binary Decision Diagrams to efficiently represent packet filters, as first proposed
by Hazelhurst in [68, 69]. These data structures concisely represent the boolean
expressions that describe which packets must be accepted and which rejected.
A tool is also provided that can analyze rule sets. Differently from ours, this
approach mainly focusses on Cisco and does not address NAT issues.

Other papers study the definition of network configurations and in particular
their verification. Note that this is a different issue than ours, which instead

81

focusses on well-established systems and languages. Note also that these two
approaches can be combined together.

Anderson et al. [18] introduced NetKAT, a language for programming a
collection of network switches. It is equipped with a denotational semantics
and an axiomatic one, both based on Kleene algebra with tests. Although the
primitives provided by NetKAT are similar to those of IFCL, i.e., for filtering,
modifying, and transmitting packets, its focus is different from ours.

Fogel et al. [54] proposed Batfish, a tool for statically analyzing network
configurations. Batfish encodes a configuration and the relevant information of
that network, e.g., the used protocols and the data plane, into Datalog. Network
administrators can exploit the Datalog deduction machinery to check correctness
properties expressed as a first-order-logic formula. If a violation occurs, Batfish
produces a counterexample in the form of concrete offending packets.

Bringhenti et al. [28] introduced VEREFOO, a tool that given a set of security
requirements and a graph describing the network services, computes two pieces
of information. The first one describes where to deploy the security function
nodes (i.e., nodes that implement security checks on the traffic flow) in the net-
work to meet the desired security goals. The second output is the configuration
that implements the policy for each security function.

Valenza et al. [127] proposed a language-independent approach for the veri-
fication and the detection of anomalies of forwarding polices in a SDN scenario.
Their proposal can be used both in a top-down or in bottom-up manner. In the
first case, network administrators define a policy abstractly and translate it into
a configuration to be deployed on a target device. The idea is to use a logical
formalism for modeling the behavior of the forwarding policies and the network
in hand, and to use a SAT solver for carrying out analyses on this logical model.
If no anomaly is found, the forwarding policies are translated into a real SDN

language. In the bottom-up approach administrators verify whether a change
in the configuration of a network node causes some anomalies, by checking the
logical formulation.

We remark that the goal of the above appoaches is modeling an entire net-
work leaving out the details of the single firewalls, expressed in the most used
configuration languages, that instead is our target. We see no particular dif-
ficulties in applying our proposal to manage the firewalls associated with each
node of a network, so integrating the two approaches.

To the best of our knowledge, we are the first to propose a bidirectional
approach, in which the high and low levels are bound by compilation and de-
compilation functions. This is also the first work that formally investigates the
expressive power of firewall systems by using programming language-based tech-
niques, and propose algorithmic means to check that a given policy is expressible
by the target firewall system.

82

2.9 Conclusions and Future Work

We have presented an approach for interacting with firewalls at different levels
of abstraction for different tasks. Our approach is based on a double represen-
tation of the firewall behaviour. One is the low-level executable configuration,
and the other one is an abstract representation of the policy, i.e., the emer-
gent behaviour expressed as a function over packets. In particular, we have
considered iptables, ipfw and pf, the main firewall systems used in Linux,
FreeBSD, OpenBSD and MacOS. We formally modeled both the layers, and
gave compilation and decompilation functions for keeping aligned two different
representation of a firewall system. We also investigated the expressive power
of the considered languages, namely, iptables, pf and ipfw, showing two hier-
archy, one that consider tag systems, the other focusing only on the basic and
most used features. We gave an algorithm for checking if a given policy can be
implemented in the target system that also highlight if tags are needed and how
to use them.

We implemented the translation functions and the expressivity checking in
a couple of tools that we tested on real-world configurations, showing that their
performance are acceptable.

Future Work Future work includes considering different firewall systems, like
Cisco-IOS, which is particularly challenging because the control diagram is also
affected by routing choices. A promising line of research is about incrementality
and compositionality, i.e., only propagates the modification from high to low
level representations, without recompiling the whole policy. This would allow
to maintain properties of the low level configuration, e.g. logs and the internal
structure of the rulesets. Also, we plan to enrich IFCL with features for network
interfaces and routing. Tools exist that generate and distribute over the nodes of
a network the specification of local policies starting from a global one, e.g., [28].
The local policies obtained by [28] are represented in a tabular form, similar
to ours. It would be then easy to compile these local specification in a chosen
firewall language. We will further extend our approach to the SDN paradigm.
The major difficulty in this case arises because of the high dynamicity of SDNs,
while our proposal focuses on legacy networks and devices that are essentially
static. Finally, it would be very interesting to extend our approach to deal
with networks with more than one firewall. The idea would be to combine the
synthesized specifications based on network topology and routing.

83

Chapter 3

System

In this chapter, we target Operating Systems, focusing on SELinux configura-
tions. Security Enhanced Linux (SELinux) is a set of extensions of the Linux
kernel that implements a Mandatory Access Control mechanism. It is widely
used for defining security polices in Linux-based systems, including servers [130]
network appliances [62], and mobile devices [114]. Defining a SELinux policy
is conceptually simple: the system administrator defines a set of types, uses
them to label all system resources and processes, and then defines a set of rules
specifying which operations the processes can perform on resources. However,
its use is far from simple. Writing, understanding, and maintaining SELinux
security policies is difficult and error-prone as evidenced by numerous exam-
ples of serious misconfigurations that have led to vulnerabilities in widely used
policies [76].

To simplify working with SELinux and to address the limitations of its de-
fault policy language, the community called for and proposed new high-level
configuration languages [116, 75]. In particular, SELinux developers recently
proposed the intermediate configuration language CIL (Common Intermediate
Language). CIL is a promising declarative language that offers advanced fea-
tures to aid both policy specification and analysis. CIL supports the definition
of structured configurations, using, e.g., namespaces and macros, and enables
administrators to specify which resources are critical, which entities can access
them, and which cannot. It also provides tool support to statically detect and
prevent misconfigurations, which could lead to unauthorized access to security-
critical resources.

Requirements for a system access control commonly predicates on permitted
and denied information flow between OS entities [65, 48]. We propose IFL (In-
formation Flow Language) a domain specific language (DSL) that can express
common fine-grained information flow requirements, including confidentiality,
integrity, and non-transitive properties. We group information flow require-
ments in two categories: functional and security requirements. Functional re-
quirements specify which permissions must be granted to users to perform their
authorized tasks, such as which resources they can access and with which op-

84

High Level

Language: IFL requirements
System: information flows between entities

Low Level

Language: CIL
System: permitted operations of entities

• specify permitted flows
• specify forbidden flows
• verify specification

• configure permissions
• test configuration

granted
coherence

Figure 3.1: Schema of the two-layer approach for SELinux.

erations. In contrast, security requirements prevent entities from operating on
other possibly critical entities, and thereby to enforce security properties, in-
cluding confidentiality, integrity, and non-transitive information flow properties.
Given the complexity of modern operating systems, we embedded IFL with a
refinement relation that allows the administrator to structure the properties by
defining them in a more general way and adding context-dependent details later.
IFL is completely integrated in the CIL code, information flow requirements can
appear as special comments that an administrator can associate with different
parts of a CIL configuration.

The general schema is depicted in Figure 3.1. We identify the high level
of the system with information flow specification, abstractly representing the
expected behaviour of the system with functional and security requirements.
The low level is the one of CIL configurations, where every single permission is
listed for each entity. Summarizing, the two abstraction layers are:

• the low level (LL), the one of CIL configurations, where each entity of the
operating system is associated with the actions it can perform on other
entities;

• the high level (HL), the one of IFL specifications, where requirements
states functional and security properties expressed as permitted and for-
bidden information flows.

The binding between the two layers is obtained by IFCIL, an extension of CIL
supporting information flow requirements, and a verification procedure for stat-
ically checking that a configuration satisfies its requirements. Intuitively, the
languages of the two layers are merged into a new one that shares the same ad-
vanced features of CIL and where IFL requirements are first class citizens. The
different layers are adequate for performing specific tasks. The administrator
interacts either with the system specification by operating on the IFL require-

85

ment, or with the executable CIL configuration, and the verification procedure
ensures that the two layers are coherent.

In summary, our main contributions are as follows.

• We present the language IFL for expressing fine-grained information flow
requirements, including confidentiality, integrity, and non-transitive infor-
mation flow properties. IFL is declarative, compositional, and it allows
administrators to specify complex requirements using refinement.

• We propose IFCIL, the integration of IFL inside CIL. We achieve this by
using special comments that an administrator can associate with different
parts of a CIL configuration. We give an algorithm for statically verifying
the compliance of a configuration to its IFL requirements. This algorithm
is based on an encoding from IFL into linear-time temporal logic support-
ing the use of off-the-shelf model checkers for verification.

• We give CIL a formal semantics and empirically validate its adequacy
with respect to the CIL reference manual and the CIL compiler. Our
experiments highlight some unspecified corner cases and disagreements
between the documentation and the compiler.

• We provide a prototype tool [5] that implements our verification proce-
dure by exploiting an existing model checker [40]. Our tool checks if a
IFCIL configuration satisfies the requirements therein and, when they are
violated, it warns the administrator about potentially dangerous parts of
the configuration.

• We experimentally assess our tool on three real-world CIL policies [62,
63, 64]. We annotate them with IFL requirements expressing properties
taken from the literature and with new ones. We thereby validate our tool
and show that it scales well. For example, it takes less than two minutes
to verify thirty nine requirements on the configuration in [62], which has
roughly forty six thousands lines of code.

Structure of the chapter

In Section 3.1 we introduce SELinux, CIL, and the mechanism used by adminis-
trators to protect critical resources. In Section 3.2 we give a high-level account
of our CIL semantics and how we experimentally validate its adequacy. In Sec-
tion 3.3 we present IFL and IFCIL. In Section 3.4 we explain our verification
procedure for checking the satisfaction of the requirements, and we present our
verification tool and our experimental assessment. In Section 3.5 we compare
our work with the relevant literature and in Section 3.6 we draw conclusions.
Appendix B contains the details of our formal development and the proofs of
our theorems.

86

3.1 Background

SELinux SELinux is a set of extensions to the Linux kernel and utilities. It
extends the major subsystems of the Linux kernel with strong, flexible, manda-
tory access control (MAC). The SELinux security server permits or denies a
process to invoke a system call on a resource based on a configuration specified
by the system administrator. To specify such a configuration, an administrator
defines a set of types, and labels the OS resources and processes with them. In
addition, all the resources belong to pre-defined classes, such as file, process,
socket, or directory. A rule in a configuration relates the type t and class c of
resources, and the type t′ of processes with the permitted operations. A rule
thereby specifies the actions that processes labelled t′ can perform on the re-
sources of class c labeled t, for example, read or write a file, execute a process,
open a socket, or change the DAC rights of a directory. A process P can invoke
a system call SC on a resource R only if there is a rule that permits P to do so.

Administrators typically specify configurations using SELinux’s kernel policy
language. Configurations are then compiled to a kind of (kernel binary) access-
control matrix. However, this policy language is very low-level. For example,
it does not allow the administrator to structure configurations, which makes
them hard to understand and maintain. Thus using the kernel policy language
is cumbersome and error-prone [76]. Some high-level configuration languages
have been suggested with their own compilers and tools as an attempt to ad-
dress these limitations. Recently, the SELinux developers proposed a promising
new intermediate configuration language with advanced features and tools to
support both the development of high-level languages and the definition of con-
figurations. We briefly survey this language below.

CIL The Common Intermediate Language (CIL) was designed as a bridge
between high-level configuration languages and the low level binary represen-
tation introduced above. Compilers from various configuration languages to
CIL are intended to offer cross-language interaction. A compiler for the kernel
policy language is currently available, and CIL is designed to support existing
high-level configuration languages [75], and future ones too. Despite its original
goal, CIL is also used to directly write configurations [64, 62, 63], for complex
real-world policies, e.g., that for Android [59]. Indeed, CIL provides its users
with high-level constructs like nested blocks, inheritance, and macros, thereby
supporting the structured definition of configurations. Moreover, since CIL is
declarative, it facilitates reasoning about configurations, and the same analysis
techniques and tools for CIL can help when other high-level languages are used.

Roughly, a CIL configuration consists of a set of declarations of blocks,
types, and rules. Similarly to classes in programming languages, blocks have
names and introduce namespaces and further declarations. Types are labels
that are associated with system resources and processes. Rules regulate types
by specifying which operations processes can perform on resources. Intuitively,
administrators can define two kinds of rules: those that grant permission to
processes (allow rules) and those that specify permissions that must be never

87

granted to processes (never allow rules).
Types can be grouped into named sets, called typeattributes, that may be

used inside rules to denote all the types therein. Blocks can also contain macro
definitions that allow an administrator to abstract a set of rules and to re-use
them in different parts of a configuration. Macros can have types as parameters
that are instantiated when the macro is called. Moreover, to foster code re-
usability and modularity, CIL features the construct blockinherit that permits
a block to inherit from another block. Similarly to Object Oriented languages,
all the definitions of rules and types of the inherited block are made available to
the inheriting block. The main difference is that inheritance is actually realized
by a kind of copying rule.

The most appealing features of CIL with respect to the previous policy
language of SELinux are blocks that enable the administrator build modular
configurations, as well as macros and inheritance that allow code reuse.

Below, we illustrate CIL’s main features through examples. These also illus-
trate that blocks, types, typeattributes and macros have names, and resolving
them in the correct name space and order is non-trivial.

Consider the following CIL block house that declares two types, man and
object, and the permission (the allow rule) for processes labeled man to read
the files labeled object:

(block house

(type man)

(type object)

(allow man object (file (read))))

Intuitively, processes of type house.man can read the elements of the class file
labeled house.object. Note that blocks introduce namespaces, and the ele-
ments defined therein may be referred to directly within the block itself, or by
their qualified name, as done above.

The following block inherits the types man and object and the relevant
permission from the block house through the blockinherit rule.

(block cottage

(blockinherit unconfined)

(type garden))

Intuitively, blockinherit copies the body of the block house. Thus the quali-
fied names of the copied types become cottage.man and cottage.object. In
contrast, the type garden is declared in the block, which is not in house.

Blocks can be nested, and the outermost block can refer to the elements in
the nested ones by qualifying their names.

(block tree

(block nest

(type egg))

(type bird)

(allow bird nest.egg (file (write))))

Intuitively, the last allow rule grants subjects with type tree.bird the per-
mission to write to the files with type tree.nest.egg.

88

A global namespace is assumed that includes all the blocks, the global types,
and the global permission. For example, in

(type stranger)

(allow stranger house.object (file (open)))

(block inhouse

(type man)

(type object)

(allow man object (file (read)))

(allow .stranger object (file (read)))

(allow stranger object (file (write))))

the name stranger and the fully qualified .stranger in the allow rules both
refer to the global type stranger. Note however that if the block inhouse

declared a type stranger, this declaration would overshadow the global one in
the last allow rule, but not the third one since a fully qualified name is used.
Note too that the global allow rule refers to a type declared in the enclosed
block.

The administrator can collect a set of rules using a macro-like construct, as
shown in the following example.

(block animal_mcr

(macro add_dog ((type x)(type y))

(allow x man (file (read)))

(allow y dog (file (open))))

(type dog))

Macros are invoked as follows.

(block animal_house

(type man)

(type cat)

(call add_dog.mcr(cat cat)))

Roughly, the content of add dog replaces the last line where the formal pa-
rameters x and y are both bound to cat. Names are resolved using a mech-
anism similar to dynamic binding: the name dog in the macro is resolved as
animal mcr.dog, while man is resolved as animal house.man. Sometimes name
resolution is rather intricate, especially when constructs are combined in non-
trivial ways, such as when inheritance and macros are interweaved. In these
cases, configurations may have unexepected behaviour (see Section 3.2 for ex-
amples), and lead to difficult to spot misconfigurations. This problem is exacer-
bated by the fact that administrators cannot refer to a formal semantics, which
CIL lacks. One contribution of this paper is to provide such a semantics. We
define it in the Appendix, providing an intuition in Section 3.2.

An administrator can group types into named sets, called type attributes,
which may be used in place of a type. The following declares two type attributes
named pet and not pet and defines the types therein.

(typeattribute pet)

(typeattributeset pet

(or (animal_mcr.dog) (animal_house.cat)))

(typeattribute not_pet)

(typeattributeset not_pet (not (pet)))

89

The first type attribute includes the two types animal mcr.dog and animal house.cat.
In contrast, the second one includes all the others.

Administrators can also specify which permissions should never be granted
to a given type through neverallow rules. The rule below prohibits subjects
with type animal house.cat to read resources of any type that is not in pet:

(neverallow animal_house.cat not_pet (file(read)))

The CIL compiler statically checks that no allow rule inside the configuration
violates a neverallow rule. In this example the compiler will notify an error
because animal house.cat can read the files of type animal house.man that
is in not pet. However, we argue below that these checks are insufficient to
prevent insecure information flow.

An example from a real-world configuration Consider the following
block mem defined in [62], a CIL configuration designed for OpenWrt powered
wireless routers.

(block mem

(block read

(typeattribute subj_typeattr)

(typeattribute not_subj_typeattr)

(typeattributeset not_subj_typeattr (not subj_typeattr))

(neverallow not_subj_typeattr nodedev (chr_file (read)))))

This block defines a inner block read and two disjoint type attributes. The
first includes the system subjects, and the second includes other types. The
neverallow rule prevents not subj typeattr types from reading a character
file of the globally defined type nodedev. The underlying idea is that resources
of type nodedev are critical for the system and must be carefully protected.
This block shows a typical pattern that administrators use to protect critical
resources in CIL using type attributes and neverallow rules.

This pattern offers an extra check: in our example, if the administrator
includes the following rule

(allow untrusted mem.read.nodedev (chr_file (read)))

that grants a type untrusted the permission to read a character file of type
nodedev, then the CIL compiler raises an error. There are two ways to avoid
this error: the administrator may either remove the last rule (because granting
the permission is actually dangerous), or add untrusted to subj typeattr to
grant the permission.

However, this pattern is insufficient to control how information flows. For
example, consider the following snippet

(type untrusted)

(type vect)

(type deputy)

(typeattributeset mem.read.subj_typeattr deputy)

(allow deputy mem.read.nodedev (chr_file (read)))

(allow deputy vect (file (write)))

(allow untrusted vect (file (read)))

90

where the types untrusted, vect, and deputy are defined, and deputy is in
mem.read.subj typeattr. Now, a leak may occur if a subject in subj typeattr

reads a character file of type nodedev and forwards information, via vect, to
an arbitrary process of type untrusted, which is permitted by the given allow

rules.

Preventing information flow Currently, CIL does not prevent indirect in-
formation flows between types. The goal of our work is to extend it with a DSL,
dubbed IFL, to express information flow control requirements. We call the re-
sulting language IFCIL. In addition, we endow IFCIL with a mechanism for
statically checking that a configuration satisfies the stated requirements. Our
extensions provide administrators with an extra, automatic check when defining
rules that grant or deny information flows from a critical resource.

We provide some intuition behind our extension by adding the following lines
to the mem block above:

(typeattribute ind_subj_typeattr)

(typeattribute not_ind_subj_typeattr)

(typeattributeset not_ind_subj_typeattr

(not ind_subj_typeattr))

;IFL; ~(nodedev +> not_ind_subj_typeattr) ;IFL;

The first three lines introduce two type attributes ind subj typeattr, and
not ind subj typeattr, which are declared disjoint. The last line, enclosed be-
tween the ;IFL; markers is an IFL annotation that specifies the infomation flow
requirement that no information can flow from nodedev to not ind subj typeattr.
This annotation is given as a CIL comment that has meaning for our verification
tool, but is completely ignored by the standard CIL compiler. Thus, an IFCIL
configuration is still a CIL configuration.

Note that IFL enables administrators to use a pattern similar to that used
with neverallow, preventing not ind subj typeattr types from getting infor-
mation from a character file of type nodedev. In this way, our tool warns the
administrator of the information leakage from nodedev character files illustrated
above.

3.2 Formalizing the Low Level

The official CIL documentation [66] formally describes neither the CIL syntax
nor its semantics. The following, admittedly artificial, configuration highlights
the need for a formal semantics:

(type a)

(block A

(call B.m1(a)))

(block B

(macro m1((type x))

(type a)

(allow a x (file (read)))))

91

One would expect the parameter x of the macro B.m1 to be bound to the type a

in the global namespace, thereby allowing A.a to read files of type .a. Instead,
x is bound to A.a, and the resulting permission for A.a is to read files of type
A.a.

As a second example, consider the following:

(type a)

(macro m((type x))

(type b)

(allow x b (file (read))))

(block A

(call m(a)))

(block B

(type a)

(blockinherit A))

Note that the block B inherits from A, which calls the macro m. There are two
plausible orders in which macro calls and inheritances can be resolved, and the
choice determines to which name the parameter x is bound when the allow rule
is copied in B. If the macro call is resolved before inheritance, then x is bound
to .a (since a is undefined in A). If instead the inheritance is resolved first, then
the call instruction is copied inside B and x is bound to B.a. This is CIL’s actual
behaviour, but the reference guide is unclear about the choice.

Ambiguities in CIL We found cases that are counterintuitive, but never-
theless are represented by our semantics correctly, i.e. in accordance with the
actual behaviour of the compiler. For example, the following

(macro m(type x)

(type a)

(allow x x (file (read))))

(block A

(call m(a)))

seems impossible to resolve, because the type a defined inside m is passed to m

itself as a parameter. However, this is not erroneous according to the compiler’s
behaviour although against it is one’s intuition. Indeed, the type a is copied
from the macro m to the block A and then passed as parameter to m itself. In
a similar puzzling way, if another type named a is defined, e.g., in the global
environment, it is shadowed by the type copied from the macro.

We also found cases that are meaningless, but are not detected as such by
the compiler. In particular this is when typeattributes are recursively defined
in a vacuous manner. Consider for example the following configuration:

(type a)

(typeattribute b)

(typeattribute c)

(typeattributeset b (not c))

(typeattributeset c b)

(allow b b (file (read)))

(allow c c (file (read)))

92

The typeattribute b should contain all the elements that are not in itself, which
is a contradiction. This error is not detected by the compiler, and a kernel
policy is produced whose behaviour cannot be predicted using what we know
about the semantics. Actually, we discovered that a belongs to b but not to c,
which is again contradictory since c is defined to be the same as b. Note that
such misconfigurations may arise silently in complex code where typeattributes
are set using macros in different places in the code. Indeed, we found such cases
in the openWRT configuration that we used for assessing our tool. As we will
later see, our tool warns the administrator about such misconfigurations and
approximates the configuration behaviour by pruning the recursion tree.

Formal semantics of CIL To clarify the behaviour of CIL configurations,
and to formally support IFCIL and its verification mechanism, we provide a
formal semantics for CIL. Our such semantics focuses on the type enforcement
fragment of the language, which is its most used part (see the real-word CIL
configurations in Section 3.4.1), and maps each system type to its set of per-
missions.

In this section, we provide a high-level overview of our CIL semantics. Its
detailed formalization is in Section B.1.

The semantics benefits from a kind of normal form for configurations. Roughly,
we resolve inheritance and macro calls and fully qualify all names. We compute
this normal form using the following rewriting pipeline. This pipeline consists of
six phases, where each phase repeatedly applies a set of rewrite transformations
until the fixed point is reached.

1. The block names in blockinherit rules are resolved locally, if possible,
or globally otherwise.

2. blockinherit rules are replaced by the content of the blocks they refer to.

3. The names of macros in call rules are resolved locally, if possible, or
globally otherwise.

4. The declarations of types and typeattributes are copied from the body of
the macros in the calling blocks.

5. Macro calls are resolved: the type names in the parameters of call rules
are resolved locally, if possible, or globally otherwise; then the allow rules
are copied from the macros in the calling blocks. While copying, the
non-local names in the allow rules are resolved in the block containing
the macro definition, if possible; otherwise the resolution is delegated to
further application of (5), until no longer possible, and then to (6);

6. The names in allow and typeattributeset rules in blocks are resolved
locally, if possible, or globally if not.

The configuration in the second example is transformed by the first four phases
into the left configuration below, where the (blockinherit A) first becomes

93

(blockinherit .A) and then is resolved as (call m(a)); the macro name in
the two occurences of (call m(a)) are both resolved to .m; finally the type
definition (type b) is copied from the macro to blocks A and B. Phase (5)
copies the allow rule instantiating the parameter x to the different names .a in
A and .B.a in B. Finally, the two occurences of b are resolved to .A.b and .B.b.
Note that this representation is that of the binary representation, where names
are always fully qualified. The resulting configuration is the right one below.
(type a)

(macro m((type x))

(type b)

(allow x b (file (read))))

(block A

(type b)

(call .m(a)))

(block B

(type a)

(type b)

(call .m(a)))

(type a)

(macro m((type x))

(type b)

(allow x b (file (read))))

(block A

(type b)

(allow .a .A.b (file (read)))

(block B

(type a)

(type b)

(allow .B.a .B.b (file (read)))

Given a configuration in normal form, our semantic function represents it as
a directed labelled graph G = (N, ta, A). The nodes N model the types and the
typeattributes (with global names), and the function ta : N → 2N represents
the types contained in a typeattribute (assuming ta(n) = {n} when n is a type,
which will be always the case in our examples). The arcs A ⊆ N × 2O × N
model permissions, where O is the set of SELinux operations; we assume that
whenever the type m operates on m′, there are also the arcs (n, o, n′), for all
n ∈ ta(m) and n′ ∈ ta(m′). The meaning of (n, o, n′) is that the type n is
allowed to perform all operations in o on the resources of type n′. The formal
definition of the semantic function is straightforward.

For example, the configuration above is associated with the following graph,
where ta maps a node into the singleton set containing itself and we omit {} for
singleton sets on the arcs.

.a .A.b .B.a .B.b
read read

Adequacy of the formalization The adequacy of our formalization is as-
sessed against the available documentation and the CIL compiler. Namely,
the equations defining our semantics are consistent with the reference man-
ual, for those cases covered by the documentation, and where the documenta-
tion is unambiguous; otherwise our formalization conforms with the compiler.
When the documentation and the compiler disagree, and when unexplainable
behaviour arises, we have contacted the CIL developers to disambiguate the
intended meaning. To obtain test cases we proceeded as follows.

We studied the reference manual and formalized CIL’s constructs following
their intuitive description. We identified name resolution as the most involved
process of the compilation from CIL to the kernel binary representation. For
this reason, we generated test cases for each construct in isolation with a special

94

focus on name resolution. Our objective was both to check the validity of the
documentation, and thus of the model we made using it, and to explore the
behaviour in the corner cases that were not considered by the reference manual.
Actually, we found that some of these test cases do not behave coherently with
what is described in the reference manual. In particular, consider the following
configuration.

(block A

(type a)

(macro m ()

(type a)

(allow a a (file (read)))))

(block B

(call A.m))

According to the documentation, types defined inside the macro should be
checked before the ones defined in the namespace where the macro is defined.
Hence, when copying the allow rule from m to B, we expect a to be resolved as
B.a. Instead it is resolved as A.a.

We have notified the developers about these cases. They agreed that these
are not handled consistently with the expected behavior and that they will
address this in a future release [33, 34, 32].

A major concern in CIL is how macro resolution and block inheritance inter-
act, in particular the order in which they are handled. This is unspecified in the
documentation and can affect the semantics. Indeed, as showed at the begin-
ning of this section, there are configurations that behave differently depending
on the evaluation order of their constructs. The results indicate that macro calls
are handled after block inheritance, which in turn are handled independently of
each other.

Moreover the various steps needed for handling each construct also affects
the target configuration. An example is the evaluation of the parameters of a
macro with respect to the copy of its content.

More precisely, we have designed test configurations with various combina-
tions of the considered constructs, whose semantics depends on the order in
which their steps are performed. We have considered all the possible orderings,
including multiple occurrences of the same step for different occurrences of the
same construct.

3.3 Extending CIL with Information Flows

This section introduces IFL, our DSL for defining annotations that enable ad-
ministrators to express information flow control requirements. We integrate IFL
with CIL, obtaining the policy language IFCIL, where annotations are composed
with CIL constructs. In addition, we endow IFCIL with a mechanism for stati-
cally checking that configurations satisfy their requirements.

95

3.3.1 The High Level: IFL

The constructs of IFL consider SELinux entities, typically types, and the flow of
information between them. Using IFL we define both functional requirements,
allowing authorized information flows, and security requirements, preventing
dangerous information flows.

The language We use IFL to model how information flows from one node of
the graph associated with a type by the semantics, to another node, by listing
the traversed nodes in the graph, and the operations allowed on them. This is
done by defining a flow kind P using the following grammar.

P ::= n [o]> n′ | n +[o]> n′ | P1 P2

In this grammar, n and n′ are the starting and the ending nodes in a path of
length 1 for [o]>, and of length 1 or longer if +[o]>. Nodes may also be given
using the wildcard * standing for any node representing a type. The non-empty
set o ⊆ O contains a subset of the applicable operations, omitted when it is the
entire set O. The labeled path P1 P2 is additionally constrained so that the
ending point of P1 matches the starting one of P2.

The direction of arrows reflects how information flows in the graph, e.g., n
[write,read]> n′ means that information flows from n to n′ when n writes on
n′ or n′ reads from n (the operations in square brakets are the only applicable
ones in this step). A direct information flow is represented as a single step
n > n′, whereas an indirect information flow is represented by multiple steps
n +> n′. A kind can also mention intermediate steps, e.g., n > * > n′′ +> n′

specifies that information flows in two steps (through an unspecified node) from
n to n′′ and then in many steps to n′.

Kinds are used to constrain the admissible paths of a configuration. Given
the semantics G = (N, ta, A) of a configuration, the following construction
builds an information flow diagram, i.e., a directed graph I = (N, ta, E), where
the arcs of E are built as follows. For any arc (n, o, n′) ∈ A, E contains: (i)
the arc (n, o′, n′), where ∅ 6= o′ ⊆ o are the operations of n on n′ that cause an
explicit information flow from n to n′ (e.g., write); (ii) the arc (n′, o′′, n), where
∅ 6= o′′ ⊆ o are the operations of n on n′ that cause an explicit information flow
from n′ to n (e.g., read).

The administrator can state the following requirements on configurations

R ::= P | ~P | P:P ′,

which make assertions about the information flow diagram I and flow kinds.
In particular, the first requirement, P , is path existence, which stipulates the
existence in I of a path π of kind P . The second, ~P , specifies path prohibition
and requires that there are no paths in I of kind P . The third is path constraint
and requires that every path π of kind P in I is also of kind P ′.

Figure 3.2 shows the graph semantics of a simple configuration (with the
black solid arcs) and its information flow diagram (with the gray dashed arcs).

96

.DB .http

.anon .home .other

.net

read read read read

write

write

read

read

read, write

write

read

Figure 3.2: A simple configuration (black solid arcs) and its information flow
diagram (gray dashed arcs); the dotted arc represents inclusion of the target in
the typeattribute of the source.

A dotted arc from a node t to a node t′ indicates that t′ is in ta(t). We will
further discuss this configuration in Figure 3.3. Intuitively, the entities of type
http collect information from the network into the database and make data
available to the network and to additional entities of type home. Information
can flow from the network into the database and vice versa, as the configuration
satisfies the functional requirements net +> http +> DB and DB +> http +>

net (passing through anon). Moreover, the following security requirements are
met: ~(DB +> other) and DB +> net : DB > anon +> net. The first states
that no information flows from the database to the generic, untrusted types in
other; the second requirement says that the private information in the database
passes through anon (where, for example, anonymization takes place) before
being delivered in the network.

Formal semantics We formally state when a configuration satisfies a given
requirement. We define a path π of an information flow diagram I, and when
the path π is of kind P . Intuitively, this holds if the information flow passes
through the specified nodes in the correct order as a result of the designated
operations.

Definition 3.1 (information flow path and kinds). Let I = (N, ta, E) be an
information flow diagram, a path in I is the non-empty sequence

π = (n1, o1, n2)(n2, o2, n3)...(ni, oi, ni+1).

We say that π has kind P in I, in symbols π .I P , iff

(n, o, n′) .I m [o′]> m′ iff (m = ∗ ∨ n ∈ ta(m))

∧ (m′ = ∗ ∨ n′ ∈ ta(m′))

∧ o ∩ o′ 6= ∅
(n, o, n′) .I m +[o′]> m′ iff (n, o, n′) .I m [o′]> m′

(n, o, n′)π .I m +[o′]> m′ iff (n, o, n′) .I m [o′]> ∗
∧ π .I ∗ +[o′]> m′

97

π π′ .I P1 P2 iff π .I P1 ∧ π′ .I P2

The second part of the definition has four cases. The first case considers
a path in the information flow diagram made of a single arc of a simple kind;
since there exists an operation op∈ o∩ o′, the arc (n, op, n’) can be followed
transferring information from n to n’. The second case reduces +[o′]> to [o′]>.
The third case simply iterates the checks along a path longer than one. In the
final case, we split a path into a prefix satisfying P1 and a suffix satisfying P2.
Recall that the wildcard ∗ stands for any node and can replace n, n′, and n′′

above, e.g., the first clause can be rewritten as (n, o, n′) .I ∗ [o′]> n′ iff o∩o′ 6= ∅
holds because the kind ∗ [o′]> n′ says that information flows from any node to
n′.

The predicate I |= R defined below expresses that a configuration with
information flow diagram I satisfies the requirement R.

Definition 3.2 (validity of a configuration). Let I be an information flow dia-
gram, and let R be a requirement of a given configuration. We define I be valid
w.r.t. R, in symbols I |= R, by cases on the syntax of R as follows:

I |= P iff ∃π in I such that π .I P

I |= ~P iff ¬(I |= P)

I |= P1 : P2 iff ∀π in I if π .I P1 then π .I P2

It is immediate to verify that the requirements on the configuration in Fig-
ure 3.2 are indeed satisfied.

Expressivity Path existence constraints express functional requirements, i.e.,
that a specific information flow is allowed. If satisfied, this constraint ensures the
administrator that the configuration does not prevent the system from perform-
ing the desired task. In contrast, a prohibition constraint specifies a security
requirement: a configuration obeying it never goes wrong. For example, one can
easily enforce confidentiality in a Bell-La Padula style, as well as implement the
Biba integrity model. Finally, path constraints can express nontransitive prop-
erties, like intransitive noninterference. For example n+>n′ : n+>n′′+>n′ requires
that the type n cannot transmit any information to n′ unless it is done through
n′′.

3.3.2 IFCIL

We introduce the language IFCIL, obtained integrating IFL into CIL. More
precisely, we add the following two constructs to augment CIL with comments
that specify IFL requirements.

1. Information flow requirement definitions, which may occur in blocks and
macros. We use them to introduce IFL requirements with labels, which
must be satisfied by the allow rules of the configuration where they oc-
cur. Requirements are copied when calling a macro or inheriting a block,

98

(macro in_out ((type in) (type out))

;IFL; (F1) in +> out ;IFL;

;IFL; (F2) out +> in ;IFL;)

(macro anonymize ((type x) (type y))

(type anon)

(allow anon x (file (read)))

;IFL; (S1) x +> y : x > anon +> y ;IFL;)

(typeattribute other)

(typeattributeset other (not (or DB (or http (or anon net)))))

(type DB)

(type http)

(type home)

(type net)

(call in_out(net http))

(call in_out(net DB)

;IFL; (F1R:F1) * +> http +> * ;IFL;

;IFL; (F2R:F2) * +> http +> * ;IFL;)

(call anonymize(DB net)

;IFL;(S1R:S1) DB+>net : DB[read]>anon+>net ;IFL;)

(allow http anon (file (read)))

(allow http DB (file (write)))

(allow http other (file (read)))

(allow http net (file (read write)))

;IFL; (S2) ~ DB +> other ;IFL;

Figure 3.3: Example of CIL configuration with IFL annotations.

and are managed coherently with the other rules, e.g., concerning name
resolution.

2. Refinement of requirements, which may occur within call and blockinherit

instructions. Refinements make stronger requirements by further elabo-
rating constraints in the inheriting or caller block.

To ensure backward compatibility, requirement definitions and refinements are
enclosed between ;IFL; thereby taking the form of CIL comments.

The example in Figure 3.3 illustrates both constructs. For example, the
second line in Figure 3.3 contains a functional requirement labeled with (F1)

that requires the existence of a direct or indirect information flow from the node
in to out. Nodes in the IFL requirements are types, and are resolved as any
other CIL name, e.g., the parameter out is bound to net in the first call of the
macro in out; in contrast, the requirements F1 and F2 are simply copied.

In the second call, the administrator duplicates the requirements and refines
them with further constraints about how information must flow, since the in-
termediate node http is inserted in the requirements. Note that the new labels
refer to those of the original requirements. The new requirements impose that a
flow must exist from net (instantiating the parameter in) to DB (instantiating

99

out) and vice-versa, both passing through http. Note that since the wildcard
is used there is no constraint on the actual parameters. The refined require-
ment (F1R:F1) results then in the path constraint net +> http : http +>

DB, while the refined requirement (F2R:F2) is DB +> http : http +> net.
Similarly, in the call to anonymize, the requirement (S1) is refined by speci-

fying that the operation in the single step is read. Of course, the same intuitions
apply when inheriting a block. Finally, the requirement (S2) states that infor-
mation cannot flow from DB to other.

We now introduce the most important details of the formalization of IFCIL;
its complete definition is in Section B.3. We first discuss the notion of refinement
of IFL requirements. Intuitively, a refinement of a requirementR allows a subset
of the information flow paths allowed by R. This is formalized by the preorder
�, saying that R′ � R if R′ refines R; the precise definition of � is given in
Section B.2.

We prove the following theorem, stating that the validity of configurations
is preserved by refinement.

Theorem 3.1 (Refinement). Let I be an information flow diagram, and let R′
and R be two IFL requirements such that R′ � R. Then

I |= R′ ⇒ I |= R.
In defining the semantics of IFCIL, we use the meet of two requirements

R′uR on the set of requirements preordered with �, i.e., the largest requirement
w.r.t. � that is smaller than both R′ and R. To see why, consider the following
requirements taken from the example above.

;IFL; (F1) in +> out ;IFL;

;IFL; (F1R:F1) * +> http +> * ;IFL;

These requirements are incomparable with respect to �. To see this, take I
and I ′ with nodes in {in, out, http, a} such that I has a single arc (in,
out), and I ′ only has the two arcs (a, http) and (http, a). If they were
comparable, Theorem 3.1 would be falsified because I |= in +> out but I 6|=
* +> http +> *, and similarly for I ′ replacing I. Although incomparable, F1
and F1R:F1 are clearly related. Namely there exists the meet of the two F1 u
F1R:F1 = in +> http +> out. This meet has more details than, and refines
both, F1 and F1R:F1, because it requests the presence of an information flow
from the node in to out, via http.

We are now ready to define the semantics of IFCIL. We first normalize con-
figurations by applying the six transformation phases described in Section 3.2,
taking meets whenever needed.

The semantics of a configuration consists of a graph G and a set of re-
quirements R representing the semantics of a CIL configuration and the IFL
annotations. It is defined as:

Definition 3.3 (IFCIL semantics). Given a (normalized) IFCIL configuration
Σ, its semantics is the pair (G,R), where G is the CIL semantics of Σ and R is
the set of IFL requirements occurring in Σ.

100

Not all the configurations satisfy their requirements, and we define below
when they do, i.e., when the information flow respects the constraints expressed
in the IFL annotations.

Definition 3.4 (correct IFCIL configuration). Let Σ be a (normalized) IFCIL
configuration, let (G,R) be its semantics, and let I be the information flow
diagram of G. The configuration Σ is correct, in symbols I |= R, iff I |= R for
all R ∈ R.

3.4 Requirement verification

We describe next how we automatically check that a IFCIL configuration re-
spects the given information flow requirements. We rely on model checking, so
as to re-use existing verification tools. For this, we first encode a configuration
as a Kripke transition system [93] and a requirement as an LTL formula.

Encoding in temporal logic A Kripke transition system (KTS) over a set
AP of atomic propositions is K = (S,Act,→, L), where S is a set of states, Act
is a set of actions,→⊆ S×Act×S is a transition relation, and L : S → 2AP is a
labeling function mapping nodes to a set of propositions that hold at that node.
Paths of K are defined as alternating sequences of states and actions starting
and ending with a state. In the following, we only consider maximal paths, i.e.
those paths that cannot be extended.

We associate a IFCL configuration Σ with a KTS with the nodes of Σ as
states, the edges of the information flow diagram of Σ as transitions (for tech-
nical reasons, transitions are labeled with a single operation), and the type and
typeattribute names of Σ as atomic propositions.

Definition 3.5 (Encoding of configurations). Let I = (N, ta, E) be the infor-
mation flow diagram of a configuration Σ. The corresponding KTS is K =
(N,O,E′,Λ), where

• O is the set of SELinux operations

• E′ = {(n, op, n′) | (n, o, n′) ∈ E ∧ op ∈ o}

• M ∈Λ(n) if n∈ ta(M), i.e., if n is in the typeattribute M

We encode IFL requirements in a suitable version of LTL [93], where the
syntax of formulas φ is

φ ::= p | (op) | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | X(φ) | F (φ) | G(φ) | φ1Uφ2.

We write w |=l φ if the path w of K satifies the LTL formula φ; the formal
definition can be found in [93]. Intuitively, w satisfies the atomic proposition
p if it starts with a node labeled with p; w satisfies (op) if its first action is
op ∈ O; conjunction, disjuction, and negation are as usual; X(φ) is satisfied by
w if its subpath starting from the second state satisfies φ; w satisfies F (φ) if it

101

has a state such that the subpath starting from it satisfies φ; w satisfies G(φ)
if every subpath starting from a state in w satisfies φ; and w satisfies φ1Uφ2

if there exists a node s in w such that the subpath starting from it satisfies φ2

and every subpath starting from a state before s satisfies φ2.
For convenience, in the following we simplify our grammar for the flow kind

P1P2 and rewrite the grammar from subsection 3.3.1 in the following equivalent
form (recall that the starting node of P in the last two cases is n′).

P ::= n [o]> n’ | n +[o]> n′ | (n [o]> n’)P | (n +[o]> n′)P

Definition 3.6 (Encoding of flow kinds). The encoding of flow kinds is defined
as follows.

$n [o]> n′% = n ∧
∨
op∈o

(op) ∧X(n′)

$n +[o]> n′% = n ∧
∨
op∈o

(op) ∧X(U(
∨
op∈o

(op), n′))

$(n [o]> n′)P% = n ∧
∨
op∈o

(op) ∧X($P%)

$(n +[o]> n′)P% = n ∧
∨
op∈o

(op) ∧X(
∨
op∈o

(op) U $P%)

We now lift the satisfiability relation w |=l φ from a single path w to the set
of all the paths of a KTS. This paves the way for defining when a KTS satisfies
a set of requirements. To do this, we resort to the predicate check(K,φ), which
given a KTS K and a LTL formula φ holds iff ∀w ∈W.w |=l φ, where W is the
set of maximal paths in K.

Definition 3.7 (Satisfaction of configurations). Let R be a requirement of a
given configuration, let K be a KTS, and let W be the set of paths in K. We
define the satisfaction relation ` on the syntax of R as follows:

K ` P iff ¬check(K,¬$P%)

K ` ~P iff check(K,¬$P%)

K ` P:P ′ iff check(K,¬$P% ∨$P u P ′%)

We homomorphically extend ` to sets of requirements.

Note that the three clauses above mimic the analogous clauses in the Defini-
tion 3.2. The first clause says that no paths satisfy P , which can be expanded as
K ` P iff ∃w ∈ W.w |=l $P%, and similarly for the second clause. In the third
clause, we consider the meet of P and P ′, which represents the more general
refinement of both P and P ′. This is because only maximal paths of K are
taken, and if such a path satisfies P u P ′ it satisfies both P and P ′, which is
what the requirement asks (when P is satisfied).

This correspondence supports the correctness of our verification technique,
which is expressed by the following theorem stating that the notions of validity
and satisfaction of configurations coincide:

102

Theorem 3.2 (Correctness). Let Σ be an IFCIL configuration with require-
ments R, let I be its information flow diagram, and let K be the KTS of Σ.
Then

K ` R ⇒ I |= R.
This theorem enables us to re-use model checking techniques and tools to

automatically verify that a configuration is correct with respect to its informa-
tion flow requirements. In particular, an LTL model checker provides us with a
characteristic function for check(K,φ), introduced above.

As it is known, the worst case complexity of LTL model checking is unfor-
tunately 2O(|φ|)O(|S| + |E′|) [93], where |S| and |E′| are the number of nodes
and of arcs in the KTS, respectively. In practice we expect the size of the con-
figuration to grow, as well as the number of requirements. However, we do not
expect the size of each IFL requirement to grow accordingly.

We now specialize the formula above to our encoding. It is easy to see that
|S| is equal to the number of type declarations in the configuration, and that
|E′| is bounded from above by |S| × |S| × |O|, where O is the set of SELinux
operations. Note that the size of an LTL formula resulting from the encoding
of an IFL requirement is linear with respect to the number of names in the
requirement. Thus, the complexity of verifying of an IFCIL configuration is∑
φ∈R 2O(|φ|)O(|S|)2 ×O(|O|). Since |φ| is usually small and does not increase

with the configuration size, the complexity linearly grows with respect to the
number of requirements and of the operations, and quadratically on the number
of types.

Experiments with our prototype implementation on real-world configura-
tions show that results are obtained in an acceptable amount of time, on the
order of seconds.

3.4.1 The tool IFCILverif

We now describe our tool IFCILverif that given a IFCIL configuration verifies
its correctness with respect to its information flow requirements. Although our
tool is currently a prototype, and not optimized, we were nevertheless able to
successfully apply it to large, complex, real-world policies.

Translation to NuSMV Our tool has a front end that reads a configura-
tion, normalizes it, and then computes its semantics, the associated KTS and
the LTL representation of the requirements, expressed in the NuSMV input
language. The result is supplied to the model checker NuSMV, which checks
each requirement. Finally the administrator is notified which requirements are
satisfied and which are not.

In more detail, IFCILverif takes as input an IFCIL configuration and an
associated file where every operation comes with the direction of the information
flow it causes. This file is used to build the information flow diagram.

The tool explicitly deals with CIL’s constructs for defining classes and per-
missions, and reduces the input configuration to one that only uses the fragment

103

of CIL presented in Section 3.2. Since other constructs, like those about roles,
do not affect requirement satisfiability, the tool just ignores them.

For example, the following

(type DB)

(type http)

(type home)

(type net)

(type anon)

(typeattribute other)

(typeattributeset .other (not (or .DB (or .http (or .anon .net)))))

(allow .anon .DB (file (read)))

(allow .http .anon (file (read)))

(allow .http .DB (file (write)))

(allow .http .other (file (read)))

(allow .http .net (file (read write)))

;IFL; (F1) .net +> .http ;IFL;

;IFL; (F2) .http +> .net ;IFL;

;IFL; (F1R) .net +> .http +> .DB ;IFL;

;IFL; (F2R) .DB +> .http +> .net ;IFL;

;IFL; (S1R) .DB+>.net: .DB[read]>.anon+>.net ;IFL;)

;IFL; (S2) ~ .DB +> .other ;IFL;

is the normalization of the configuration in Figure 3.3. Its IFCIL semantics is
the pair (G,R = {F1, F2, F1R, F2R, S1R, S2}), where G is the CIL seman-
tics in Figure 3.2. It is trivial to derive the KTS K associated with G. To
verify the satisfaction of the requirements, we check K ` R ∈ R. We only
show the case R = S1R that require the following check(I,¬$.DB +> .net% ∨
$.DB [read]> .anon +> .net%) where:

$.DB +> .net% = .DB ∧
∨
op∈O

(op) ∧X(
∨
op∈O

(op) U .net)

$.DB [read]> .anon +> .net% = .DB ∧ (read) ∧

X(.anon ∧
∨
op∈O

(op) ∧X(
∨
op∈O

(op) U .net))

The resulting input file for NuSMV represents the nodes of the KTS by variable
assignments and transitions as updates of such assignments (using the next

operator).

MODULE main

DEFINE

other := (!((type=DB | (type=http | (type=anon | type=net))))) &

!(type=sink);

VAR

type : { sink , DB, anon , home , http , net };

IVAR

operation : { read , write };

104

TRANS

(type=DB ->

((operation=read & next(type=anon)) | next(type=sink))) &

(type=anon ->

((operation=read & next(type=http)) | next(type=sink))) &

(type=home ->

(next(type=sink))) &

(type=http ->

((operation=write & next(type=DB)) |

(operation=write & next(type=net)) |

next(type=sink))) &

(type=net ->

((operation=read & next(type=http)) |

next(type=sink))) &

(type=sink -> next(type=sink))

LTLSPEC (!(type=DB & X(F type=net)) | (type=DB & operation=read &

X(type=anon & X(F type=net))))

LTLSPEC !(type=net & X(F type=http))

LTLSPEC !(type=http & X(F type=net))

LTLSPEC !(type=DB & X(F(type=http & X(F type=net))))

LTLSPEC !(type=net & X(F(type=http & X(F type=DB))))

LTLSPEC !(type=DB & X(F other))

We briefly comment on the encoding to generate the input file:

• The state variable type has the enumeration type that lists all the types
in the configuration, plus an extra value sink that we will discuss later.

• Typeattributes are encoded as symbols and defined as predicates on types.

• The input variable operation has the enumeration type that lists all the
operations in O.

• Since NuSMV checks for infinite paths, the special node sink is added
to N , and an arrow (implicitly labeled with all operations) is added from
every node (including sink) to it.

• The transitions are defined in TRANS: from each starting node there is an
arc to the possible types and typeattributes with the appropriate opera-
tion.

• Requirements are expressed in the syntax of NuSMV as defined by $%.

IFCILverif then parses the response of NuSMV and answers positively: all the
requirements are verified in few seconds.

Validation We experimentally assessed our tool on three real-world CIL poli-
cies. The first policy [62] is used in the OpenWrt project, a version of the Linux
operating system targeting embedded devices, like network appliances [4]. The
second and the third are SELinux example policies, namely cilbase [63] and
dspp5 [64], which serve as templates for creating personalized configurations.
The analyzed policies have more than ten thousands lines of code, and make an
extensive use of all CIL’s advanced features, in particular macros and blocks.

105

Table 3.1: Performance analysis on tree real-world configurations

Requirement Number of Verification Time
kind requirements

openWRT (45702 lines, 590 types)
TCB 1 119sec
assured pipeline 3 122sec
wrap untrustworthy 10 100sec
augment only 2 115 sec
total 16 129sec

cilbase (11989 lines, 293 types)
TCB 1 0.240sec
assured pipeline 4 0.238sec
wrap untrustworthy 6 0.235sec
augment only 2 0.232sec
total 13 0.258sec

dspp5 (14782 lines, 149 types)
TCB 1 2.22sec
assured pipeline 4 2.14sec
wrap untrustworthy 8 2.28sec
total 13 2.24sec

To assess the expressivity of our language, we encoded in IFL a number of
properties that are often considered in the literature, as well as domain-specific
policies that we designed.

Our results show that IFCILverif scales well to real world configurations,
checking their requirements in a few seconds.

We first consider the following property inspired by Jeager et al. [77], who
investigated the trusted computing base (TCB) of an SELinux configuration and
checked from which types information flows to the TCB, identifying those that
do not compromise security. Using IFCIL, the administrator can restrict the in-
formation flows to the TCB to the permitted ones by defining the typeattributes
TCB and Harmless, and by requiring +> TCB : Harmless +> TCB.

The second property concerns the assured pipeline of [65], where the flow
from a to z must pass through a list of intermediate entities b,c It suffices
to use requirements of the form a +> z : * +> b +> c +> ... +> *.

We express the wrapping of untrustworthy programs of [120], by defining
requirements stating that all the information flows from (or to) a given type
untrustworthy must pass through a verifier type as first step, i.e., that
untrustworthy > * : * > verifier.

Finally, we propose the additional augment-only property that only allows
elements of type a to increase (append) the information on the targets with type
b without overwriting or removing any. This property is expressed as a > b :

a [append]> b and a +> > b : a +> [append]> b.
The results of our analyses on the three configurations are summarized in

Table 3.1. For each row the table reports the kind of property, the number of re-

106

quirements, and the total time for verifying them (NuSMV input file generation
plus LTL model checking). The tool took approximately two minutes to check
the entire OpenWRT configuration, and less then three seconds for the other
two policies. The analysis signals that some requirements are violated. Among
these, the checks on the TCB property show that information flows exist from
types that are likely untrusted to types related to the OS security mechanisms,
e.g., in dspp5 information can flow from .lostfound.file to .sys.fs. We are
investigating on whether these types are indeed untrusted and on the actual
impact the detected violations have on security. This however requires a reverse
engineering to better understand the security goals of the analyzed policies.

3.5 Related Work

Numerous tools for SELinux policy analysis have been proposed. Many of them
are based on information flow, but none targets CIL or explicitly handles the
advanced features we consider. These tools can be divided in two categories.
The first focuses on predefined tests, looking for specific misconfigurations. The
second supports administrators in querying information flow properties of given
policies.

Since our tool enables administrators to perform custom analysis, it differs
from the proposals in the first category that we briefly survey.

Reshetova et al. [108] propose SELint, a tool for detecting well-known mis-
configurations in given SELinux configurations, e.g., the overuse of default types,
and the association of specific untrusted types with critical permissions. In con-
trast to our work, their approach is also specialized for mobile devices.

Radika et al. [103] analyse SELinux configurations to spot potentially dan-
gerous information flows. They consider an information flow from an entity a to
an entity b to be potentially dangerous if a neverallow rule prohibits a direct
read access from b to a. They propose two tools: the first statically investigates
such information flows in configurations, and has been applied to the SELinux
reference policy and to the Android policy [59]; the second is a run-time monitor
that dynamically tracks information flows in an SELinux system. Our tool does
the same kinds of analysis, and also expresses more specific requirements. We
can, e.g., check for the presence of direct information flows caused by operations
different from those in neverallow and of intransitive information flows that
pass through a specific path.

Jaeger et al. [77] analyze the SELinux example policy for Linux 2.4.19, focus-
ing on integrity properties. They determine which entities are in the TCB and
analyze their integrity by focusing on transitive information flow. As discussed
above, we let the administrator specify the TCB and the desired requirements
while developing the configuration, rather than deriving the TCB after the pol-
icy is implemented.

We now briefly discuss the proposals in the second category that are closest
to our. They neither directly work on structured CIL configurations, nor do
they offer real support for advanced features of this language. Moreover, they

107

do not allow labeling configurations with requirements that interact with the
language constructs. All the properties they consider are global. In contrast, our
proposal works directly on structured CIL configurations and our requirements
are first class citizens in IFCIL.

Guttman et al. [65] propose a formal model of SELinux access control, based
on transition systems, and provide an LTL model checking procedure to verify
that a configuration satisfies the security goals specified by the administrator.
The security goals they consider are non-transitive information flow properties:
they verify that every information flow between two given SELinux entities (e.g.,
users, types, roles) passes through a third entity. As discussed above, IFCIL ex-
presses these requirements, also with conditions about the operations occurring
in the information flow. Instead, we do not consider exceptions because they
can be encoded via typeattributes.

Sarna-Starosta et al. [111] propose a logic-programming based approach to
analyze SELinux policies. Their tool transforms a configuration into a Prolog
program, thus allowing the administrator to perform deductions on the prop-
erties of the configuration with the standard Prolog query mechanism. This
proposal is similar to ours except that we target CIL and allow labels inside
configurations. Also, they rely on libraries of predefined queries for assisting
users not familiar with logic programming. Our DSL precisely targets infor-
mation flows, and easily compiles into LTL. A complete comparison between
the two approaches and the efficiency of their implementations requires further
investigations.

Finally, high-level languages have been proposed for SELinux based on in-
formation flows. All these languages were presented prior to the introduction
of CIL; they therefore target the kernel policy language and do not exploit
CIL’s advanced features. In contrast, we consider an already adopted language,
namely CIL, and extend it with useful features, that support administrators in
reasoning about their code. Moreover, IFCIL is backward compatible. Admin-
istrators thus neither need to change the workflow nor the tools they use to
develop and maintain SELinux configurations.

Hurd et al. [75] propose Lobster, a high-level DSL for specifying SELinux
configurations. This compositional language describes the configuration ex-
pected information flow. Instead of macros and blocks, Lobster provides the
user with class definition and instantiation, where operations and permissions
are represented as ports and labeled arrows between ports, respectively. The
user must specify all the desired information flows of the system and the com-
piler checks that no others are possible in the configuration. In contrast, we
allow the user to succinctly specify wanted and unwanted information flows. In
particular, user can also specify “negative” requirements that explicitly forbid
some information flows, while Lobster supports specifying only the “positive”
flows. Moreover, IFCIL supports more fine-grained requirements, letting users
choose the level of details in defining the information flow in the system, e.g.,
targeting only critical permissions. Finally, Lobster is not backward compatible
with SELinux, whereas IFCIL is backward compatible.

Nakamura et al. [94] propose SEEdit, a security policy configuration sys-

108

tem that supports creating SELinux configurations using an high-level lan-
guage called the Simplified Policy Description Language (SPDL). SPDL keeps
the configuration small because the administrator can group SELinux permis-
sions and refer to system resources directly using their name instead of types.
They implement a converter that produces SELinux configurations, and they
propose a set of tools for automatically deriving (parts of) a configuration
using system logs. Their main objective is mainly to simplify the usage of
the kernel policy language, working on its syntax and adding utility features.
Static checking is not supported.

3.6 Conclusions and future work

We have proposed IFCIL, a backwards compatible extension of CIL, which has
been recently proposed as an intermediate language for SELinux. IFCIL is com-
posed by two ingredients: CIL, for interacting with the system at the low level,
precisely enumerating permissions, and IFL, that allow the administrator to
express high level information flow requirements, including confidentiality and
integrity requirements. We have also defined and implemented a verification
procedure to check if an IFCIL configuration complies with its IFL require-
ments, thus granting a binding between the high and low level representations
of the system. Our experiments show that the language works well for defining
properties that are commonly investigated on SELinux policies, and that the
verification times are acceptable even for large real-world configurations.

Discussion We believe that our extension may help with the development of
more advanced high-level languages. As our annotations associated with a com-
mon intermediate language, they can enrich different high-level languages. Our
verification procedure could be used for checking properties when composing
code written in different high-level languages.

Our semantics focuses on CIL type enforcement because it allows defining
more fine-grained information flow policies than other constructs, like those
for multi-level security [70]. Moreover, many real CIL configurations only use
these constructs. We do not explicitly model the constructs for defining the
operations used inside allow rules. But this is not a limitation because these
constructs can be easily encoded in the considered fragment. Indeed, as we
discuss in Section 3.4.1, our tool deals with all the type enforcement constructs
used in real-word CIL configurations.

Our extension targets well known problems in policy development. More-
over, it provides a basis for developing and implementing new high-level lan-
guages for SELinux as our semantics completes the existing, informal, and in-
complete, CIL documentation. Our proposal can also be applied to check prop-
erties when composing code written in different high-level languages sharing this
common intermediate language.

Since the actual SELinux architecture uses CIL as an intermediate language,
our tool can also be used to verify properties of configurations written in the

109

current policy language. This includes the SELinux reference policy that is part
of several Linux distributions, and the Android policy [59].

Future work There are several exciting directions for future work that aim at
fostering the adoption of IFCIL by practitioners. First, we plan to cover all the
features of the CIL language, even though the type enforcement fragment that
we currently support suffices to analyze many real-word configurations. Then,
we will provide more friendly diagnostics and suggestions for fixing violated
requirements.

We plan to enhance the tool efficiency and response time, and extend it
to fully support requirement refinement. Also we will address the issues of
modular and incremental analysis. We consider these aspects critical for the
integration of IFCIL in the life-cycle of CIL configurations. In particular, we aim
at supporting the development of tools like IDEs that provide instant feedback
to administrators while they are writing their configurations, as is sometimes
the case with typed languages.

Finally, we plan to support configurations partly written in the kernel policy
language and partly written in CIL, as this is common practice [6].

110

Chapter 4

Collaborative Environments

We now focus on collaborative environments, focusing on granting mutual ben-
efits when evaluating access requests. In a distributed setting each user has a
set of his own resources that are possibly shared with others. The access policy
protecting these resources is naturally defined by each user in isolation, and
independently of the other users. In distributed collaborative contexts, policies
should aim at a fair exchange of access grants, so enhancing mutual advantages.
For example, different hospitals may share anonymized medical data to improve
the quality of statistics. As a further example consider online social networks
where Alice decides on her own which users can see her pictures, e.g., only show-
ing them to who share their pictures with her. As a matter of fact, mutuality
is the basis of social interactions [52], and it affects how resources are shared.

We address both the case of infinite or reusable assets, where the asset is
still available to the owner after he allows access to it, and the case of finite
resources that are consumed when exchanged. Examples of finite resources that
may be exchanged this way are non fungible tokens, cryptocurrencies, memory
storage and computing power, as well as physical assets. Actually, we mainly
focus on finite resources, being the most difficult, and recover reusable assets as
a special case.

Traditional access control languages do not express conditions that foster
mutual benefits, but only check the roles or the attributes of the requester
and of the resources. Typically, the exchange of access rights and resources is
negotiated by humans and implemented by hand in the access control policy
of each contractor. An automatic tool would instead help, which takes access
control decisions based on what requesters offer to others. To the best of our
knowledge, only few papers have investigated the possibility of expressing a
limited form of mutuality in policies, e.g. [118].

Here, we start to address the mutuality issue and propose MuAC, an access
control system with a logic-based policy language. The MuAC policy language
not only allows specifying conditions on resources and users, but also constraints
on what requesters are required to deliver in return. Polices of different users
affect each other, even though they are defined in isolation and only control

111

High Level

Language: MuAC
Permissions: users agreements

Low Level

Language: LNLC*
Permissions: logical proofs

Blockchain Smart Contract

• update
• request

conceptual
interaction

actual
interaction

compile

implamentation

Figure 4.1: Schema of the two-layer approach for MuAC.

the access to the resources of a single user. For example, consider the case of
picture sharing mentioned above: Alice needs to be aware of Bob’s policy to
grant him access to her pictures. In general, deciding an access request may
require a complete knowledge of the policies of many or even all the users.

Mutuality may however induce circularity while evaluating access requests.
Consider again picture sharing and assume Bob makes a request to view Alice’s
pictures. If Bob unconditionally allows Alice to watch his, then there is no
circularity and Bob’s request is accepted. A circularity instead occurs if Bob
allows Alice to watch his picture only if she shares her pictures with him, as it is
the case. Nevertheless, the system should grant Bob access to Alice‘s pictures,
and viceversa.

Unfortunately, classical logic is not fully adequate to express these situations,
which are typical of human contracts. To overcome this limitation, a non-
standard logic is introduced, and embedded in a mixed logic composed by a
linear fragment (for reasoning about resources) and a non-linear fragment (for
reasoning about classical access control conditions, like roles and attributes).
We therefore exploit this logic to deal with circularity arising in mutual access
policies.

In the setting of collaborative environments, we instantiate the two layer
approach by proposing a new high level language, the one of MuAC policies, and
a logical low level that is more detailed and allows the system to be implemented.
The general schema is in Figure 4.1. Summarizing, the two abstraction layers
we target are:

• the high level (HL) of MuAC language, speaking of exchanges policies;

• the low level (LL) of a logic-based reasoner implemented as an architecture
over blockchain.

112

The coherence between the high level and low level representations of the sys-
tem is granted by a compilation from MuAC policies to logical theories. The
compilation we propose directly derives from the MuAC logical semantics, and
thus it is correct by definition. Since we are not using as low level a preex-
isting access control technology, we propose an implementation. In accordance
with the distributed nature of the context, we opt for an implementation as a
blockchain smart contract. Moreover, an off-chain client is given that allows
the user to interact with the system at the high level abstracting away low level
details, that are entirely in charge of the proposed architecture. The usage of a
client also reduces the cost of serving an access request to be linear, which is a
necessity given that the user has to pay the execution of his instructions on the
blockchain.

Structure of the Chapter

In Section 4.1 we introduce the MuAC system and exemplify the kind of agree-
ments it can mediate; we also give the syntax of the MuAC policy language.
In Section 4.2 we present a new linear non-linear contract logic for reasoning
about agreements. In Section 4.3 we associate a MuAC configuration (i.e., a
mapping between users and their policies) to a logical theory, and formally de-
fine the the MuAC system evolution triggered by users requests. In Section 4.4
we show how a MuAC system algorithmically evaluates the requests, and pro-
pose an implementation of it on a blockchain. In Section 4.5 we target reusable
resources, showing how to adapt the system for this case. In Section 4.6 we com-
pare our proposal with the literature, and concludes in Section 4.7. Additional
details and full proofs are in Appendix C.

4.1 Introducing the High Level: MuAC

We introduce the MuAC access control system and its policy language. We
intuitively characterize the kind of agreements mediated by MuAC through an
example based on blockchain games. We then present the syntax of the policy
language.

4.1.1 MuAC Access Control System

The collaborative environment where MuAC comes into play is composed by
a set Usr of users, ranged over by usr , usr ′, usr′′. Let Res ranged over by
res, res ′, res ′′, be the set of resources in the system; and R, ranged over by
r, r′, r′′, be the set of resource kinds. We assume the function kind : Res → R
associates each resource with its kind. Each user owns a non-negative number of
resources for each kind. Information about the ownership is stored in the state
S, which, as we will see, changes over time. We assume additional information
about the users is stored in the context Γ. For example, users may be associated
with attributes and may be in relation with other users. We abstractly model

113

the information stored in Γ as a relation between tuples of users and properties
p ∈ P that we leave unspecified. Each user usr ∈ Usr defines a MuAC policy
Σusr , using the MuAC policy language defined later. Let Pol be the set of
all MuAC policies, then a MuAC configuration Σ associates users with their
policies Σusr ∈ Pol . Formally:

Definition 4.1 (MuAC system). A MuAC system over Usr and Res is a pair
(Γ,Σ), with

Γ ⊆
⋃
n∈N

Usrn × P

Σ: Usr → Pol

A MuAC state is a function S : Usr → 2Res

As usual for access control systems, the user usr can make a request for
a resource of kind r. To decide if the request is to be granted or denied, the
system first check if usr owns a resource r. When this is not the case, MuAC
policies are considered. In their MuAC policies, users specify in isolation what
they want in return for granting other users access to their own resources. If an
agreement is found, the request is served, i.e., the MuAC state changes from S
to a new state S′ where a resource of kind r is associated with usr . Formally:

Definition 4.2 (MuAC system evolution). Let S be the set of states S. Given
a MuAC system (Γ,Σ), its evolution is a relation

 Γ,Σ ⊆ S ×Usr ×R× S

such that if (S, usr , r,S′) ∈ Γ,Σ then res ∈ Res exists such that kind(res) = r
and res ∈ S′(usr).

We call MuAC request a pair (usr , r), and we represent it as r@usr?. More-
over, we write

Γ,Σ � S r@usr? S′

for (S, usr , r,S′) ∈ Γ,Σ.

As stated before, users do not have to check policies and bargain on their
own, their policies are automatically checked to find agreements that are mu-
tually advantageous. This also means that they are not required being online
while the process takes place.

We exemplify the intended usage of MuAC in a simple scenario.

4.1.2 Running Example

A blockchain game is a video game where the ownership of virtual objects is
proved by the association of a non fungible token (NFT) with the account of the
players. Usually, in online games players can exchange their objects each other,
with other virtual objects or the on-game currency. In a blockchain game,

114

the exchanges are not implemented by the programmers of the game. The
players can sell or exchange them on their own directly using the blockchain in
a transparent manner. For convenience, we only focus on exchanges of virtual
objects.

We consider a fictional game, played by Alice, Bob and Carl. As it is common
in online games, players can join guilds of adventurers; Bob and Carl belongs
to the guild called paladins. The resource that players can trade are on-game
items found while playing: healing potions (hp in the following), spell books
(sb in the following), light and heavy weapons (lw and hw in the following).
Summing up, Usr = {Alice,Bob, Carl}, R = {hp, sb, lw , hw}, and Γ stores that
Bob and Carl are in the paladin guild.

The rules in the MuAC configurations of Alice (rules A1, A2), Bob (rules
B1, B2, B3) and Carl (rules C1, C2, C3) state the following:

A1 I give sb if I get hw in return;

A2 I give sb if I get hp in return;

B1 I give lw if I get sb in return;

B2 I give you a hp if you give me a sb;

B3 If you are a paladin, I give you a lw if you give me a hp;

C1 I give hw if I get lw in return;

C2 I give you a hp if you give me a lw ;

C3 If you give a sb to a paladin, I give you an hp.

Finally, assume that the current state S is such that Alice has one sb, Bob has
one lw , and Carl has both one hw and one hp.

We present a series of request for showing the kind of agreements that may
arise in MuAC, in increasing complexity.

Example 4.1 (Direct exchange). The simplest case is when the resources of
two players are exchanged. If Bob makes a request for hp, the system realizes
that he has none of them and start considering the MuAC configuration, looking
for exchanges. Carl is willing to exchange hp with a lw (rule C2). Bob has a lw ,
and he is willing to exchange it with a hp, but only with a paladin (rule B3).
Carl is a paladin, thus the agreement is met, and the exchange takes place. Bob
will have the hp he needs, and Carl will have a lw . Note that the agreement is
satisfactory for both parts, and no bargaining is needed.

Example 4.2 (I pay for you). In this case, the rule C3 comes into play. Note
that Carl accept to pay for other members of the paladin gild. If Bob makes
a request for sb, the system start considering the MuAC configuration. Alice
offers a sb in return for hp (rule A2), regardless of who has to give the hp. Bob
has no hp to exchange for sb with Alice, but luckily he is in the paladin guild,
thus Carl is willing to pay (rule C3). Bob takes the sb of Alice, and Alice the
hp of Carl.

115

Example 4.3 (Circular Exchange). Assume Alice requests hw . She offers sb
in return (rule A1), but none is willing to make such an exchange. The only
one that offers hw is Carl, who wants lw in return (rule C1). Alice has no rule
for giving lw , and no lw resource. No agreement is possible between any two
users, but if Bob comes into play then an exchange is possible. Bob sells lw
for sb (rule B1). Everyone is happy if Alice gives her sb to Bob (satisfying the
condition of rule B1), Bob gives his lw to Carl (satisfying the condition of rule
C1), and Carl gives his hw to Alice (satisfying the condition of rule A1). In
practice, every user usr is paying for some other user usr ′, provided that some
usr ′′ is paying for usr . It is trivial to verify that everyone is happy: they are
receiving what they wanted by paying what they promised.

Example 4.4 (Resource Supplier). Our last case is an agreement between two
parts that would be reachable, but one of the two has not the needed resource.
Assume Alice wants hp. A simple agreement would be between her and Bob,
Alice gives sb for hp (rule A2), and Bob gives hp for sb (rule B2). Unfortunately,
Bob has no hp, but in spite of that the system finds an agreement where Alice
gets the hp and Bob the sb. Indeed, Bob has lw that can be exchanged with
Carl for hp (rule C2), and Bob agrees since Carl is in his guild (rule B3). Thus
Carl take lw from Bob and gives him hp, that Carl exchange with Alice for sb.

4.1.3 MuAC Syntax

Let U , ranged over by u, u′, u′′, be the set of user variables with two distinguished
elements Me and Requester, where Me represents the owner of the policy and
Requester represents the user issuing an access request. Recall that p, p′, p′′

are properties in P.
Every user usr ∈ Usr defines in isolation his policy Σusr as a set of rules

ν ∈ V given by the following grammar:

ν ::= r : P GiveLs

P ::= p(u, . . . , u) P | ε
GiveLs ::= Gives(u, r, u′) GiveLs | ε

Intuitively, a rule associates a resource kind r with a (possibly empty) list
of properties and a list of exchanges asked in return, where Gives(u, r, u’)

states that u′ is required to give to u a resource r.

Example 4.5. We know express in MuAC the rules of Alice, Bob and Carl in
the running example of subsection 4.1.2. The rules of Alice are:

spell_book : Gives(Me , heavy_weapon , u) // Rule A1

spell_book : Gives(Me , healing_potion , u) // Rule A2

The rules of Bob are:

light_weapon : Gives(Me , spell_book , u) // Rule B1

healing_potion : Gives(Me, spell_book , Requester) // Rule B2

light_weapon : is_paladin(Requester), // Rule B3

Gives(Me, healing_potion , Requester)

116

MILL MIL

CMILL LNL

CLNL

CLNL*

Figure 4.2: Inclusion between logic systems, growing upwards. MILL and MIL
are the multiplicative fragments of linear and intuitionistic Logic, respectively;
LNL is linear non-linear logic; and CLNL* is the computational fragment of our
multiplicative, linear non-linear, contractual logic CLNL.

Finally, the ones of Carl follows

heavy_weapon : Gives(Me , light_weapon , u) // Rule C1

healing_potion : Gives(Me, light_weapon , Requester) // Rule C2

healing_potion : is_paladin(u), // Rule C3

Gives(u, spell_book , Requester)

(the text after // is a comment.)

4.2 The Low Level: A Logic for MuAC

We give here a logic for characterizing the agreements and exchanges of MuAC
systems. To do that, we use two auxiliary ingredients. The first one is a new
operator that enables expressing promises in linear logic for dealing with con-
tractual behaviour. More precisely, we take MILL, the multiplicative fragment
of intuitionistic linear logic [58] (the one that only deals with ⊗ and (). Then
we extend it with a new operator for modeling promises, i.e. guarantees that
something will hold provided that the given conditions are satisfied, obtaining
CMILL.

The second ingredient deals with non-linear conditions that the user can
express in MuAC policies (like the membership in a guild in our running example
of subsection 4.1.2). For doing so, we combine CMILL and non-linear logic,
following the line of linear non-linear logic, LNL [25], obtaining CLNL.

The whole CLNL is not needed for characterizing MuAC systems, thus we
present a computational fragment, called CLNL* that is adequate and has good
computational properties. The inclusion between the logic systems is schema-
tized in Figure 4.2.

4.2.1 Contractual Linear Implication

Here we define Contractual Multiplicative Linear Logic, CMILL for short, an
extension of MILL with the new operator ((, called linear contractual impli-
cation, or contract for short. We have been inspired by Bartoletti and Zunino’s
PCL [20]. Roughly, a formula ϕ((ϕ′ states the promise that ϕ′ will eventually

117

(Ax)
A ` A

Φ ` ϕ
(I-left)

Φ, I ` ϕ
(I-right)

` I

Φ, ϕ, ϕ′ ` ϕ′′
(⊗-left)

Φ, ϕ⊗ ϕ′ ` ϕ′′
Φ ` ϕ Φ′ ` ϕ′

(⊗-right)
Φ,Φ′ ` ϕ⊗ ϕ′

Φ ` ϕ Φ′, ϕ′ ` ϕ′′
((-left)

Φ,Φ′, ϕ(ϕ′ ` ϕ′′
Φ, ϕ ` ϕ′

((-right)
Φ ` ϕ(ϕ′

Φ ` ϕ Φ′, ϕ ` ϕ′
(Cut)

Φ,Φ′ ` ϕ′

Φ ` ϕ′
(((-zero)

Φ ` ϕ((ϕ′
ϕ′′ ` ϕ⊗ ϕ′′′ Φ, ϕ′ ` ϕ′′

(((-fix)
Φ, ϕ((ϕ′ ` ϕ′′

Figure 4.3: CMILL rules.

hold provided that ϕ is true. The syntax of CMILL is as follows, where I stands
for true and A is an atomic proposition:

ϕ ::= I | A | ϕ⊗ ϕ | ϕ(ϕ | ϕ((ϕ.

The operators ⊗ and (are the multiplicative conjunction and implication of
linear logic. Roughly, ϕ ⊗ ϕ′ holds if and only if both ϕ and ϕ′ hold, and
ϕ (ϕ′ says that we can derive ϕ′ if ϕ holds, but after the derivation both
the implication and ϕ are no longer available. A common way of describing the
meaning of linear logic is to consider formulas as resources that can be used
only once: ϕ⊗ ϕ′ means that we have both resources, and ϕ(ϕ′ means that
we can consume ϕ and the implication to obtain ϕ′.

The inference rules are those of MILL, plus the ones for ((, see Figure 4.3.
In [20], Bartoletti and Zunino suggest 11 properties that a sensible contrac-

tual implication must satisfy to accurately model contractual reasoning. We
briefly discuss these properties below, grouping them in three classes: handshak-
ing, standard implication, weakening and strengthening. Seven of these proper-
ties straightforwardly hold for CMILL and additional three do after some slight
adjustments to CMILL. We argue that the remaining two properties are not
desirable in the context of linear logic.

Handshaking

Four handshaking properties hold for CMILL without any adjustment. The
simple handshaking property intuitively states that if two contracting parties
have a mutual agreement, then what they promise must hold:

` (ϕ((ϕ′)⊗ (ϕ′((ϕ)(ϕ⊗ ϕ′ (4.1)

118

The circular handshaking property generalizes property (4.1) to a case in which
n parts circularly rely one on the promises of another:

` (ϕ1((ϕ2)⊗...⊗ (ϕn−1((ϕn)⊗(ϕn((ϕ1)(ϕ1 ⊗...⊗ ϕn (4.2)

As a corollary, also the one-step circular handshake works:

` (ϕ((ϕ)(ϕ (4.3)

Finally, in the greedy handshaking, each party i promises ϕi only provided that
all the other parties promise ϕj with j 6= i:

`
⊗
i∈1...n

(
⊗
j 6=i

ϕj ((ϕi)(ϕ1 ⊗ · · · ⊗ ϕn (4.4)

Of course, the condition of a promise ϕ((ϕ′ can also be directly satisfied,
i.e. when ϕ holds. This property is expressed in [20] as

6` ϕ⊗ (ϕ((ϕ′)(ϕ′

In CMILL the validity of this formula is not desirable, because it discards ϕ in
contrast with the intuition behind linear logic. To keep linearity, we then adjust
the above and obtain:

` ϕ⊗ (ϕ((ϕ′)(ϕ⊗ ϕ′ (4.5)

As a consequence, the linear contractual implication is not stronger than (i.e., it
does not imply) linear implication, just as the contractual implication proposed
by [20] is stronger than standard implication, in symbols:

6` (ϕ((ϕ′)((ϕ(ϕ′)

To take care that intuitively ϕ cannot be discarded from the conclusions of the
contractual implication, we propose the following similar property:

` (ϕ((ϕ′)((ϕ(ϕ⊗ ϕ′) (4.6)

Standard implication properties

Two properties of the standard implication listed in [20] also hold for linear
contractual implication, while a third one requires a minor adjustment.

First, also in CMILL a contract that promises true (I) is always satisfied.

` ϕ((I (4.7)

Transitivity does not hold as it is for linear contractual implication:

6` (ϕ((ϕ′)⊗ (ϕ′((ϕ′′)((ϕ((ϕ′′)

119

and we think that this property is not desirable in a linear contractual logic.
As a matter of fact, assume transitivity, take ϕ′′ = ϕ in the formula above and
apply the property (4.3). You get the following formula that contradicts the
basic assumption of linear logic, because an occurrence of ϕ′ is discarded in the
right-hand side of (:

(ϕ((ϕ′)⊗ (ϕ′((ϕ)(ϕ

The following example shows what can go wrong if transitivity of ((is
assumed.

Example 4.6. Consider the following formula ϕ that involves three users, Alice,
Bob and Carl that interact for sharing resources.

ϕ := (A1 ((A2)⊗ (A2 ((A3)⊗ (A3 ((A1)

And let the proposition A1 mean that Alice gives a spell book sb to Bob; let
A2 mean that Bob gives a light weapon lw to Carl; let A3 mean that Carl gives
a heavy weapon hw to Alice. Clearly, each user promises to give a resource if
they get another in return. One can apply the circular handshake property (4.2)
and derive ϕ(A1 ⊗ A2 ⊗ A3, i.e., all the exchanges happen, obtaining a fair
treatment of all the users. However, if we assume transitivity of ((, one could
also derive ϕ(A1 ⊗ A3, where the treatment of Carl and Bob is unfair (Bob
gets a free resource, and Carl gets nothing for his hw).

Nevertheless, we recover a similar property in the following adjusted form,
in which the “intermediate” formula ϕ′ is kept:

` (ϕ((ϕ′)⊗ (ϕ′((ϕ′′)((ϕ((ϕ′ ⊗ ϕ′′) (4.8)

The third property holds as it is in PCL, and states that if a promise ϕ′ is
true, then also any contract that promises ϕ′ is true:

` ϕ′((ϕ((ϕ′) (4.9)

Weakening and strengthening

In PCL, the object of a promise can be arbitrarily weakened, and the pre-
condition can be arbitrarily strengthened, but we think such an unconstrained
loosening is not adequate in a linear contractual logic, i.e.

6` (ϕ′(ϕ)⊗ (ϕ((ϕ′′)((ϕ′((ϕ′′)

6` (ϕ((ϕ′′)⊗ (ϕ′′(ϕ′′′)((ϕ((ϕ′′′)

Indeed, would they have held, also the following would:

(ϕ((ϕ′)⊗ (ϕ⊗ ϕ′((ϕ′′)((ϕ((ϕ′′)

with the effect of discarding ϕ′ from the agreement, and of possibly distorting
the meaning of the involved promises, as shown by the example below.

120

Example 4.7. Consider now the following theory Φ′:

A1 ((A2, A1 ⊗A2 ((A3, A3 ((A1

One can apply the greedy circular handshake property (4.2), obtaining Φ `
A1⊗A2⊗A3, which treats each user in a balanced way. However, if we assume
weakening and strengthening to hold, one could also derive Φ′ ` A1⊗A3, where
the treatment of Carl and Bob is unfair (Bob gets a free resource, and Carl gets
nothing for his hw).

Weakening the object of a promise and strengthening its preconditions are
however two properties that may be interesting to have in a disciplined form in
a linear contractual logic. A sensible formulation requires a deep investigation
and we leave it as future work.

4.2.2 Contractual Linear Non-Linear Logic

Following the approach of [25], we combine CMILL and MIL, obtaining CLNL.
The formulas ϕ of CLNL obey the followig grammar:

ϕ ::= I | A | ϕ⊗ ϕ | ϕ(ϕ | ϕ((ϕ | Fψ
ψ ::= > | X | ψ ∧ ψ | ψ → ψ | Gϕ

Intuitively, I and > stand for linear and non-linear true; A and X are linear
and non-linear atomic propositions; and, as in LNL, the operator F “lifts” a
non-linear formula ψ to a linear one ϕ (this is the only difference with CMILL
formulas) while G does the opposite.

The CLNL inference rules are in Figure 4.4. They include those of LNL, as
presented in [25], plus the ones for the contractual implication.

As for LNL, also CLNL judgments are of two kinds:

Ψ ψ Ψ; Φ ` ϕ
Roughly, the left one is for non-linear and the right one for linear reasoning.
In the judgments, Ψ and Φ are multisets of non-linear and linear formulae,
respectively. We feel free to omit an empty multiset.

Computational Fragment

We present the computational fragment of CLNL, CLNL*, restricting sequents
to the specific form introduced below. The logic CLNL* supports the evaluation
of the access control language we are proposing, and for this reason we call it
computational. Its elements are defined follow.

Let Ω, Θ, ∆ and S, be multisets of CLNL propositions ω, θ, δ and S respec-
tively, defined as

ω ::= > | X | ω ∧ ω | ω → ω | Gθ | Gδ
θ ::= δ((δ

δ ::= I | A(A | δ ⊗ δ
S ::= I | A | S ⊗ S

121

(C->)
 >

(C-Ax)
ψ ψ

(L-Ax)
Ψ;ϕ ` ϕ

Ψ, ψ, ψ ψ′
(C-Cont)

Ψ, ψ ψ′
Ψ, ψ, ψ; Φ ` ϕ

(L-Cont)
Ψ, ψ; Φ ` ϕ

Ψ ψ′
(C-Weak)

Ψ, ψ ψ′
Ψ; Φ ` ϕ

(L-Weak)
Ψ, ψ; Φ ` ϕ

Ψ ψ Ψ′ ψ′
(∧-right)

Ψ,Ψ′ ψ ∧ ψ′

Ψ, ψ ψ′′
(C-∧-left1)

Ψ, ψ ∧ ψ′ ψ′′
Ψ, ψ′ ψ′′

(C-∧-left2)
Ψ, ψ ∧ ψ′ ψ′′

Ψ, ψ; Φ ` ϕ
(L-∧-left1)

Ψ, ψ ∧ ψ′; Φ ` ϕ
Ψ, ψ′; Φ ` ϕ

(L-∧-left2)
Ψ, ψ ∧ ψ′; Φ ` ϕ

Ψ ψ Ψ′, ψ′ ψ′′
(C-→-left)

Ψ, ψ → ψ′,Ψ′ ψ′′
Ψ, ψ ψ′

(C-→-right)
Ψ ψ → ψ′

Ψ ψ Ψ′, ψ′; Φ ` ϕ
(L-→-left)

Ψ, ψ → ψ′,Ψ′; Φ ` ϕ

Ψ ψ Ψ′, ψ ψ′
(CC-cut)

Ψ,Ψ′ ψ′
Ψ ψ Ψ′, ψ; Φ ` ϕ

(CL-cut)
Ψ,Ψ′; Φ ` ϕ

Ψ; Φ ` ϕ Ψ′; Φ′, ϕ ` ϕ′
(LL-cut)

Ψ,Ψ′; Φ,Φ′ ` ϕ′

Ψ; Φ, ϕ ` ϕ′
(G-left)

Ψ, Gϕ; Φ ` ϕ′
Ψ ` ϕ

(G-right)
Ψ Gϕ

Ψ, ψ; Φ ` ϕ
(F-left)

Ψ; Φ, Fψ ` ϕ
Ψ ψ

(F-right)
Ψ ` Fψ

Ψ; Φ ` ϕ
(I-left)

Ψ; Φ, I ` ϕ
(I-right)

` I

Ψ; Φ ` ϕ Ψ; Φ′, ϕ′ ` ϕ′′
((-left)

Ψ; Φ,Φ′, ϕ(ϕ′ ` ϕ′′
Ψ; Φ, ϕ ` ϕ′

((-right)
Ψ; Φ ` ϕ(ϕ′

Ψ; Φ, ϕ, ϕ′ ` ϕ′′
(⊗-left)

Ψ; Φ, ϕ⊗ ϕ′ ` ϕ′′
Ψ; Φ ` ϕ Ψ; Φ′ ` ϕ′

(⊗-right)
Ψ; Φ,Φ′ ` ϕ⊗ ϕ′

Ψ; Φ ` ϕ′
(((-zero)

Ψ; Φ ` ϕ((ϕ′
Ψ;ϕ′′ ` ϕ⊗ ϕ′′′ Ψ; Φ, ϕ′ ` ϕ′′

(((-fix)
Ψ; Φ, ϕ((ϕ′ ` ϕ′′

Figure 4.4: CLNL rules.

122

From the computational point of view, an element of Ω represents non-linear
knowledge; an element of Θ a contract; an element of ∆ an agreed exchange;
finally, S and the elements of S are linear conjunctions of atomic predicates,
representing the next and actual states of the computation.

Definition 4.3. A LNCL sequent is computational if it is of the following form

Ω; Θ,∆,S ` S.

where Ω is the non-linear part Ψ; Φ is split into Θ, ∆ and S; and the succedent
ϕ is S.

A computational sequent is initial if Θ,∆ = ∅, i.e., if it is Ω;S ` S.

The rules of CLNL* are in Figure 4.5. We abuse notation: tensor products
are seen as multisets, given that ⊗ is associative and commutative; and the
symbol⊆ acts also as multiset inclusion. Most of the inference rules are inherited
from the ones of CLNL but with constraints on the form of the used predicates,
that make some rules useless. Linear right rules are not considered, apart from
the one of ⊗. This is because in computational sequents only linear conjunctions
of atomic propositions are legal to the right of `. Of course, no F rule is
needed since this operator is absent in CLNL*. Finally, the rules for ((are
specific of this fragment, and we briefly discuss them below. Rule (((-Spend)
is a weakened version of (((-Fix) that fits the syntactic constraints on CLNL*
formulas. Rule (((-Merge) merges the left and right parts of two propositions
in Θ. Maybe surprisingly, note that (((-Merge) is not valid in CLNL, but if
used in CLNL* produces only CLNL theorems, due to the additional constraints
on the syntax, as proved by the following theorem.

The inference rules of CLNL* are correct with respect to computational
sequents of CLNL, CLNL* thus inherits the correctness properties from CLNL.
Formally:

Theorem 4.1 (CLNL* immersion). For all Ω, Θ, ∆, S and S,

Ω; Θ,∆,S ` S

is valid in CLNL* only if it is valid in CLNL.

A necessary condition for CLNL* to be adequate as semantics for MuAC is
that of decidability, which is stated for initial sequents in the following.

4.2.3 Deciding CLNL*

We target the problem of deciding whether an initial computational sequent is
valid or not. First we define two normal forms for proofs, and show that they
are general, i.e., a proof exists in CLNL* for an initial sequent only if a proof
in normal form exists. Then we reduce the problem of finding a proof in the
first normal form to reachability in Petri Nets, which is known to be decidable.
Finally, we reduce the problem of finding a proof in the second normal form to
a proof in the first normal form.

123

(C->)
 >

(C-Ax)
ω ω

(L-Ax)
Ω;A ` A

Ω, ω, ω ω′
(C-Cont)

Ω, ω ω′
Ω, ω, ω; Θ,∆, S ` S

(L-Cont)
Ω, ω; Θ,∆, S ` S

Ω ω′
(C-Weak)

Ω, ω ω′
Ω; Θ,∆, S ` S

(L-Weak)
Ω, ω; Θ,∆, S ` S

Ω, ω ω′′
(C-∧-left1)

Ω, ω ∧ ω′ ω′′
Ω, ω′ ω′′

(C-∧-left2)
Ω, ω ∧ ω′ ω′′

Ω ω Ω′ ω′
(C-∧-right)

Ω,Ω′ ω ∧ ω′

Ω, ω; Θ,∆, S ` S
(L-∧-left1)

Ω, ω ∧ ω′; Θ,∆, S ` S
Ω, ω′; Θ,∆, S ` S

(L-∧-left2)
Ω, ω ∧ ω′; Θ,∆, S ` S

Ω ω Ω′, ω′ ω′′
(C-→-left)

Ω, ω → ω′,Ω′ ω′′
Ω, ω ω′

(C-→-right)
Ω ω → ω′

Ω ω Ω′, ω′; Θ,∆, S ` S
(L-→-left)

Ω, ω → ω′,Ω′; Θ,∆, S ` S
Ω ω Ω′, ψ; Θ,∆, S ` S

(CL-cut)
Ω,Ω′; Θ,∆, S ` S

(I-right)
` I

Ω; Θ,∆, S ` S Ω; Θ′,∆′, S′, S′ ` S′′
((-left)

Ω; Θ,Θ′,∆,∆′, S, S′, S (S′ ` S′′

Ω; Θ,∆, S ` S Ω; Θ′,∆′, S′ ` S′
(⊗-right)

Ω; Θ,Θ′,∆,∆′, S, S′ ` S ⊗ S′
Ω; Θ, θ, θ′,∆, S ` S

(⊗-left-Θ)
Ω; Θ, θ ⊗ θ′,∆, S ` S

Ω; Θ,∆, δ, δ′, S ` S
(⊗-left-∆)

Ω; Θ,∆, δ ⊗ δ′, S ` S
Ω; Θ,∆, S, S′, S′′ ` S

(⊗-left-S)
Ω; Θ,∆, S, S′ ⊗ S′′ ` S

Ω; Θ, θ,∆, S ` S
(G-left-θ)

Ω, Gθ; Θ,∆, S ` S
Ω; Θ,∆, δ, S ` S

(G-left-δ)
Ω, Gδ; Θ,∆, S ` S

δ ⊆ δ′ Ω; Θ,∆, δ′, S ` S
(((-Spend)

Ω; Θ, δ((δ′,∆, S ` S
Ω; Θ, δ ⊗ δ′′ ((δ′ ⊗ δ′′′,∆, S ` S

(((-Merge)
Ω; Θ, δ((δ′, δ′′ ((δ′′′,∆, S ` S

Figure 4.5: CLNL* rules.

124

Let Sr, Cr, Lr, Gr, Pr be set of CLNL* rules defined as follows.

Sr = {(L-Weak), (L-Cont)}
Cr = {(C->), (C-Ax), (C-Cont), (C-Weak), (C-∧-left1), (C-∧-left2),

(C-→-left), (C-→-right), (L-∧-right),(L-∧-left2),(L-→-left), (CL-Cut)}
Lr = {((-left),(⊗-right),(⊗-left-Θ),(⊗-left-∆),(⊗-left-S)}
Gr = {(G-left-θ), (G-left-δ)}
Pr = {(((-Spend), (((-Merge)}

In the following, we will call proof the derivation of a theorem from the axioms,
and only use the term derivation for a derivation with open assumptions, i.e.,
a proof tree where the leaves are not only axioms. Moreover, let A be a set of
rules, we then write ΠA for a CLNL* proof or derivation that only applies rules
in A. We also write ΩG for a multiset only containing linear proposition θ or δ
preceded by G.

Definition 4.4 (CLNL* normal forms). A proof Π for a sequent Ω;S ` S in
CLNL* is normal if it can be decomposed in either form

ΠLr∪{(L-Ax), (I-right)}

∆?,S ` S
···· ΠGr∪Sr

ΩG;S ` S
···· ΠCr∪Sr

Ω;S ` S

first normal form

ΠLr∪{(L-Ax), (I-right)}

∆?,S ` S
(((-Spend)

θ?,∆,S ` S
···· Π{(((-Merge)}

Θ,∆,S ` S
···· ΠGr∪Sr

ΩG;S ` S
···· ΠCr∪Sr

Ω;S ` S

second normal form

We can reduce to only consider normal proofs, as stated by the following
theorem.

Theorem 4.2 (normal form). For any Ω,S, S, the initial sequent Ω;S ` S is
valid in CLNL* if and only if a normal proof Π exists for Ω; S ` S.

In the following we verify if a proof in the first normal form exists for an
initial sequent, then we show how to reduce the second normal form case to the
first one.

Solving with First Normal Form

The existence of the derivation ΠCr∪Sr can be easily verified. Actually, such
a derivation from ΩG;S ` S to Ω;S ` S exists if and only if Ω Gδ for each
Gδ ∈ ΩG. We actually prove a stronger fact: we give a specific Ω? that subsumes
all the possible cases. Formally

125

Lemma 4.1. A proof in the first normal form exists for Ω;S ` S if and only
a proof in the first normal form exists for Ω?;S ` S where Ω? contains a single
occurence of any Gδ and Gθ such that Ω Gδ and Ω Gθ.

Since is deducibility in MIL, Ω? can be effectively computed using the
decision procedure for intuitional propositional logic proposed in [74]. Since a
proof in the first normal form contains no rule for linear implication, we can
actually avoid considering Gθ when computing Ω?, since they will be discarded
by (L-Weak) rules in any valid proof.

We consider now the proof obtained by composing the derivations ΠGr∪Sr
and ΠLr∪{(L-Ax), (I-right)}. Luckily an algorithm exists for deciding if such a
proof exists in CLNL*.

Lemma 4.2. An always terminating algorithm exists that, given Ω?,S, and
S, decides whether Ω?;S ` S can be proved in CLNL* only using rules in
Gr ∪ Sr ∪ Lr ∪ {(L-Ax), (I-right)}.

This result derives from a similar one by Kanovich [80], which is stated for a
computational fragment of linear logic that coincides with the sequents that we
consider in ΠGr∪Sr and ΠLr∪{(L-Ax), (I-right)}. In [80], Kanovich considers sim-
ple products, i.e., linear conjunctions of atomic predicates; Horn-implications,
i.e., linear implications of simple products; and !-Horn-implications, i.e., Horn
implications preceded by !. Moreover, he defines !-Horn-sequents, i.e., sequents
with !-Horn-implications, Horn-implications and simple products as left parts
and simple products as right part.

A translation from Ω?;S ` S to !-Horn-sequents is trivially defined: S and
S are simple products, while Ω? is translated by replacing G with ! (recall that
Ω? does not contain contractual implications in the first normal form). Indeed,
because of the restriction we have in ΠGr∪Sr, the rules applicable to propositions
preceded by G are exactly to same of linear logic where G stands for !. Thus,
the sequent Ω?; S ` S is provable if and only if the !-Horn-sequent is valid.
Finally, in [80], the problem of checking the validity of a !-Horn sequent (and
thus also of our computational sequent) is reduced to reachability in Petri Nets,
which can be decided using the algorithm proposed in [88].

Reducing Second to First Normal Form

For ΠCr∪Sr we use the same approach of the first normal form.
We now consider the derivation from ∆?,S ` S to ΩG;S ` S. We build a

multiset Ω′G containing only linear propositions δ preceded by G, such that a
derivation exists from ∆?,S ` S to ΩG;S ` S if and only if a derivation exists
from ∆?,S ` S to Ω′G;S ` S. This actually reduces the problem of finding a
proof in the second normal form to finding one in the first normal form. Indeed,
only a proof in the first normal form can exist for Ω′G;S ` S, because Ω′G
contains no contractual linear implication, thus we cannot apply a (((-Spend
rule). The construction of Ω′G is based on a reduction to linear equations.

Let LΩG
= {`1, . . . `p} be the set of linear implications between atomic propo-

sitions A(A′ appearing as terms in ΩG. For every Gδ ∈ ΩG, let uδ be a vector

126

of length p associating each index k with the number of occurrences of `k in δ;
and for every Gθ = G(δ(δ′) ∈ ΩG, let uθ and vθ be vectors of length p associ-
ating each index k with the number of occurrences of `k in δ and δ′ respectively.
Moreover, let u∆?

be a vector of length p associating each index k with the sum
of the occurrences of `k in every δ ∈ ∆?. Finally, let AΩG

be the matrix with
columns uδ, BΩG

the matrix with columns uθ, and CΩG
be the matrix with

columns vθ.

AΩG
=

 | |
uδ1 uδn
| |

 BΩG
=

 | |
uθ1 uθm
| |

 CΩG
=

 | |
vθ1 vθm
| |

We proceed examining the derivation from ∆?,S ` S to ΩG;S ` S using a

bottom-up approach, showing a bind with the vectorial representation. Note
that, because of the rules applicable in ΠSr∪Gr, the sequent Θ,∆,S ` S is such
that Θ may be composed by any arbitrary occurrence (possibly none) of θ, for
Gθ ∈ ΩG, and ∆ by any arbitrary occurrence (possibly none) of δ, for Gδ ∈ ΩG.
From the only rule applicable in Π{(((-Merge)}, we know that θ? = δ? ((δ′?
is such that δ? is a linear conjunction of the left parts of θ ∈ Θ, and δ′? of
the right parts of θ ∈ Θ. We also know that ∆? contains δ ∈ ∆, plus δ′?.
This means that the linear implications in ∆? are a linear combination of the
ones in Gδ ∈ ΩG and in the right parts of Gθ ∈ ΩG, with nonnegative integer
coefficients. Formally,

u∆?
=

 AΩG
CΩG

x1

...
xn
z1

...
zm

(4.10)

with x1, . . . xn and zi, . . . zm nonnegative integers.
Finally the rule (((-Spend) can be applied if and only if δ? ⊆ δ′?, thus if

and only if CΩG
−BΩG

 z1

...
zm

 ≥
0

...
0

 (4.11)

We can conclude that a derivation from ∆?,S ` S to ΩG;S ` S exists if and
only if all the previous conditions are met. We actually prove a more strong
statement, that applies also to proofs in first normal forms.

Lemma 4.3. For any ΩG,∆?,S, S, a derivation exists from ∆?,S ` S to ΩG;S `
S, in one of the following forms

127

∆?,S ` S
···· ΠGr∪Sr

ΩG;S ` S

∆?,S ` S
(((-Spend)

θ,∆,S ` S
···· Π(((-Merge)

Θ,∆,S ` S
···· ΠGr∪Sr

ΩG;S ` S

if and only if x1, . . . xn and zi, . . . zm nonnegative integers exist such that for-
mulas 4.10 and 4.11 hold.

Consider formula 4.11. For the Hilbert basis theorem [60], the set of non-
negative integer solutions can be expressed as z1

...
zm

 =

HΩG

y1

...
yq

with y1, . . . yp nonnegative integers, and H can be computed using [17].

Thus, we build the following system precisely characterizing the solutions of
formulas 4.10 and 4.11.

 AΩG
CΩG

·HΩG

x1

...
xn
y1

...
yq

Let DΩG

be the matrix above. We take a multiset Ω′G containing a proposition
Gδv for each column v of DΩG

with

δv =
⊗

`k∈LΩG

`vkk (4.12)

where vk is the value with index k in v, `0 = I and `n+1 = `⊗ `n.
By construction, and Lemma C.15, the derivability of ΩG;S ` S is the same

as the one of Ω′G;S ` S. Formally:

Lemma 4.4. For any ΩG,∆?,S, S, a derivation in the second normal form
exists from ∆?,S ` S to ΩG;S ` S if and only if a derivation in the first normal
from exists from ∆?,S ` S to Ω′G;S ` S, with Ω′G defined as in formula 4.12.

This allows us to reduce the problem of finding a proof in the second normal
form to the one of finding a proof in the first normal form. Consequently, we
can conclude hereof.

Theorem 4.3 (CLNL* decidablility). An always terminating algorithm exists
that decides if an initial sequent is valid in CLNL*.

128

4.3 Binding Layers: MuAC Formalization

We formalize now the semantics of the MuAC policy language, and define how
the system evolves upon requests in terms of LNLC*.

4.3.1 MuAC Semantics

A MuAC configuration Σ associates users with their policies, i.e., with the ap-
propriate set of rules. Formally Σ : Usr → 2V . The semantics JΣK of a configu-
ration Σ is a LNLC* theory, defined as follows.

JΣK =
⋃

usr∈Usr
{JνKusr | ν ∈ Σ(usr)}

Jr : P GiveLsKusr = Λ[u], Requester.

JP Kusr → G(JGiveLsKusr ((JGives(Requester, r, Me)Kusr)

JP Kusr =

{
p(Ju1Kusr, . . . , JuiKusr) ∧ JP ′Kusr if P = p(u1, . . . , ui) P

′

> if P = ε

JGives(u, r′, u′) GiveLsKusr =

(r′@Ju′Kusr (r′@JuKusr)⊗ JGiveLsKusr
JGives(u, r′, u′)Kusr = (r′@Ju′Kusr (r′@JuKusr)
JεKusr = I

with JuKusr =

{
usr if u = Me

u otherwise

where [u] is the set of user variables occurring in the expression P GiveLs, and
predicates r@u state that the user associated with the user variable u owns the
resource of kind r. The symbol Λ[u] stands for a restricted universal quantifier
of [u] over the finite set of users; it is just syntactic sugar that helps in compactly
representing a finite conjunction of propositions ω.

Some comments are in order. The semantics JΣK of Σ is a set of non-linear
formulas, one for each rule ν of any user usr . Given a rule r : P GiveLs, a
universally quantified non-linear formula Λ[u].ω → G(δ ((δ′) is added in
JΣK where ω encoding the non-linear conditions in P , δ the (linear) exchanges
the user is requesting in return for r, and δ′ the promise of usr to give r to
the requester if the conditions are met. A MuAC statement Gives(u, r′, u′)
intuitively represents an exchange where u′ gives a resource of kind r to u,
i.e., r@u′ (r@u. As expected, if ν has many non-linear requirements, they
are composed with ∧; the same for linear requirements with ⊗. Finally, user
variables u are bound to users in Usr by the finite universal quantifier Λ; with
the exception of Me, which is interpreted as usr , the owner of the rule.

129

4.3.2 Formalizing MuAC System Evolution

The semantics JSK of a state S of a MuAC system is a multiset of propositions
r@usr , representing the current association of users with a number of resources
of a given kind. The mapping between the function S and the multiset JSK is
trivially defined. We assume the semantics of a context Γ to be a MIL theory
JΓK.

When a user usr asks for r the system is updated from S0 to a new state
S1 if and only if the semantics of the MuAC configuration approves the update.
Formally:

Definition 4.5 (MuAC System Semantics). Give a MuAC system (Γ,Σ), its
semantics is a system evolution such that

Γ,Σ � S0
r@usr? S1

only if

JΓK, JΣK; JS0K ` JS1K

Where JS1K = r@usr ⊗ S′ for some S′.

Note that JΓK, JΣK; JS0K ` JS1K is actually an initial sequent

Ω;S ` S

where Ω = JΓK ∪ JΣK, S = JS0K, and S = JS1K. Note also that S1 stores the
resource association that are not affected by the request, as well as the one due
to the exchanges needed for granting usr the requested resource.

4.3.3 Examples

We review now the examples of subsection 4.1.2, giving the semantics to the
policies of Alice, Bob and Carl and showing the proofs for their requests. The
MuAC policies of the users are in Example 4.5. The semantics of the considered
MuAC configuration Σ is the following multiset:

{
Λu, u′.> → G((hw@u(hw@Alice)(((sb@Alice(sb@u′)), A1

Λu, u′.> → G((hp@u(hp@Alice)(((sb@Alice(sb@u′)), A2

Λu, u′.> → G((sb@u(sb@Bob)(((lw@Bob(lw@u′)), B1

Λu.> → G((sb@u(sb@Bob)(((hp@Bob(hp@u)), B2

Λu. is paladin(u)→ G((hp@u(hp@Bob)(((lw@Bob(lw@u)), B3

Λu, u′.> → G((lw@u(lw@Carl)(((hw@Carl(hw@u′)), C1

Λu.> → G((lw@u(lw@Carl)(((hp@Carl(hp@u)), C2

Λu, u′. is paladin(u)→ G((sb@u′(sb@u)(((hp@Carl(hp@u′)) C3

}

130

Ω, ω{x 7→ usr} ω′
(C-Λ)

Ω,Λx. ω ω′
Ω, ω{x 7→ usr}; Θ,∆,S ` S

(L-Λ)
Ω,Λx. ω; Θ,∆,S ` S

Figure 4.6: Rules for Λ used in the examples.

We let the context Γ unspecified, and only assume that JΓK is paladin(Bob)
and JΓK is paladin(Carl). Finally, the semantics S0 of current state S0 is the
following multiset:

{sb@Alice, lw@Bob, hw@Carl, hp@Carl}.

We now revisit the proposed examples, showing how the system finds an
agreement and thus a next state. For convenience, in the following we do not
explicitly write Λ[u]. ω as a long conjunction of serveral non-linear propositions,
and we use the equivalent rules in Figure 4.6 instead. Moreover, in the proofs
given in the Figures Figure 4.7, 4.8, 4.9, 4.10 we abbreviate Alice, Bob, and
Carl with A, B, and C respectively. Also, we use double lines to represents
multiple applications of deduction rules, and dashed lines when we omit trivial
parts.

Example 4.8 (Direct exchange). Consider Example 4.1. The request consid-
ered is hp@Bob?. The state S0 is updated according to

S0
hp@Bob? S1 with JS1K = hp@Bob⊗ sb@Alice⊗ hw@Carl ⊗ lw@Carl

using the LNLC* proof in Figure 4.7. Reading the proof bottom-up we can
divide it into a non-linear part and a linear one.

The non-linear part : first we discard the MuAC rules not involved in the
agreement; then we instantiate the quantified variables; we verify the non-linear
conditions using the context Γ; finally, we remove the G on contracts, obtaining
linear propositions.

The linear part : we merge left and right parts of contracts using (((-Merge);
we verify that conditions are a subset of the promises results (((-Spend). Fi-
nally, the exchanges take places, and we compute the final result.

Example 4.9 (I pay for you). The request considered in Example 4.2 is sb@Bob?.
The state S0 is updated according to

S0
sb@Bob? with JS1K = sb@Bob⊗ lw@Bob⊗ hp@Alice⊗ hw@Carl

using the LNLC* proof in Figure 4.8. The structure of the proof is similar to
the previous one, with the exception that Carl pays for Bob, which is permitted
by the use of two variables in rule A2.

Example 4.10 (Circular Exchange). The request considered in Example 4.3 is
hw@Alice?. The state S0 is updated according to

S0
hw@Alice? S1 with JS1K = hw@Alice⊗ sb@Bob⊗ lw@Carl⊗ hp@Carl

using the LNLC* proof in Figure 4.9. The only significant difference is that the
rules to consider are three, thus (((-Merge) is applied twice.

131

JΓK is paladin(C)

 >

(hp@C (hp@B)⊗
(lw@B(lw@C)

⊆ (lw@B(lw@C)⊗
(hp@C (hp@B)

(lw@B(lw@C)⊗
(hp@C (hp@B),

S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(((-Spend)
((hp@C (hp@B)⊗ (lw@B(lw@C))((

((lw@B(lw@C)⊗ (hp@C (hp@B)),
S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(((-Merge)
(hp@C (hp@B)(((lw@B(lw@C),
(lw@B(lw@C)(((hp@C (hp@B),

S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(G-left)
G((hp@C (hp@B)(((lw@B(lw@C)),
G((lw@B(lw@C)(((hp@C (hp@B));

S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(L-→-left)
G((hp@C (hp@B)(((lw@B(lw@C)),

> → G((lw@B(lw@C)(((hp@C (hp@B));
S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(L-→-left)
JΓK,

is paladin(C)→ G((hp@C (hp@B)(((lw@B(lw@C)),
> → G((lw@B(lw@C)(((hp@C (hp@B));

S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(L-Λ)
JΓK,

Λu. is paladin(u)→ G((hp@u(hp@B)(((lw@B(lw@u)),
Λu.> → G((lw@u(lw@C)(((hp@C (hp@u));

S0

` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

(L-Weak)
JΓK, JΣK;S0 ` hp@B ⊗ sb@A⊗ hw@C ⊗ lw@C

Figure 4.7: LNLC* derviation for Example 4.1.

Example 4.11 (Resource Supplier). The request considered in Example 4.4 is
hp@Alice?. The state S0 is updated according to

S0
hp@Alice? S1 with JS1K = hp@Alice⊗ sb@Bob⊗ lw@Carl⊗ hw@Carl

using the LNLC* proof in Figure 4.10. The differences here are that we consider
two pairs of promises: one between Bob and Carl and one between Alice and
Bob, and that in the linear part we have two linear implications (hp@C (
hp@B) and (hp@B(hp@A) for shipping the hp resource to Alice.

4.4 Implementing the MuAC System

In this section, we address the problem of implementing MuAC. First, we give
an algorithmical characterization of the evolution of the MuAC system, i.e., how
it evaluates the requests. Note that LNLC* dedidability is not enough, since
the sequent to use for computing the next state is not fixed. Finally, we present
a possible implementation of MuAC as a smart contract, where the heavier part
of the computation is performed off-chain and the contract is only used to grant
the correctness.

132

 >

JΓK is paladin(B)

(hp@C (hp@A)⊗
(sb@A(sb@B)

⊆ (sb@A(sb@B)⊗
(hp@C (hp@A)

(sb@A(sb@B)⊗
(hp@C (hp@A),

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(((-Spend)
((hp@C (hp@A)⊗ (sb@A(sb@B))((

((sb@A(sb@B)⊗ (hp@C (hp@A)),
S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(((-Merge)
((hp@C (hp@A)(((sb@A(sb@B)),
((sb@A(sb@B)(((hp@C (hp@A)),

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(G-left)
G((hp@C (hp@A)(((sb@A(sb@B)),
G((sb@A(sb@B)(((hp@C (hp@A));

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(L-→-left)
JΓK,

G((hp@C (hp@A)(((sb@A(sb@B)),
is paladin(B)→ G((sb@A(sb@B)(((hp@C (hp@A));

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(L-→-left)
JΓK,

> → G((hp@C (hp@A)(((sb@A(sb@B)),
is paladin(B)→ G((sb@A(sb@B)(((hp@C (hp@A));

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(L-Λ)
JΓK,

Λu, u′.> → G((hp@u(hp@A)(((sb@A(sb@u′)),
Λu, u′. is paladin(u)→ G((sb@u′(sb@u)(((hp@C (hp@u′));

S0

` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

(L-Weak)
JΓK, JΣK;S0 ` sb@B ⊗ lw@B ⊗ hp@A⊗ hw@C

Figure 4.8: LNLC* derviation for Example 4.2.

133

 >

(hw@C (hw@A)⊗
(sb@A(sb@B)⊗
(lw@B(lw@C)

⊆
(sb@A(sb@B)⊗
(lw@B(lw@C)⊗
(hw@C (hw@A)

(sb@A(sb@B)⊗
(lw@B(lw@C)⊗
(hw@C (hw@A),

S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(((-Spend)
((hw@C (hw@A)⊗ (sb@A(sb@B)⊗
(lw@B(lw@C))((((sb@A(sb@B),
(lw@B(lw@C)⊗ (hw@C (hw@A)),

S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(((-Merge)
(hw@C (hw@A)(((sb@A(sb@B),
(sb@A(sb@B)(((lw@B(lw@C),

(lw@B(lw@C)(((hw@C (hw@A),
S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(G-left)
G((hw@C (hw@A)(((sb@A(sb@B)),
G((sb@A(sb@B)(((lw@B(lw@C)),
G((lw@B(lw@C)(((hw@C (hw@A));

S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(L-→-left)
> → G((hw@C (hw@A)(((sb@A(sb@B)),
> → G((sb@A(sb@B)(((lw@B(lw@C)),
> → G((lw@B(lw@C)(((hw@C (hw@A));

S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(L-Λ)
Λu, u′.> → G((hw@u(hw@A)(((sb@A(sb@u′)),
Λu, u′.> → G((sb@u(sb@B)(((lw@B(lw@u′)),
Λu, u′.> → G((lw@u(lw@C)(((hw@C (hw@u′));

S0

` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

(L-Weak)
JΓK, JΣK;S0 ` hw@A⊗ sb@B ⊗ lw@C ⊗ hp@C

Figure 4.9: LNLC* derviation for Example 4.3.

134

 >

JΓK is paladin(C)

(hp@B(hp@A)⊗
(sb@A(sb@B)⊗
(hp@C (hp@B)⊗
(lw@B(lw@C)

⊆

(sb@A(sb@B)⊗
(hp@B(hp@A)⊗
(lw@B(lw@C)⊗
(hp@C (hp@B)

(sb@A(sb@B)⊗
(hp@B(hp@A)⊗
(lw@B(lw@C)⊗
(hp@C (hp@B)),

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(((-Spend)
((hp@B(hp@A)⊗ (sb@A(sb@B)⊗
(hp@C (hp@B)⊗ (lw@B(lw@C))

((
((sb@A(sb@B)⊗ (hp@B(hp@A)⊗
(lw@B(lw@C)⊗ (hp@C (hp@B)),

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(((-Merge)
(hp@B(hp@A)(((sb@A(sb@B),
(sb@A(sb@B)(((hp@B(hp@A),
(hp@C (hp@B)(((lw@B(lw@C),
(lw@B(lw@C)(((hp@C (hp@B),

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(G-left)
G((hp@B(hp@A)(((sb@A(sb@B)),
G((sb@A(sb@B)(((hp@B(hp@A)),
G((hp@C (hp@B)(((lw@B(lw@C)),
G((lw@B(lw@C)(((hp@C (hp@B));

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(L-→-left)
JΓK,

G((hp@B(hp@A)(((sb@A(sb@B)),
G((sb@A(sb@B)(((hp@B(hp@A)),

is paladin(C)→ G((hp@C (hp@B)(((lw@B(lw@C)),
G((lw@B(lw@C)(((hp@C (hp@B));

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(L-→-left)
JΓK,

> → G((hp@B(hp@A)(((sb@A(sb@B)),
> → G((sb@A(sb@B)(((hp@B(hp@A)),

is paladin(C)→ G((hp@C (hp@B)(((lw@B(lw@C)),
> → G((lw@B(lw@C)(((hp@C (hp@B));

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(L-Λ)
JΓK,

Λu, u′.> → G((hp@u(hp@A)(((sb@A(sb@u′)),
Λu.> → G((sb@u(sb@B)(((hp@B(hp@u)),

Λu. is paladin(u)→ G((hp@u(hp@B)(((lw@B(lw@u)),
Λu.> → G((lw@u(lw@C)(((hp@C (hp@u));

S0

`

hp@A⊗
sb@B⊗
lw@C⊗
hw@C

(L-Weak)
JΓK, JΣK;S0 ` hp@A⊗ sb@B ⊗ lw@C ⊗ hw@C

Figure 4.10: LNLC* derviation for Example 4.4.

135

4.4.1 Computing System Evolution

Given a MuAC system (Γ,Σ) in a state S0, and given a request r@usr?, the
problem is either finding a next state S1 such that

Γ,Σ � S0
r@usr? S1

or prove that there are none. This reduces to finding if

JΓK, JΣK; JS0K ` r@usr ⊗ S′

holds for some S′. Given S′ this can be done using the method of subsec-
tion 4.2.3. The problem we have to address is to determine which S′ to consider
among the possibly infinite states.

Define the quantity q(ϕ) of a linear formula ϕ as

q(ϕ) =

1 if ϕ = r@u

q(ϕ′) + q(ϕ′′) if ϕ = ϕ′ ⊗ ϕ′′

0 otherwise

Let q(Φ) be the quantity of a linear theory Φ, defined as the sum of q(ϕ) for
ϕ ∈ Φ. Intuitively, q(Φ) is the number of atomic linear predicates that appear
in Φ not bound by logical connectives other then ⊗. We have the following
property by trivial rule induction.

Lemma 4.5. For each Ω,S, S, if Ω;S ` S, then q(S) = q(S)

We define the atomic linear subformulas of a formula ϕ or ω as follows:

asub(r@u) = {r@u}
asub(ϕ ? ϕ′) = asub(ω) ∪ asub(ω′) with ? ∈ {⊗,(,((,∧,→}
asub(Gϕ) = asub(ϕ)

We homomorphically extend this definition to multisets of linear and non-linear
predicates, and we prove the following result by trivial rule induction.

Lemma 4.6. For each Ω,S, S, if Ω;S ` S, then asub(S) ⊆ asub(Ω) ∪ asub(S).

Lemma 4.5 and 4.6 ensure that it suffices to consider only a finite number
of candidates for computing the next state. This, plus the LNLC* decidibility
allow us to state the following theorem.

Theorem 4.4 (Computability). There exists an algorithm that, given a MuAC
system (Γ,Σ) in a state S1, and given a request r@usr?, finds all the states S1

such that Γ,Σ � S0 r@u? S1.

136

usr MuAC
client

MuAC
contract

Blockchain

r@usr?

yes/no

Π
Ω; S ` r@usr ⊗ S

Figure 4.11: MuAC implementation on Ethereum.

4.4.2 MuAC as a Smart Contract

We show how a MuAC system can be exploited for exchanging NFTs. We
propose a strategy where a smart contract stores the association between users
and resources, and an off-chain application serves user requests. The main idea
is to let the client perform the most expensive part of the computation, whereas
only a small verification is handled in the blockchain.

In the following, we first give an overview of the workflow for serving an
access request, we then sketch a possible implementation.

Overview

The proposed workflow for serving a request, depicted in Figure 4.11, is as
follows:

1. The user asks for a resource using its client;

2. Using the procedure of subsection 4.2.3, the client derives a LNLC* proof
if any, and denies the request otherwise;

3. The client proposes a change of the state to the smart contracts, attaching
the LNLC* proof;

4. The smart contract checks the proof correctness, updating the state if this
is the case (thus serving the request), or else signaling an error.

Note that verifying the LNLC* proof is linear on the number of rules of the
proof. Reducing the cost of the computation performed by the contract is
critical, because in blockchains like Etherum every executed instruction is paid
by the requester using a in-block currency (called Gas in Ethereum). With the
proposed workflow, all but a linear portion of the computation is performed
off-chain. Nevertheless, the system guarantee transparency and correctness of
the exchanges. The rules for accessing the resources are in clear on the contract,
whose execution is ensured by the blockchain.

137

Implementation

For convenience, we abstractly model the actual implementation of smart con-
tracts and NFT in real world blockchains, and we do not address the creation
of NFTs.

We consider three kinds of addresses: user accounts, smart contracts and
NFTs. A NFT is associated with an owner, that may be a user account or a
smart contract. A smart contract has a set of fields, i.e., its internal state, and
exposes a set of functions, that can be called by users or other smart contracts.
Smart contracts and users interact through messages that are used for calling
functions and transfer NFTs. Required fields of a message are the sender and
destination addresses (of users or smart contracts). Optionally, the message
contains a function field, with the name of the function to call, a parameters field
for the actual parameters of the called function, and a token field, containing
the NFT. If the receiver is a smart contract, the code of the function to call
is executed, changing the internal state of the contract and causing the smart
contract to send messages in turn. If the message contains a NFT, the receiver
becomes its owner.

The pseudocode of the MuAC smart contract is in Figure 4.12a. The inter-
nal state consists in a field S, i.e., the state of the MuAC system, a field Σ, i.e.,
the MuAC configuration, and Γ, i.e., the context. For taking part in MuAC ex-
changes, the player transfer the NFTs of the resources to exchange to the MuAC
smart contract using function add resource. The message sets the owner of the
token to the MuAC contract, and cause the update of S. At any moment, users
can have their resources back with function recover resource. The function
checks that in S the resource is actually associated with the requester, if this is
the case S is updated by removing the resource, and a message is sent to the user
carrying the token, otherwise the computation fails and the state is unchanged.
Users can also change their policies with the function update policy. Finally,
a user can propose an evolution of the state of the MuAC system, providing a
LNLC* proof Π. If Π is valid for Ω; S ` S, and if S = JSK, Ω = JΓK ∪ JΣK,
then the state S1, taken from Π with function next state, updates the MuAC
state.

The pseudocode of the MuAC client is in Figure 4.12b. When receiving
a request from a user usr for a given resource kind r, the client recovers the
parameters Γ,S,Σ from the smart contract. Then it uses the procedure of
subsection 4.4.1 to find a proof Π for a transition to a next state satisfying the
request. If such a proof Π exists, a message is built and sent to the blockchain
through the user account. The message has the MuAC contract address as
destination, system evolve as function to call, and Π as a parameter. We
assume the function BCsend to be in a library for interacting with the blockchain,
configured with the access data of usr .

Example 4.12. Consider our running example, and assume the users have
initialized the state calling resource add with the addresses of their resources.
To make the request of Example 4.1, Bob calls his client asking for hp. The
client recovers the parameters and finds the proof of Figure 4.7. Then, it sends

138

Contract MuAC

S : user address→ 2
resource address

Σ : user address→ MuAC policy

Γ : MLL theory

function add resource()

S[msg.sender]← S[msg.sender] ∪ {msg.token}

function recover resource(resource)

Require(resource ∈ S[msg.sender])

S[msg.sender]← S[msg.sender] \ {resource}
send(msg.sender,resource)

resource.transfer(msg.sender)

function update policy(V)

Σ[msg.sender]← V

function system evolve(Π)

Require(Verify(Π))

S← next state(Π)

(a) MuAC contract pseudo-code.

function serve request(r, usr)

Γ← take context from contract()

S← take state from contract()

Σ← take configuration from contract()

Π← find next state(Γ,Σ,S, r, usr)

if(Π = null) then

print "Error: request denied"

else

message← empty message

message.function← MuAC.evolve

message.parameters← Π

BCsend(message)

(b) Algorithm of the MuAC client.

Figure 4.12: Implementation of a MuAC system on a blockchain.

a message to the contract that verifies that the proof is valid, and the state is
updated as presented in Example 4.8. Now the user owns a resource of kind hp
as requested.

4.4.3 Context of Application

The choice of an online game as a running example is mainly motivated by its
simplicity. So far we focused on a simplified representation of online games,
glossing on the dynamicity of such applications. Hereafter, we discuss the
dynamicity-related details, and how they can be addressed by MuAC. One prob-
lem that may arise is that the need for certain types of resources can change
frequently, e.g., when the desired resource is obtained. This implies that addi-
tional efforts might be required from the user to maintain their policies up to
date. A second problem is that the resources that are exchanged using a MuAC
smart contract, once sent to the contract, are not immediately available to the
original owner, that has to recover them first (see Figure 4.12a).

These limitations are not significant in scenarios where the policies as well
as the available resources do not change frequently over time. The exchange
of infinite or reusable resources (discussed in Section 4.5) is free from problems

139

related to the dynamicity of available resources. Thus MuAC can be used, e.g.,
for file sharing in peer-to-peer contexts like torrents.

We focus now on finite resources. In subsection 4.4.2 we show how MuAC can
be applied inside blockchains for exchanging ownership over NFT. This approach
can be extended for exchanging smart contracts in general. Blockchains are
not usually adequate for dynamic environments. However several works try
to solve this limitation by resorting to off-chain applications. Their usage has
been proposed, e.g., for managing real-world assets according to the sharing
economy paradigm [129]. Either by using a blockchain, or resorting to more
traditional approaches, MuAC naturally encodes mutuality policies for sharing
environments.

In the matter of the dynamicity of policies, policy updates may be delegated
to client applications that, e.g., remove a rule for a resource when a number of
similar ones have been received. In Section 4.6 we discuss a possible extension
of MuAC for automatically adjusting the policies based on a game-theoretic
approach. When MuAC is implemented as a blockchain smart contract, policies
may be automatically updated together with the system state when the contract
is called. As in the standard case, a off-chain application may be used to perform
the expensive computation (finding the best policy update), and the contract
only has to check the correctness of the result.

4.5 Dealing with Reusable Resources

In this section we see how to adapt MuAC when the resources are reusable, i.e.
the asset is still available to the owner after he allows access to it. The only
thing we need to do is to slightly change the semantics of MuAC configurations,
and adapt the system evolution accordingly.

4.5.1 MuAC Semantics Revisited

Since resource are reusable, there is no need of changing the owner of them when
a request is served. The state S of a MuAC system associates users and resource
of other users with accept or deny results. Formally, JSK is a conjunction of
atomic propositions allow(usr , r, usr ′) stating that usr can access the resources
of kind r owned by usr ′.

The semantics of MuAC languages for reusable resource is similar to the
previous one of subsection 4.3.1.

JΣK =
⋃

usr∈Usr
{JνKusr | ν ∈ Σ(usr)}

Jr : P GiveLsKusr = Λ[u], Requester.

JP Kusr → G(JGiveLsKusr ((JGives(Requester, r, Me)Kusr)

JP Kusr =

{
p(Ju1Kusr, . . . , JuiKusr) ∧ JP ′Kusr if P = p(u1, . . . , ui) P

′

> if P = ε

140

JGives(u, r′, u′), GiveLsKusr =

(I (allow(JuKusr, r′, Ju′Kusr))⊗ JGiveLsKusr
JGives(u, r′, u′)Kusr = (I (allow(JuKusr, r′, Ju′Kusr))
JεKusr = I

with JuKusr =

{
usr if u = Me

u otherwise

The only difference is the interpretation of the Gives expression. Recall
that, in the formulation of subsection 4.3.1, Gives is interpreted as a linear
implication that creates a new association of the resource of kind r with usr
and removes the association with the original owner usr . For reusable resources,
a proposition stating that the usr is allowed to access the resource suffices, thus
we simply use I (allow(usr , r, usr ′).

4.5.2 System Evolution Revisited

When a user usr asks for a resource of kind r, if the request can be served, the
system is updated from S to a new state in which usr can access a resource of
kind r, in symbols:

Γ,Σ � S0
r@usr? S1

This update is feasible if and only if

JΓK, JΣK; JS0K ` JS1K with JS1K = allow(usr , r, usr ′)⊗ S′

for some usr ′ and S′.
As for the previous formulation, this is actually an initial sequent

Ω;S ` S

where Ω = JΓK ∪ JΣK, S = JS0K, and S = JS1K. Note that S1 stores all the
permissions in S0 plus the ones given in return for the requested permission.

4.5.3 Discussion About Linearity

One may ask why linearity is needed when resources are reusable. The system
can indeed be rewritten using the non-linear logic proposed in [20], but using
linear logic we grant mutuality even when users change their policies. We show
that this guarantee applies through the following example.

Example 4.13. Consider two hospitals storing anonymized medical data. As-
sume that hospital A stores flu related data, whereas hospital B stores covid
related data, and that both decide to share their data only with hospitals that
share their data in return. Consider a MuAc system where the only kinds of
resources are flu and covid . The MuAC policy of hospital A would be the
following rule.

141

flu: Gives(Me , covid , Requester)

And the one of hospital B would be:

covid: Gives(Me, flu , Requester)

If hospital A makes a request for covid data, two new permissions are added to
the state of the MuAC system: allow(A, covid , B) and allow(B,flu, A). If in
the future, hospital B makes a requests for flu data, hospital A cannot refuse to
share its data. Recall that users cannot directly change the state of the MuAC
system, but only their policies. Even if hospital A change its policy to always
deny, only further exchanges of permissions are refused, but the past agreements
must be honored, since the state has been updated. Indeed, when the request for
flu data arrives from hospital B, the policies are not even checked, the relevant
permission is already in the sate of the MuAC system.

4.6 Related Work

Here we only consider discretionary access control [115] because it is a natural
choice in distributed cooperative setting, where users individually decide the
policies for the resources they own. In this environment, a main issue is the
combination of individual policies. To the best of our knowledge, no proposals
address mutuality, but only focus on the resolution of conflicts [29, 46, 100]. In
the restricted, yet widespread distributed world of social networks, mutuality
plays a prominent role, but is scarcely regulated. A remarkable exception is [118]
that permits defining mutual access control policies. This is done by introducing
a new grant, called mutual, besides the usual accept and deny. Suppose that an
access request from user A to resource r of B evaluates to mutual. Intuitively,
the request is served if and only if a request from B for a similar resource r′

of A will evaluate to accept or mutual. Similarity is fixed once and for all, and
is not user-defined. A first difference with our proposal is that mutuality is
defined through explicit constraints in the body of the rules, so allowing users
to define their own notion of similarity. In addition, mutuality in MuAC may
involve many users, as in Example 4.3, and we target also finite resources.

Mutuality plays a main role also in trust negotiation, i.e., a process that
permits a safe interaction between two parties that do not trust each other [82].
The idea is to run a multi-round protocol where the parties exchange some pieces
of private information (credentials) so as to increase their mutual trust. Also
in this setting, each party defines an individual policy specifying the conditions
that the other party must satisfy in turn to obtain credentials. The overall goal
is to balance the disclosure of information and the mutual benefit gained by
each party. Logical languages for specifying trust policies have been proposed,
e.g., Cassandra [24] and SecPal4P [23]. However, the main difference with our
proposal is that these are based on classical logic, and thus circular conditions
do not lead to an agreement.

Some of the works that focus on conflict resolution [72, 128, 117, 104] are
based on game theory. They assume that different users may be in different

142

relation with a resource in a social network. For example, one user may upload
a picture, another may appear in it, and a third user may spread the picture by
reposting it. Each one have an interest for the picture to be accessible or hidden
for different sets of users. Conflicts may arise between the preferences of different
users, and the optimal solution can be defined, e.g., as the maximum point of
a social utility function or as a Nash equilibrium. For example, in [72] Hu et
al. propose a model of the privacy risk, i.e., the risk implied by granting access
to sensible data, and of the sharing loss, i.e., the damage obtained by denying
access. A multiparty control game represents the strategic reasoning of the users
adjusting their policies to maximize their own benefit. The authors show that
a unique Nash equilibrium exists, and propose two algorithms that converge
to such equilibrium in a few iterations in two different conditions: synchronous
and non-synchronous adjustments, respectively. They also experimentally study
the gap between the results of game theoretic approaches, that assume perfect
reasoners, and the real human behavior.

Xiao et al. [128] make different assumptions. They notice that in social
networks users are not entirely selfish. Since the connections on a social network
are often based on meaningful human relationship like friendship or family, users
usually care not only on their feeling about sharing something, but also on the
feelings of others. The authors call it peer effect. The ideal policy of a user thus
depends on his preference and a weighed sum of the preferences of others. They
assume the users initially rank the access control policies according to their
own preference, and later adjust them based on the peer effect. The policies of
their peer also changes, and this continues until an equilibrium is reached. Xiao
et al. show that a unique equilibrium exist, and is automatically computed
by CAPE, the mechanism they propose. Once the equilibrium is reached, a
combination algorithm can be used to take a decision for multi-owned resources
(e.g. full-consensus, one-override, majority).

Like in the game-theoretic approach, we assume users to be fully rational
perfect reasoners, but our target is not about multiple ownership, every resource
has a single owner in MuAC. For this reason, the desire of the other users
to gain access to the resource is not to be compared with the owner desire,
that cannot be violated. Of course, in MuAC every user would be happy to
access the resources without giving anything in return, but instead of asking
users to rank the possible access policies, we allow users to express under which
condition a compromise is satisfying. When an access request is performed, it
is often the case that more different agreements can be reached, and a game-
theoretic approach could be applied in conjunction with MuAC for deciding
which agreement should be preferred. For example, if Bob makes a request
to Alice for an apple, and Alice is fine with giving apples for either grapes or
cheese, both an exchange of apples for grapes and an exchange of apples for
cheese are possible. MuAC does not currently allow expressing preferences over
the acceptable exchanges, and this limitation can be overcome by asking users
to rank their rules. Conflicts may arise between Bob, preferring to give cheese,
and Alice preferring to receive grapes. A notion of social utility may be defined,
as well as an equilibrium for rank adjusting, but in contrast with the previous

143

proposals, only agreements acceptable for all the users would be considered.
The logical aspects of our work is based on the proposal of Bartoletti et

al. [20], who first proposed PCL, a logic for modeling contractual reasoning.
Our operator ((is actually a linear version of their �. The main difference
with PCL is that from p� p′, p′ � p you can either derive p, p′, or p ∧ p′, but
in our system only the whole pair p⊗ p′ can be derived from p((p′, p′ ((p.
In addition, our logic mixes linear and non-linear terms. We have applied it in
the context of access control, also proposing an implementation on block chains.
A second work our is heavily based on is [25], where a mixed linear non-linear
logic is proposed. We extended this logic with((and rules for reasoning about
contracts and promises.

4.7 Conclusions and future work

In this chapter, we have proposed a new kind of access control (the high level)
and have shown how it the can be implemented using non-standard logic (the low
level). The high level is MuAC, an access control for a distributed collaborative
environment. Its main feature concerns expressivity, as it permits to define and
handle access requests that demand mutual agreement between several users,
both in case of reusable and non reusable resources. In the low level, we resolve
the circularity that may arise when dealing with mutuality by defining the new
operator ((that models promises in contracts. Moreover, we have embedded
((in mixed linear non-linear logic, showing that a computational fragment
is adequate for representing the semantics of MuAC policies. As an instance
of the two-layer approach, the user only deals with the abstract specification
of the desired behaviour, while all the details are managed by the low level
that resorts to logic for deciding access requests. Finally, we have proposed
an implementation of MuAC as a smart contract, showing that most of the
computation can be performed off-chain.

Future Work Future work can follow two distinct paths. The first covers
LNLC that we plan to further investigates. The rules for the computational
fragment are proved to be correct, but not complete. Having a complete char-
acterization of the fragment without loosing decidability is one of our main
research topics for the future. We also plan to investigate the possibility of us-
ing more expressive propositions where formulas having ((may appear inside
other formulas with ((. This would allow to state promises like “if you start
trading r for r′, I will start trading r′′ for r′′′.” We are currently working on
a model-theoretic semantics for the computational fragment of LNLC, and we
hope to extend it for the complete logic. Intuition suggests that contractual
reasoning in CMILL implies a sort of circular reasoning about derivations, e.g.,
from ϕ ((ϕ′ one derives ϕ′ if ϕ derives from ϕ′ ((ϕ, and vice-versa. Al-
though the derivation rules we propose solve this circularity in a way that fits
well with the intuitive meaning of contracts (see subsection 4.2.1), we will also
investigate alternative characterizations based on greatest fixed-points.

144

The second path is about extending the MuAC policy language. We plan
to integrate numerical theories in MuAC, thus allowing the user to speak about
the number of resources. Thus would foster the usage for selling resources and
exchanging currencies. For the time being, MuAC has positive Gives grants
only. Also having negative rules will be of great interest, which also require to
address the resolution of potential conflicts. Another extension is allowing rules
in which a user specifies resources that must not be shared. For example, Alice
permits Bob to access her pictures, provided that Bob does not share anything
with Charlie. This kind of negative requirement might be a first step towards
the definition of policies regulating conflicts of interest.

145

Chapter 5

Conclusions

We have proposed an approach for solving the common problems that may
arise because of poorly managed interaction between specifications and imple-
mentation of access control policies. these two tasks require users to switch
from one level of abstraction to another, often changing language and tools.
We have proposed a general approach for security engineers to interact with ac-
cess control systems at different abstraction layers for configuring, updating and
verifying system behaviour. Our two-layers approach guarantees that the two
representations of the system are coherent, granting a correct communication
between high level specifications and low level executable configurations. We
have applied it in three different contexts, proposing solutions that are based on
their constraints and peculiarities. In particular, we have addressed networks,
operating systems and collaborative environments. For each of them we have
proposed a formal model of the low level of the executable configurations and
we have designed a high level inspired by the needs of policy designers.

For network security we have considered firewalls. At the high level, the
specifications of a firewall are represented as a function over IP packets. We
have proposed a SQL-like query language for modifying and verifying the spec-
ifications in a handy manner, abstracting away from low level details like shad-
owing, tags and the limitations of packet matching. For the low level we have
proposed a formalization based on the encoding of iptables, pf and ipfw in
IFCL, a common intermediate language that subsumes them all. The coherence
between the functional representation of the firewall and its actual configura-
tion is obtained by a two-way translation, namely a compiler from functions to
configurations and a decompiler. We also investigated the expressive power of
the considered languages, showing two hierarchy, one that consider tag systems,
the other focusing only on the basic and most used features. We found out
that some functions cannot be implemented in some specific language. We have
presented and experimentally validated two tools: FWS, that implements the
two-way translation and also supports the administrator in varius tasks; and
F2F, a tool that checks if a given function is expressible in the target firewall
language, also detecting if tags are needed.

146

For system security, we have targeted SELinux CIL configurations. At
the high level, we represent the system as information flows between OS en-
tities. Thus, we have proposed IFL, a domain specific language for defining
fine grained information flow requirements (including confidentiality, integrity
and non-transitive properties). IFL expresses both functional requirements,
i.e., which permissions must be granted to users for performing their authorized
tasks, and security requirements, i.e., information flows to forbid because pos-
sibly dangerous. We have proposed a formal semantics of SELinux CIL config-
urations, that we have empirically validated discovering lots of counterintuitive
corner cases and disagreements between the documentation and the compiler.
We have presented IFCIL, an extension of CIL where IFL requirements are first
class citizens, and a verification procedure for granting coherence between the
information flow specifications and the actual configuration where permissions
are explicitly listed for each entity. The tool IFCILverif implements the verifi-
cation procedure by statically checking that all the requirements are met in a
IFCIL configuration.

Finally, we have applied the two-layer approach to collaborative environ-
ments, in which the users interact by sharing or exchanging assets. We have
addressed the problem of finding mutually advantageous agreements between
users provided a specification of their promises and requests. More in details,
we have proposed MuAC, an high level language with which each user can ex-
press what they want in return for allowing access to their assets. The low level
language is based on a non-standard logical theory, and the evaluation of access
requests rely on logical deductions. We have addressed both the case of infinite
or reusable assets, where the asset is still available to the owner after he allows
access to it, and the case of finite resources that are consumed when exchanged.
We have established a binding between the high level and the logical low level
through a compilation from MuAC policies to logical theories that also gives se-
mantics to MuAC. The proposed implementation evaluates the access requests
by changing ownership of the resources or updating an access control matrix,
driving the system to behave correctly. Finally, we have also proposed a real-
ization of MuAC as a blockchain smart contract where most of the computation
is performed off-chain.

Future Work

In network security, we will further extend our approach to other firewalls like
Cisco-IOS, and to other paradigms like SDN. The major difficulty in this case
arises because of the high dynamicity of SDNs, while our proposal focuses on
legacy networks and devices that are essentially static. It would be very inter-
esting to extend our approach to deal with networks with more than one firewall.
In systems we plan to extend our tool to cover all the features of the CIL lan-
guage, even though the type enforcement fragment that we currently support
suffices to analyze many real-word configurations. In collaborative environments
we will extend the MuAC policy language for dealing with currencies, and to
allowing rules in which a user specifies resources that must not be shared, like

147

in conflicts of interest.
A promising line of research is about incrementality and compositionality,

i.e., only propagates the modification from high to low level representations,
without recompiling the whole policy. In translations-based solutions, this would
allow to maintain properties of the low level configuration, e.g. logs and the
internal structure of the rulesets in firewalls. Also in SELinux this is critical for
integrating IFCIL in the life-cycle of CIL configurations. In particular, we aim
at supporting the development of tools like IDEs that provide instant feedback
to administrators while they are writing their configurations, as is sometimes
the case with typed languages.

There are several directions for future work that aim at fostering the adop-
tion of our tools by practitioners. In F2F and IFCILverif we will provide more
friendly diagnostics and suggestions for fixing configurations. In IFCILverif we
also plan to support configurations partly written in the kernel policy language
and partly written in CIL, as this is common practice [6]. We will also give a
prototypical implementation of MuAC, and we will investigate efficient solutions
for evaluating access requests.

Future work also includes considering different access control systems. We
think that our two-layers approach can be applied with two-way translation
based solutions to ABAC, because the low level intricacy are similar to the ones
of firewalls. We will also investigate the implementation of highly expressive,
logically-based access control systems using approaches similar to the one of
MuAC.

148

Bibliography

[1] AWS. https://aws.amazon.com.

[2] extensible access control markup language (xacml) version 3.0. https:

//www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml.

[3] Openstack. https://www.openstack.org.

[4] openWRT project. https://openwrt.org.

[5] SELinux IFCIL tool. https://sites.google.com/view/ifcilpaper.

[6] sepolicy. https://android.googlesource.com/platform/system/

sepolicy/.

[7] Oasis extensible access control markup language, 2013. http://

xacmlinfo.org/category/xacml-3-0/.

[8] Shorewall. http://www.shorewall.net/, 2014.

[9] The IPFW Firewall. https://www.freebsd.org/doc/handbook/

firewalls-ipfw.html, 2017.

[10] Netfilter. https://www.netfilter.org/, 2019.

[11] Packet Filter (PF). https://www.openbsd.org/faq/pf/, 2019.

[12] F2F tool. https://github.com/lceragioli/F2F, 2021.

[13] FWS tool. https://github.com/secgroup/fws, 2021.

[14] P. Adão, C. Bozzato, G. Dei Rossi, R. Focardi, and F. L. Luccio. Mignis:
A Semantic Based Tool for Firewall Configuration. In proc. of the 27th
IEEE CSF, pages 351–365, 2014.

[15] P. Adão, R. Focardi, J. D. Guttman, and F. L. Luccio. Localizing firewall
security policies. In proc. of the 29th IEEE CSF, Lisbon, Portugal, June
27 - July 1, pages 194–209, 2016.

[16] T. Ahmed, R. Sandhu, and J. Park. Classifying and comparing attribute-
based and relationship-based access control. pages 59–70, 03 2017.

149

https://aws.amazon.com
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.openstack.org
https://openwrt.org
https://sites.google.com/view/ifcilpaper
https://android.googlesource.com/platform/system/sepolicy/
https://android.googlesource.com/platform/system/sepolicy/
http://xacmlinfo.org/category/xacml-3-0/
http://xacmlinfo.org/category/xacml-3-0/
http://www.shorewall.net/
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.freebsd.org/doc/handbook/firewalls-ipfw.html
https://www.netfilter.org/
https://www.openbsd.org/faq/pf/
https://github.com/lceragioli/F2F
https://github.com/secgroup/fws

[17] F. Ajili and E. Contejean. Avoiding slack variables in the solving of linear
diophantine equations and inequations. Theor. Comput. Sci., 173(1):183–
208, 1997.

[18] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. NetKAT: Semantic Foundations for Net-
works. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 113–126. ACM,
2014.

[19] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A novel
Firewall Management Toolkit. ACM Transactions on Computer Systems,
22(4):381–420, 2004.

[20] M. Bartoletti and R. Zunino. A calculus of contracting processes. In
Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, LICS 2010, pages 332–341. IEEE Computer Society, 2010.

[21] G. Batra, V. Atluri, J. Vaidya, and S. Sural. Enabling the deployment
of abac policies in rbac systems. In F. Kerschbaum and S. Paraboschi,
editors, Data and Applications Security and Privacy XXXII, pages 51–68,
Cham, 2018. Springer International Publishing.

[22] L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and K. Vaniea.
Real life challenges in access-control management. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’09,
pages 899–908, New York, NY, USA, 2009. ACM.

[23] M. Y. Becker, A. Malkis, and L. Bussard. A framework for privacy prefer-
ences and data-handling policies. Technical Report MSR–TR–2009–128,
Microsoft Research, September 2009.

[24] M. Y. Becker and P. Sewell. Cassandra: Distributed access control policies
with tunable expressiveness. In 5th IEEE International Workshop on
Policies for Distributed Systems and Networks (POLICY 2004), pages
159–168. IEEE Computer Society, 2004.

[25] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and
models. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,
pages 121–135, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

[26] C. Bodei, L. Ceragioli, P. Degano, R. Focardi, L. Galletta, F. L. Luc-
cio, M. Tempesta, and L. Veronese. FWS: analyzing, maintaining and
transcompiling firewalls. J. Comput. Secur., 29(1):77–134, 2021.

[27] C. Bodei, P. Degano, L. Galletta, R. Focardi, M. Tempesta, and
L. Veronese. Language-independent synthesis of firewall policies. In 2018
IEEE European Symposium on Security and Privacy, EuroS&P 2018,
pages 92–106, 2018.

150

[28] D. Bringhenti, G. Marchetto, R. Sisto, F. Valenza, and J. Yusupov. To-
wards a fully automated and optimized network security functions orches-
tration. In 2019 4th International Conference on Computing, Communi-
cations and Security (ICCCS), Rome, Italy, October 10-12, 2019, pages
1–7, 2019.

[29] G. Bruns and M. Huth. Access control via belnap logic: Intuitive, expres-
sive, and analyzable policy composition. ACM Trans. Inf. Syst. Secur.,
14(1):9:1–9:27, June 2011.

[30] S. Calo, D. Verma, S. Chakraborty, E. Bertino, E. Lupu, and G. Cir-
incione. Self-generation of access control policies. In Proceedings of the
23Nd ACM on Symposium on Access Control Models and Technologies,
SACMAT ’18, pages 39–47, New York, NY, USA, 2018. ACM.

[31] L. Cardelli and A. D. Gordon. Mobile ambients. Theoretical Computer
Science, 240(1):177 – 213, 2000.

[32] J. Carter. [patch 1/3] libsepol/cil: Make name resolution in macros work
as documented. https://lore.kernel.org/selinux/20210507173744.

198858-1-jwcart2@gmail.com/.

[33] L. Ceragioli. Bug (?) report for secilc and cil semantics:
some unexpected behaviours. https://lore.kernel.org/selinux/

5ca2e18c-6395-a0af-fdee-b0ac5f1de714@phd.unipi.it/.

[34] L. Ceragioli. [bug report?] other unexpected behaviours in
secilc and cil semantics. https://lore.kernel.org/selinux/

86d254dd-fd82-e25c-915b-16615b341457@phd.unipi.it/.

[35] L. Ceragioli, P. Degano, and L. Galletta. Are all firewall systems equally
powerful? In Proceedings of the 14th ACM SIGSAC Workshop on Pro-
gramming Languages and Analysis for Security, PLAS’19, page 1–17.
ACM, 2019.

[36] L. Ceragioli, P. Degano, and L. Galletta. Checking the Expressivity of
Firewall Languages. In M. Alvim, K. Chatzikokolakis, C. Olarte, and
F. Valencia, editors, The Art of Modelling Computational Systems: A
Journey from Logic and Concurrency to Security and Privacy, volume
11760 of LNCS. Springer Nature, 2019.

[37] L. Ceragioli, P. Degano, and L. Galletta. Muac: Access control language
for mutual benefits. In M. Loreti and L. Spalazzi, editors, Proceedings of
the Fourth Italian Conference on Cyber Security, Ancona, Italy, February
4th to 7th, 2020, volume 2597 of CEUR Workshop Proceedings, pages
119–127. CEUR-WS.org, 2020.

[38] L. Ceragioli, P. Degano, and L. Galletta. Can my firewall system enforce
this policy? Computers & Security, 117:102683, 2022.

151

https://lore.kernel.org/selinux/20210507173744.198858-1-jwcart2@gmail.com/
https://lore.kernel.org/selinux/20210507173744.198858-1-jwcart2@gmail.com/
https://lore.kernel.org/selinux/5ca2e18c-6395-a0af-fdee-b0ac5f1de714@phd.unipi.it/
https://lore.kernel.org/selinux/5ca2e18c-6395-a0af-fdee-b0ac5f1de714@phd.unipi.it/
https://lore.kernel.org/selinux/86d254dd-fd82-e25c-915b-16615b341457@phd.unipi.it/
https://lore.kernel.org/selinux/86d254dd-fd82-e25c-915b-16615b341457@phd.unipi.it/

[39] L. Ceragioli, L. Galletta, and M. Tempesta. From firewalls to functions
and back. In P. Degano and R. Zunino, editors, Proceedings of the Third
Italian Conference on Cyber Security, Pisa, Italy, February 13-15, 2019.,
volume 2315 of CEUR Workshop Proceedings. CEUR-WS.org, 2019.

[40] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. Nusmv 2: An opensource tool
for symbolic model checking. In E. Brinksma and K. G. Larsen, editors,
14th Computer Aided Verification, Copenhagen, DK, 2002,, volume 2404
of LNCS, pages 359–364. Springer, 2002.

[41] P. Colombo and E. Ferrari. Access control technologies for big data man-
agement systems: literature review and future trends. Cybersecurity, 2,
12 2019.

[42] M. Cramer, D. A. Ambrossio, and P. Van Hertum. A logic of trust for
reasoning about delegation and revocation. In Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, SACMAT
’15, pages 173–184, New York, NY, USA, 2015. ACM.

[43] J. Crampton and C. Williams. On completeness in languages for attribute-
based access control. In Proceedings of the 21st ACM on Symposium on
Access Control Models and Technologies, SACMAT ’16, pages 149–160,
New York, NY, USA, 2016. ACM.

[44] F. Cuppens, N. Cuppens-Boulahia, J. Garćıa-Alfaro, T. Moataz, and
X. Rimasson. Handling Stateful Firewall Anomalies. In Proceedings of
the 27th IFIP Information Security and Privacy Conference, SEC 2012,
pages 174–186, 2012.

[45] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A Formal
Approach to Specify and Deploy a Network Security Policy. In proc. of
2nd IFIP FAST, pages 203–218, 2004.

[46] S. Damen, J. den Hartog, and N. Zannone. Collac: Collaborative access
control. In 2014 International Conference on Collaboration Technologies
and Systems, CTS 2014, Minneapolis, MN, USA, May 19-23, 2014, pages
142–149, 2014.

[47] J. den Hartog and N. Zannone. Collaborative access decisions: Why has
my decision not been enforced? In Information Systems Security - 12th
International Conference, ICISS 2016, Jaipur, India, December 16-20,
2016, Proceedings, pages 109–130, 2016.

[48] D. E. Denning. A lattice model of secure information flow. Commun.
ACM, 19(5):236–243, may 1976.

[49] C. Diekmann. net-network: Public Collection of firewall dumps. https:

//github.com/diekmann/net-network, 2017.

152

https://github.com/diekmann/net-network
https://github.com/diekmann/net-network

[50] C. Diekmann, L. Hupel, J. Michaelis, M. P. L. Haslbeck, and G. Carle.
Verified iptables firewall analysis and verification. J. Autom. Reasoning,
61(1-4):191–242, 2018.

[51] C. Diekmann, J. Michaelis, M. P. L. Haslbeck, and G. Carle. Verified
iptables Firewall Analysis. In Proceedings of the 15th IFIP Networking
Conference, Vienna, Austria, May 17-19, 2016, pages 252–260, 2016.

[52] E. Fehr, U. Fischbacher, and S. Gächter. Strong reciprocity, human coop-
eration, and the enforcement of social norms. Human Nature, 13(1):1–25,
Mar 2002.

[53] D. Ferraiolo and D. Kuhn. Role-based access control. ACM Trans. Inf.
Syst. Secur., 4, 09 1997.

[54] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan, R. Govindan, R. Ma-
hajan, and T. D. Millstein. A general approach to network configuration
analysis. In 12th USENIX Symposium on Networked Systems Design and
Implementation, NSDI 15, pages 469–483, 2015.

[55] S. N. Foley and U. Neville. A Firewall Algebra for OpenStack. In Pro-
ceedings of the 3rd IEEE Conference on Communications and Network
Security, CNS 2015, pages 541–549, 2015.

[56] P. Fong. Relationship-based access control: Protection model and policy
language. pages 191–202, 01 2011.

[57] R. Frohardt, B.-Y. E. Chang, and S. Sankaranarayanan. Access nets:
Modeling access to physical spaces. In R. Jhala and D. Schmidt, editors,
Verification, Model Checking, and Abstract Interpretation, pages 184–198,
Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[58] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101,
1987.

[59] Google. Android open source project. https://source.android.com/.

[60] P. Gordan. Ueber die Auflösung linearer Gleichungen mit reellen Coeffi-
cienten, Mar. 1873.

[61] M. G. Gouda and A. X. Liu. Structured Firewall Design. Computer
Networks, 51(4):1106–1120, 2007.

[62] D. Grift. openwrt selinux policy. https://git.defensec.nl/?p=

selinux-policy.git;a=summary.

[63] D. Grift. Selinux example policy cilpolicy. https://github.com/

doverride/cilpolicy.

[64] D. Grift. Selinux example policy dspp5. https://github.com/DefenSec/
dssp5.

153

https://git.defensec.nl/?p=selinux-policy.git;a=summary
https://git.defensec.nl/?p=selinux-policy.git;a=summary
https://github.com/doverride/cilpolicy
https://github.com/doverride/cilpolicy
https://github.com/DefenSec/dssp5
https://github.com/DefenSec/dssp5

[65] J. D. Guttman, A. L. Herzog, J. D. Ramsdell, and C. W. Skorupka. Verify-
ing information flow goals in security-enhanced linux. J. Comput. Secur.,
13(1):115–134, 2005.

[66] R. Haines. The SELinux Notebook. https://github.com/
SELinuxProject/selinux-notebook.

[67] W. T. Hallahan, E. Zhai, and R. Piskac. Automated repair by example for
firewalls. In 2017 Formal Methods in Computer Aided Design (FMCAD),
pages 220–229, Oct 2017.

[68] S. Hazelhurst. Algorithms for analysing firewall and router access lists.
CoRR, cs.NI/0008006, 2000.

[69] S. Hazelhurst, A. Attar, and R. Sinnappan. Algorithms for improving
the dependability of firewall and filter rule lists. In 2000 International
Conference on Dependable Systems and Networks (DSN 2000), pages 576–
585. IEEE Computer Society, 2000.

[70] B. Hicks, S. Rueda, L. St.Clair, T. Jaeger, and P. McDaniel. A logical
specification and analysis for selinux mls policy. In Proceedings of the 12th
ACM Symposium on Access Control Models and Technologies, SACMAT
’07, pages 91–100, New York, NY, USA, 2007. ACM.

[71] J. A. Hoagland, R. Pandey, and K. N. Levitt. Security policy specification
using a graphical approach, 1998.

[72] H. Hu, G.-J. Ahn, Z. Zhao, and D. Yang. Game theoretic analysis of
multiparty access control in online social networks. In Proceedings of
the 19th ACM Symposium on Access Control Models and Technologies,
SACMAT ’14, page 93–102, New York, NY, USA, 2014. Association for
Computing Machinery.

[73] V. Hu, D. Kuhn, and D. Ferraiolo. Attribute-based access control. Com-
puter, 48:85–88, 02 2015.

[74] J. Hudelmaier. An o(n log n)-space decision procedure for intuitionistic
propositional logic. J. Log. Comput., 3(1):63–75, 1993.

[75] J. Hurd, M. Carlsson, B. Letner, and P. White. Lobster: A domain specific
language for selinux policies. Technical report, Galois, Inc., 2008.

[76] B. Im, A. Chen, and D. S. Wallach. An historical analysis of the SE-
Android Policy Evolution. In Procs. 34th Annual Computer Security Ap-
plications Conference, San Juan, PR, USA, December 3-7, 2018, pages
629–640. ACM, 2018.

[77] T. Jaeger, R. Sailer, and X. Zhang. Analyzing integrity protection in
the selinux example policy. In Procs 12th USENIX Security Symposium,
Washington, D.C., USA, 2003. USENIX Association, 2003.

154

[78] K. Jayaraman, N. Bjørner, G. Outhred, and C. Kaufman. Automated
Analysis and Debugging of Network Connectivity Policies. Technical re-
port, Microsoft, 2014.

[79] A. Jeffrey and T. Samak. Model checking firewall policy configurations.
In Proceedings of the 10th IEEE International Symposium on Policies for
Distributed Systems and Networks, POLICY 2009, pages 60–67, 2009.

[80] M. I. Kanovich. Linear logic as a logic of computations. Ann. Pure Appl.
Log., 67(1-3):183–212, 1994.

[81] P. Kazemian, G. Varghese, and N. McKeown. Header Space Analysis:
Static Checking for Networks. In Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2012,
pages 113–126, 2012.

[82] M. Kolár, M. C. F. Gago, and J. López. Policy languages and their
suitability for trust negotiation. In F. Kerschbaum and S. Paraboschi,
editors, Data and Applications Security and Privacy XXXII - 32nd Annual
IFIP WG 11.3 Conference,Proceedings, volume 10980 of LNCS, pages 69–
84. Springer, 2018.

[83] B. W. Lampson. Dynamic protection structures. In Proceedings of the
November 18-20, 1969, Fall Joint Computer Conference, AFIPS ’69 (Fall),
pages 27–38, New York, NY, USA, 1969. ACM.

[84] C. Langenhan, M. Weber, M. Liwicki, F. Petzold, and A. Dengel. Graph-
based retrieval of building information models for supporting the early
design stages. Advanced Engineering Informatics, 27(4):413 – 426, 2013.

[85] A. Margheri, M. Masi, R. Pugliese, and F. Tiezzi. A rigorous framework
for specification, analysis and enforcement of access control policies. IEEE
Transactions on Software Engineering, 45(1):2–33, Jan 2019.

[86] R. M. Marmorstein. Formal Analysis of Firewall Policies. PhD thesis,
College of William and Mary, May 2008.

[87] A. J. Mayer, A. Wool, and E. Ziskind. Fang: A Firewall Analysis Engine.
In proc. of the 21st IEEE S&P 2000, pages 177–187, 2000.

[88] E. W. Mayr. An algorithm for the general petri net reachability problem.
In Proceedings of the Thirteenth Annual ACM Symposium on Theory of
Computing, STOC ’81, page 238–246, New York, NY, USA, 1981. Asso-
ciation for Computing Machinery.

[89] P. Mehregan and P. Fong. Policy negotiation for co-owned resources in
relationship-based access control. 06 2016.

[90] Microsoft Research. The Z3 Theorem Prover. https://github.com/

Z3Prover/z3.

155

https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3

[91] R. Milner. The Space and Motion of Communicating Agents. Cambridge
University Press, 2009.

[92] U. Morelli and S. Ranise. Assisted authoring, analysis and enforcement
of access control policies in the cloud. In S. De Capitani di Vimercati
and F. Martinelli, editors, ICT Systems Security and Privacy Protection,
pages 296–309, Cham, 2017. Springer International Publishing.

[93] M. Müller-Olm, D. A. Schmidt, and B. Steffen. Model-checking: A tutorial
introduction. In A. Cortesi and G. Filé, editors, Static Analysis, 6th
International Symposium, SAS ’99, Venice, Italy, September 22-24, 1999,
Proceedings, volume 1694 of LNCS, pages 330–354. Springer, 1999.

[94] Y. Nakamura, Y. Sameshima, and T. Yamauchi. Selinux security policy
configuration system with higher level language. J. Inf. Process., 18:201–
212, 2010.

[95] M. Narouei, H. Takabi, and R. Nielsen. Automatic extraction of access
control policies from natural language documents. IEEE Transactions on
Dependable and Secure Computing, PP:1–1, 03 2018.

[96] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi.
The Margrave Tool for Firewall Analysis. In Proceedings of the 24th Large
Installation System Administration Conference, LISA 2010, 2010.

[97] H. Nergaard, N. Ulltveit-Moe, and T. Gjosaeter. A scratch-based graphical
policy editor for xacml. In 2015 International Conference on Information
Systems Security and Privacy (ICISSP), pages 1–9, Feb 2015.

[98] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer
Science. Springer, 2002.

[99] B. O’Sullivan. Anomaly analysis for physical access control security con-
figuration. In Proceedings of the 2012 7th International Conference on
Risks and Security of Internet and Systems (CRiSIS), CRISIS ’12, pages
1–8, Washington, DC, USA, 2012. IEEE Computer Society.

[100] F. Paci, A. C. Squicciarini, and N. Zannone. Survey on access con-
trol for community-centered collaborative systems. ACM Comput. Surv.,
51(1):6:1–6:38, 2018.

[101] S. M. Perez, J. Cabot, J. Garćıa-Alfaro, F. Cuppens, and N. Cuppens-
Boulahia. A Model-Driven Approach for the Extraction of Network
Access-Control Policies. In Proceedings of the Workshop on Model-Driven
Security Workshop, MDsec 2012, 2012.

[102] J. Qiu, Z. Tian, C. Du, Q. Zuo, S. Su, and B. Fang. A survey on access
control in the age of internet of things. IEEE Internet of Things Journal,
7(6):4682–4696, 2020.

156

[103] B. S. Radhika, N. V. N. Kumar, R. K. Shyamasundar, and P. Vyas. Con-
sistency analysis and flow secure enforcement of selinux policies. Comput.
Secur., 94:101816, 2020.

[104] S. Rajtmajer, A. Squicciarini, C. Griffin, S. Karumanchi, and A. Tyagi.
Constrained social-energy minimization for multi-party sharing in online
social networks. In Proceedings of the 2016 International Conference on
Autonomous Agents & Multiagent Systems, AAMAS ’16, page 680–688,
Richland, SC, 2016. International Foundation for Autonomous Agents and
Multiagent Systems.

[105] D. Ranathunga, M. Roughan, P. Kernick, and N. Falkner. Malachite:
Firewall policy comparison. In 2016 IEEE Symposium on Computers and
Communication (ISCC), pages 310–317, June 2016.

[106] P. Rao, G. Ghinita, E. Bertino, and J. Lobo. Visualization for access
control policy analysis results using multi-level grids. In Proceedings of
the 10th IEEE International Conference on Policies for Distributed Sys-
tems and Networks, POLICY’09, pages 25–28, Piscataway, NJ, USA, 2009.
IEEE Press.

[107] P. Rao, D. Lin, E. Bertino, N. Li, and J. Lobo. Fine-grained integration
of access control policies. Comput. Secur., 30(2-3):91–107, Mar. 2011.

[108] E. Reshetova, F. Bonazzi, and N. Asokan. Selint: An seandroid policy
analysis tool. In P. Mori, S. Furnell, and O. Camp, editors, Procs 3rd
International Conference on Information Systems Security and Privacy,
Porto, PT, 2017, pages 47–58. SciTePress, 2017.

[109] R. Russell. Linux 2.4 Packet Filtering HOWTO. http://www.netfilter.
org/documentation/HOWTO/packet-filtering-HOWTO.html, 2002.

[110] P. Samarati and S. Vimercati. Access control: Policies, models, and mech-
anisms. volume 2171, pages 137–196, 09 2000.

[111] B. Sarna-Starosta and S. D. Stoller. Policy analysis for security-enhanced
linux. In Procs 2004 Workshop on Issues in the Theory of Security, pages
1–12, 2004.

[112] D. Servos and S. L. Osborn. Current research and open problems in
attribute-based access control. ACM Comput. Surv., 49(4), jan 2017.

[113] N. Skandhakumar, F. Salim, J. Reid, and E. Dawson. Physical access
control administration using building information models. In Y. Xiang,
J. Lopez, C.-C. J. Kuo, and W. Zhou, editors, Cyberspace Safety and Secu-
rity, pages 236–250, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[114] S. Smalley and R. Craig. Security Enhanced (SE) Android: Bringing Flex-
ible MAC to Android. In 20th Annual Network and Distributed System
Security Symposium, 2013, San Diego, California, USA, February 24-27,
2013. The Internet Society, 2013.

157

http://www.netfilter.org/documentation/HOWTO/packet- filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet- filtering-HOWTO.html

[115] W. Stallings and L. Brown. Computer Security: Principles and Practice.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2014.

[116] stephensmalley. Add support for a source policy hll. https://github.

com/SELinuxProject/selinux/issues/54, 2018.

[117] J. M. Such and M. Rovatsos. Privacy policy negotiation in social media.
ACM Trans. Auton. Adapt. Syst., 11(1), feb 2016.

[118] G. Suntaxi, A. A. El Ghazi, and K. Böhm. Mutual authorizations: Seman-
tics and integration issues. In Proceedings of the 24th ACM Symposium
on Access Control Models and Technologies, SACMAT ’19, pages 213–218,
New York, NY, USA, 2019. ACM.

[119] The Netfilter Project. Traversing of Tables and Chains. http://www.

iptables.info/en/structure-of-iptables.html.

[120] D. Thomsen. Information flow analysis in security enhanced linux. CE-
RIAS Security Seminar at Purdue University.

[121] FireWall Synthesizer (FWS): Tool and Examples. https://github.com/

secgroup/fws.

[122] P. Tsankov, M. T. Dashti, and D. A. Basin. Access control synthesis for
physical spaces. In IEEE 29th Computer Security Foundations Sympo-
sium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016, pages 443–457,
2016.

[123] C. Tsigkanos, L. Pasquale, C. Ghezzi, and B. Nuseibeh. On the interplay
between cyber and physical spaces for adaptive security. IEEE Trans.
Dependable Sec. Comput., 15(3):466–480, 2018.

[124] C. Tsigkanos, L. Pasquale, C. Menghi, C. Ghezzi, and B. Nuseibeh. Engi-
neering topology aware adaptive security: Preventing requirements viola-
tions at runtime. In IEEE 22nd International Requirements Engineering
Conference, RE 2014, Karlskrona, Sweden, August 25-29, 2014, pages
203–212, 2014.

[125] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone. Analysis of
xacml policies with smt. In R. Focardi and A. Myers, editors, Principles
of Security and Trust, pages 115–134, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[126] F. Turkmen, J. den Hartog, S. Ranise, and N. Zannone. Formal analysis
of xacml policies using smt. Comput. Secur., 66(C):185–203, may 2017.

[127] F. Valenza, S. Spinoso, and R. Sisto. Formally specifying and checking
policies and anomalies in service function chaining. J. Network and Com-
puter Applications, 146, 2019.

158

https://github.com/SELinuxProject/selinux/issues/54
https://github.com/SELinuxProject/selinux/issues/54
http://www.iptables.info/en/structure-of-iptables.html
http://www.iptables.info/en/structure-of-iptables.html
https://github.com/secgroup/fws
https://github.com/secgroup/fws

[128] Q. Xiao and K.-L. Tan. Peer-aware collaborative access control in social
networks. In 8th International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), pages 30–
39, 2012.

[129] L. Xu, N. Shah, L. Chen, N. Diallo, Z. Gao, Y. Lu, and W. Shi. En-
abling the sharing economy: Privacy respecting contract based on public
blockchain. In Proceedings of the ACM Workshop on Blockchain, Cryp-
tocurrencies and Contracts, BCC ’17, page 15–21, New York, NY, USA,
2017. Association for Computing Machinery.

[130] T. Yokoyama, M. Hanaoka, M. Shimamura, K. Kono, and T. Shinagawa.
Reducing security policy size for internet servers in secure operating sys-
tems. IEICE Trans. Inf. Syst., 92-D, 11:2196–2206, 2009.

[131] L. Yuan, J. Mai, Z. Su, H. Chen, C. Chuah, and P. Mohapatra. FIRE-
MAN: A Toolkit for FIREwall Modeling and ANalysis. In Proceedings
of the 27th IEEE Symposium on Security and Privacy, S&P 2006, pages
199–213, 2006.

159

Appendix A

Technical Details and
Proofs of Chapter 2

A.1 IFCL Normal Form: Proofs

The following property is used in the proof of Lemma A.1 below. Intuitively, it
says that, if given a ruleset R a packet p matches no control flow rule, then the
packet matches a rule in the unfolded ruleset $R%true

I • with the same target.

Property A.1. Given a ruleset R, if pR (t, i) with t ∈ {ACCEPT, DROP, NAT(n1, n2),
CHECK-STATE(X), MARK} then there exist m and I such that p |=$R%true

I m
(t, j) for

some j.

Proof. We know that R = [(φ1, t1), . . . , (φn, tn)] and that φk(p) does not hold
for k < i. Furthermore, we know that our unfolding algorithm replaces each
rule rk = (φk, tk) with a list of rules whose predicates have a suitable φ′k as
a conjunct for I not containing R′ and m the tag of p (so p satisfies φk iff it
satisfies φ′k). Otherwise rk is replaced with (φ′k ∧ true, DROP). Since φ′k(p) is
false for k < i, the new rules do not apply, whereas the rule ri still applies.
Moreover, consider the case when a rule rk = (φk, RETURN) occurs in the ruleset
for k < i. In the resulting ruleset this rule is canceled and the rules that follow
it are rewritten by adding the conjunct ¬φ′k. Since rk does not apply, we know
that ¬φk(p) is true, and this does not affect the evaluation of the other rules,
so that the rule ri still matches.

The following lemma shows the correctness of our unfolding procedure. In-
tuitively, it tells us that packet p is evaluated in the same way by a ruleset R
and by its unfolding $R%.

Lemma A.1. Given a firewall F = (C, ρ, c) and given a ruleset R such that
c(q) = R for some node q of C, we have that for t ∈ {ACCEPT, DROP}

∀p, s.p, s |=ε
R (t, p′) ⇐⇒ p, s |=ε

$R% (t, p′)

160

Proof. We prove the following stronger statement from which the lemma follows
as a particular case:

∀p, s, S. p, s |=S
R (t, p′) ⇐⇒ p, s |=ε

$R%I

truem
(t, p′)

with t ∈ {ACCEPT, DROP} and I = flatten(S) ∪ {R} for some m, where the function
flatten is recursively defined as follows, where X ∈ {R, R,Ri, Ri+1}:

flatten(ε) = ∅ flatten(X · S) = flatten(S) ∪ {X}

First we prove the “if” case by induction on the derivations of p, s |=S
R , and

then by cases on the last rule applied.

• rule (1). By the premise of the rule, it holds that pR (t, i) for some
i, where t ∈ {ACCEPT, DROP}. The thesis follows by applying Property A.1.
Note that Property A.1 holds for all sets I and in particular for I =
flatten(S) ∪ {R}.

• rules (2) and (4). Similar to the rule (1).

• rule (3). By the premise of the rule, we have that pR (CHECK-STATE(X), i),
p 6`s and p, s |=S

Ri+1
(t, p′). Moreover, by Property A.1, we have that

p$R%true

I

(CHECK-STATE(X), j) holds for some j and, by induction hypoth-

esis, that p, s |=S

$Ri+1%I

truem
(t, p′) for I = flatten(S) ∪ {R}. Thus, the

thesis holds by applying the rule (3).

• rule (5). By the premise of the rule, it holds pR (GOTO(R’), i), i.e., the

rule ri = (φi, GOTO(R’)) matches, R′ 6∈ S and p, s |=R·S
R′ (t, p′). By induction

hypothesis we have that p, s |=R·S
$R′%I′

truem
(t, p′) with I ′ = flatten(R ·

S) ∪ {R′}. From the definition of the unfolding procedure we know that

for all I not including R′ the ruleset $R%I
truem includes all the rules

of $R′%I∪{R′}
true m prefixed by the predicate φi as a conjunct. Since φi is

true for p, there is not change in the validity of the rule matching p in

$R′%I′

truem that continues to match p also in $R%I
truem, for some j and

for all I not including R′. So can conclude the thesis p, s |=S

$R%I

truem
(t, p′)

by taking I = flatten(S) ∪ {R}.

• rule (7). Similar to rule (5).

• rule (6). By the premise of the rule, we know that pR (GOTO(R’), i), i.e.,
there exists φi(p) that holds, and R′ ∈ S. Hence, taking I = flatten(S) ∪
{R} we have that R′ ∈ I, and in $R%I

truem the rule matching ri is
replaced with (true ∧ φ, DROP) and we can obtain the thesis.

• rule (8). Similar to the case of rule (6).

161

• rule (9). By the premise of the rule, we know that pR (RETURN, i),
pop∗(S) = (R′, S′) and p, s |=S′

R′ (t, p′). In the ruleset $R% the rule
ri is skipped and all the rules after the ri are rewritten by adding the
negation of the predicate φi of ri as a conjunct; in these way none of these
new rules match p. Thus, p 6|=$R%trueIm

for any I. The thesis follows by

applying the induction hypothesis and then, the rule (11).

• rule (10). It is essentially as the proof of rule (9) except that at the end
the thesis follows applying the rule (12).

• rule (11). By the premise of the rule, we know p 6R, S 6= ε, pop∗(S) =
(R′, S′) and p, s |=S′

R′ (t, p′). Trivially it holds that if p 6R then p 6|=$R%I

truem

for all I. Thus, the thesis follows by applying the induction hypothesis
and the rule (11).

• rule (12). By the premise of the rule, it holds that p 6R and S = ε ∨
pop∗(S) = ε. Since if p 6R then p 6|=$R%I

truem
for all I, the thesis trivially

holds by applying rule (12).

• rule (13). The premises of the rule guarantee that p matches the ith rule
with target MARK(m) and that the execution of the ruleset proceeds with
p[tag 7→ m]. By Property A.1 p matches in the unfolded ruleset the jth

rule with target MARK(m) for some j. Now the induction hypothesis applies
yielding p[tag 7→ m], s |=ε

$Rj+1%I

truem
(t, p′), so fulfilling the premises of

the rule (13).

To prove the case “only if” we proceed by contradiction by assuming that
p, s |=ε

$R%I

truem
(t, p′) for I = flatten(S) ∪ {R}, but that p, s |=ε

R (t1, p
′
2) with

(t, p′) 6= (t1, p
′
2). By applying the just proved case “if” of the Lemma we know

that p, s |=ε

$R%I′

truem
(t1, p

′
2) for I ′ = flatten(S) ∪ {R}. Contradiction.

The following lemma guarantees that the evaluations in the slave transition
system for a firewall and its unfolded version are the same.

Lemma A.2. Let F = (C, ρ, c) be a firewall and $F% its unfolding. Let
(q, s, p)→X (q′, s, p′) be a step of the slave transition system performed by the
firewall X ∈ {F ,$F%}. Given a node q of C we have that

(q, s, p)→F (q′, s, p′) ⇐⇒ (q, s, p)→$F% (q′, s, p′).

Proof. Assume (q, s, p) →F (q′, s, p′). By definition of the slave transition sys-
tem we know that c(q) = R, p, s |=ε

R (ACCEPT, p′) and δ(q, p′) = q′. By Defini-
tion 2.9 and by Lemma A.1, we have c′(q) = $R% and p, s |=ε

$R% (ACCEPT, p′),

so we can prove (q, s, p)→$F% (q′, s, p′). The case “only if” follows the same

schema.

Now we can easily prove Theorem 2.1.

162

Theorem 2.1 (Correctness of unfolding). Let F = (C, ρ, c) be a firewall and

$F% its unfolding. Let s
p,p′−−→X s′ be a step of the master transition system

performed by the firewall X ∈ {F ,$F%}. Then

s
p,p′−−→F s′ ⇐⇒ s

p,p′−−→$F% s′.

Proof. Assume s
p,p′−−→F s′. By the premise of the rule, we know that there

exists a sequence of steps of the slave transition system such that (qi, s, p)→+
F

(qf , s, p
′). By repeatedly using Lemma A.2 we have that (qi, s, p) →+

$F%
(qf , s, p

′). Thus, the thesis follows by applying the rule of the master tran-
sition system.
The “only if” case follows the same schema.

A.2 Decompilation: Proofs

The following property is an immediate consequence of Definition 2.3.

Property A.2. Given a ruleset R and a rule r′ = (φ′, t′), if pR (t, i) and φ′(p)
does not hold then p |=r′;R (t, i).

The following lemma guarantees the correctness of the predicate definition
in Table 2.2.

Lemma 2.1. Given a ruleset R we have that

1. ∀p, s. p, s |=ε
R (ACCEPT, p′) =⇒ PR(p, p′); and

2. ∀p, p′. PR(p, p′) =⇒ ∃s. p, s |=ε
R (ACCEPT, p′)

Proof. (1). By induction on the depth of the derivation of p, s |=ε
R (ACCEPT, p′),

and by cases on the last rule applied. Note that since we have considered
unfolded firewalls the only rules we consider are (1), (2), (3), (4), (12) and (13).

• rule (1). By the premise of the rule, we know that pR (ACCEPT, i) (i.e.,
there exists ri = (φi, ACCEPT) and φ(p) holds) and p = p′. By Table 2.2,
we know that the formula PR has a disjunct φi(p) ∧ (p = p′) that holds,
proving the thesis.

• rule (2). By the premise of the rule pR (CHECK-STATE(X), i) (i.e., φi(p)
holds), p `s α and p′ = establ(α,X, p) (p is rewritten as p′). The thesis
follows because, by Table 2.2, PR contains a disjunct φ(p) ∧ p′ ∈ tr(p, ∗ :
∗, ∗:∗, X) that holds.

• rules (3) and (13). Trivial using the induction hypothesis.

• rule (4). By the rule, we have pR (NAT(n1, n2), i) (i.e., φi(p) holds) and
p′ = nat(p, s, ds, ns). By Table 2.2, we know that there is a disjunct
φ(p) ∧ p′ ∈ tr(p, ds, ns,↔) that holds, thus proving the thesis.

163

• rule (12). This case applies if the default policy of the ruleset is ACCEPT

and p′ = p. By Table 2.2, the disjunct dp(R) ∧ p′ = p holds, proving the
thesis.

(2). By induction on the length of the ruleset R, and then by cases on its first
rule. When R is empty, the formula PR is dp(R) ∧ p = p̃ and p 6R. Thus, the
thesis follows for each state s by using the rule (12) with an empty stack. If R is
not empty we consider all the possible different cases. Note that apart from the
case for DROP our translation in Table 2.2 procedure creates mutually exclusive
disjunctions.

• case (φ, ACCEPT). If the first disjunct holds, the thesis follows by applying
the rule (1) in any state s. If the second one holds, the thesis follows by
induction hypothesis and by Property A.2.

• case (φ, DROP). Just as the second case above.

• case (φ, NAT(ds, ns)). If the first disjunct holds we know that pR (NAT(n1, n2), i)
and that p′ is one of the possible translation of p. To prove the thesis it suf-
fices to apply the rule (4), taking a state s such that p′ = nat(p, s, nd, ns).
If the second disjunct holds, the thesis follows by induction hypothesis
and by applying the Property A.2.

• case (φ, CHECK-STATE(X)). If the first disjunct holds, we have that φ(p) is
true and p′ is obtained by rewriting p. Thus, the thesis follows by applying
the rule (2) in a state any state s where p `s α and p′ = establ(α,X, p). If
the second disjunct holds, the thesis follows by induction hypothesis and
by Property A.2.

• case (φ, MARK(m)). By induction hypothesis, similarly to the ACCEPT case.

The following auxiliary lemma establishes the correspondence between the
executions in the slave transition system from a node q and the formula built
for the same node q.

Lemma A.3. Given a firewall F = (C, ρ, c) and a node q of C, we have that for
some I

1. ∀s, p. (q, s, p)→∗ (qf , s, p̃) =⇒ PIq (p, p̃)

2. ∀q, p, p̃. PIq (p, p̃) =⇒ ∃s.(q, s, p)→∗ (qf , s, p̃)

3. ∀s, p. (q, s, p) 6→∗ (qf , s, p̃)⇒ DIq (p) = true

Proof. (1). By induction on the length of the derivation of (q, s, p)→n (qf , s, p̃).
In the case of n = 0 the thesis trivially holds. We assume that the statement
holds for derivation of length n and we prove the case n + 1. Thus, there is
a derivation (q, s, p) → (q′, s, p′) →n (qf , s, p̃). By the premise of the slave

164

transition system, we know that p, s |=ε
c(q) (ACCEPT, p′) and δ(q, p′) = q′. By

Lemma 2.1 (1), we know that Pc(q)(p, p
′) is true and by Definition 2.5 that

ψ(p′) holds. By applying the induction hypothesis we have PIq′(p, p̃) and the
thesis follows.
(2). Note that since PIq (p, p̃) holds there exist n packets pi and a path of length

n in the control diagram of the firewall q1
ψ1(p1)−−−−→ q2

ψ(p2)−−−→ . . .
ψ(pn)−−−−→ qf such

that q1 = q, p1 = p, pn = p̃ and ∧ni=1ψi(pi) holds. We proceed by induction
on the length n of this path. For n = 0 the thesis trivially holds. We assume

the statement valid for n and consider given a path of length n + 1: q
ψ(p)−−−→

q1
ψ1(p1)−−−−→ q2

ψ(p2)−−−→ . . .
ψ(pn)−−−−→ qf with pn = p̃. Since PIq (p, p̃) holds, we know

that Pc(q)(p, p
′) holds for some p′. By applying Lemma 2.1 (2), we know that

there exists a state s such that p, s |=ε
R (ACCEPT, p′). Since in the path we have

the arc q
ψ(p)−−−→ q1 we also know that δ(q, p′) = q1. The thesis follows by taking

p′ = p1 and by induction hypothesis.
(3) Similar to the proof of case (1).

Now we can prove the following theorem, which states the correspondence
between the logical formulation and the operational semantics.

Theorem 2.2 (Correctness of the logical characterization). Given a firewall
F = (C, ρ, c) and its corresponding predicate PF , for all packets p we have that
PF (p, p′) ∨ DF (p) holds and

1. s
p,p′−−→ s] (p, p′) =⇒ PF (p, p′)

2. 6 ∃p′, s′. s p,p′−−→ s′ =⇒ DF (p)

3. PF (p, p′) =⇒ ∃s.s p,p′−−→ s] (p, p′)

Proof. (1) and (2) The thesis follows by taking the premise of the master
transition system and by applying Lemma A.3 (1) and (3), respectively
(3). The thesis follows by applying first the Lemma A.3 (2), and then the rule
of the master transition system, using the same state s given by Lemma A.3
(2).

A.3 Compilation: Proofs

Theorem 2.3. Let FC be a compiled firewall of τ and let p be a packet, then

τ(p) 6= λ⊥ ⇔ ∃p′.PFC
(p, p′).

Proof. (⇒) We show that a packet p accepted by FS never matches a DROP rule
in the rulesets of FC . Recall that a configuration cannot accept and drop the
same packet. Since rulesets have a default ACCEPT policy, we consider only Rfil
and Rdnat @Rfil, Rsnat @Rfil which are the only rulesets containing the rule
(true, DROP) at the end. We distinguish two cases:

165

• p is accepted by rule r = (φ, NAT(nd, ns)) ∈ RS in FS . By construction of
the rulesets, in FC the packet will be tagged with some mark m in the
first non-empty ruleset in the path πFC

(p); then:

– if processed by Rfil, it is accepted by the rule (tag(p) 6= •, ACCEPT);
– if processed by Rdnat @Rfil, it is accepted (and translated) according

to the NAT rule (tag(p) = m, NAT(nd, ?)) in Rdnat;

– similarly, if processed by Rsnat @Rfil, it is accepted by rule (tag(p) =
m, NAT(?, ns)) in Rsnat.

• p is accepted by rule r = (φ, ACCEPT) ∈ RS in FS , hence it is not subject
to NAT. Algorithm 2 places the rule r in Rfil, therefore the packet is
accepted when rulesets Rfil, Rdnat @Rfil are Rsnat @Rfil are traversed.

(⇐) Since PFC
(p, p′′), there exist a path πFC

(p) = 〈q1, . . . , qn〉 and n + 1
packets p1, . . . , pn+1 such that Pc(qj)(pj , pj+1) for j ∈ [1..n] where p1 = p and
pn+1 = p′′. By definition of compiled firewall, there exists j ∈ [1..n] such that
c(qj) ∈ {Rfil, Rdnat @Rfil, Rsnat @Rfil}. Assume c(qj) = Rfil, we distinguish
two cases:

• tag(pj+1) 6= •: by Algorithm 2, there exists a MARK rule in the first non-
empty ruleset of πFC

(p) such that φ(p) holds. Hence, there exists some
rule r = (φ, NAT(nd, ns)) ∈ RS that accepts p translated as p′.

• tag(pj+1) = •: packet pj+1 is accepted by some rule r = (φ, ACCEPT) ∈
Rfil; we also have pj+1 = p since the packet is not tagged, thus it is not
transformed by any NAT in FC . Since rule r ∈ RS by construction, FS
accepts p without translation.

The cases c(qj) ∈ {Rdnat @Rfil, Rsnat @Rfil} follow a similar scheme.

Property A.3. Let p be a packet accepted by a compiled firewall FC . We have
that:

1. if p is accepted without NATs it is never tagged by the firewall;

2. if p accepted with NATs, it is tagged exactly once in the first non-empty
ruleset of πFC

(p).

Proof. (1) If a packet is not tagged in the first non-empty ruleset of the path
πFC

(p), all the conditions φ in the MARK rules do not apply. Thus, none of
the (possible) NAT rules applies and the packet is left unchanged. Therefore,
subsequent evaluations of the marking rules still do not apply.
(2) Straightforward, MARK rules include the check tag(p) = • in their conditions.
Marking occurs in the first node of πFC

(p) that contains a non-empty ruleset,
i.e., a ruleset different from Rε(p).

166

Theorem 2.4. Let p be a packet accepted by both FS and FC ; let β =
tc(πFC

(p)); and let p′′ ≈ tβ(p, p′) for some p′. We have that

PFS
(p, p′)⇔ PFC

(p, p′′)

with p′ = p′′ when β = nat or p = p′.

Proof. (⇒) Assume PFS
(p, p′). Let πFC

(p) = 〈q1, . . . , qn〉 with q1 = qi and
qn = qf and we consider n + 1 intermediate packets p1, . . . , pn+1 with p1 = p
and pn+1 = p′′. We proceed by cases on the translation tt(p, p′).

• If tt(p, p′) = id, by Property A.3 we know that p is never tagged by FC .
Since NAT rules are applied only to tagged packets, all rulesets in πFC

(p)
accept the packet without translations, i.e., PFC

(p, p) holds. We have
tβ(p, p′) = p′ = p for all possible values of β, therefore the thesis hold.

• If tt(p, p′) = nat, by Property A.3, we know that p is tagged in the first
non-empty ruleset c(qj) by rule (φ∧ tag(p) = •, MARK(m)), i.e., tag(pj+1) =
m.

– If β = id, we have pj+1 = · · · = pn+1 = p′′ since the packet traverses
and is accepted by rulesets that do not contain NAT rules. Therefore
p′′ ≈ tid(p, p′) and the thesis hold.

– If β = nat, let k, l ∈ [j + 1..n] the smallest indexes such that dnat ∈
γ(c(qk)) and snat ∈ γ(c(ql)). Without loss of generality, we assume
k < l (the other case is analogous). We have that pj+1 = · · · =
pk. Packet pk is processed by ruleset c(qk) that applies the DNAT

translation associated with tag m, i.e., pk+1 ≈ p[da 7→ da(p′)]. Then
we have pk+1 = · · · = pl. Packet pl is processed by ruleset c(ql)
that applies the DNAT translation associated with tag m, thus we have
pl+1 ≈ p′. Finally we have pl+1 = · · · = pn+1 ≈ p′. Since tnat(p, p

′) =
p′, the thesis hold.

– For β ∈ {dnat, snat}, the proof is a simplified version of β = nat.

• Proofs for cases tt(p, p′) = snat and tt(p, p′) = dnat are similar to the case
tt(p, p′) = nat.

(⇐) Assume PFC
(p, p′′). We distinguish two cases, depending on the fact

that p′′ is tagged or not.

• If tag(p′′) = •, we know that p′′ has been accepted without NATs, i.e.,
p = p′′. By definition of FC , the path πFC

(p) has a node associated with
a ruleset R in {Rfil, Rdnat @Rfil, Rsnat @Rfil}. Since p is accepted by
R, it means that p is accepted by one of the filtering rules taken from RS .
Therefore we have PFS

(p, p), p′′ ≈ tβ(p, p) for any β and the thesis hold.

• Let tag(p′′) = m. By Property A.3 we know that the packet is tagged
only once during its processing and tagging occurs inside the first non-
empty ruleset of πFC

(p). By Algorithm 2, we know that there exists a

167

rule r = (φ, NAT(nd, ns)) ∈ RS for some nd, ns that accepts p as p′, i.e.
PFS

(p, p′). Moreover, the same ranges are used in the NAT rules that
have translated p into p′′ during the traversal of the path πFC

(p). Hence
we have p′′ ≈ tβ(p, p′) for any β and the thesis follows.

A.4 Computing the Representative Pairs

We now show how to efficiently build a pair (p, t), representative of a whole
ωX1,Y,X2

6= ∅ without actually computing this equivalence class. One can thus
effectively check whether ωX1,Y,X2 is expressible by applying Theorem 2.6 to
the pair (p, t). The algorithm relies on two assumptions that hold in all the
firewall languages we have considered. The first requires that each predicate on
the arcs is expressible as a predicate on a single field of the packet.1 The second
assumption says that given a satisfiable predicate one can mechanically build a
packet satisfying it.

Given X1, Y,X2, the Algorithm 5 computes such a representative or fails if
there are none, i.e., if ωX1,Y,X2 = ∅. In it, we let w range over the fields of a
packet and of a transformation, including {dIP , dPort, sIP , sPort}. Recall that
we denote the fields of a packet p by pw and those of a transformation t by tw.
In the same way, we split a set of predicates X in the components on the fields,
typicallyX = XdIP∧XdPort∧XsIP∧XsPort, where ∧ operates homomorphically.
For each Xw, the function TAKE ONE(Xw) returns an address whatsoever if Xw =
∅, or an address satisfying all the predicates in Xw (second assumption above).
Note that Xw might be unsatisfiable, so making TAKE ONE(Xw) and the whole
algorithm fail.

The Algorithm 5 scans the fields w of the packet headers and generates an
address satisfying the w component of the predicates in X1. Then it takes a
transformation t′ in Y , if any, that changes the field w. In such a case, an address
a is taken that satisfies X2w , and the w component of the output transformation
t is set to λa. If no t′ ∈ Y changes the field w, the transformation t on w is id;
also, the algorithm fails when the predicates X1 and X2 differ on w.

We prove now the correctness of Algorithm 5 . For ease of notations we call
WT ⊂W the fields of a transformation, namely dIP , dPort, sIP , sPort.

Lemma A.4. For each set of transformations Y 6= ε(DROP) in T let W̃T be the

set of fields such that ∀w ∈ W̃T .∀t ∈ Y. tw = id, then the following holds: for
all the tuples of field values aw ∈ Dw for w ∈ WT \ W̃T , the transformation

defined as λaw for w ∈WT \ W̃T and as id for w ∈ W̃T is in Y .

Proof. The thesis can be trivially verified case-by-case by definition on the ele-
ments of T.

1Since one can add new nodes without loosing expressive power, this is the same of asking
each predicate on the arcs to be expressible as conjunction of one predicate for each field,
possibly true.

168

Algorithm 5 Build a pair (p, t) ∈ ωX1,Y,X2
, if any.

1: if Y = {λ⊥} then t = λ⊥

2: for all w ∈W do
3: pw ← TAKE ONE(X1w)
4: if Y 6= {λ⊥} ∧ w ∈ {dIP , dPort, sIP , sPort} then
5: if ∃t′ ∈ Y.t′w 6= id then
6: a← TAKE ONE(X2w

)
7: tw ← λa
8: else if X1w 6= X2w then FAIL
9: else tw ← id

10: return (p, t)

The correctness of Algorithm 5 is guaranteed by the following theorem.

Theorem A.1. Given a triple X1, Y,X2, the Algorithm 5 either returns a pair
(p, t) ∈ ωX1,Y,X2

6= ∅ or it fails.

Proof. Assume that Y = {λ⊥}, then by definition (p, t) ∈ ωX1,Y,X2 only if
t = λ⊥ and g(p) = X1. The first condition is guarantee by construction of the
algorithm, the second one is verified only if ∀w ∈ W. ∃a such that the set of
predicates verified by a is X1w

, and this is what is returned by TAKE ONE, which
in turn fails if there is no such an address for some w. Hence if the condition
cannot be verified the algorithm fails, otherwise it returns a pair in ωX1,Y,X2 .

If Y 6= {λ⊥} then if @p. g(p) = X1 then ωX1,Y,X2 = ∅ and the algorithm
fails because it implies that ∃w ∈ W. @a such that the set of predicates verified
by a is X1w

and hence, as we stated before, TAKE ONE fails. Vice versa if such a
packet exists then by definition TAKE ONE cannot fails and hence we can generate
p. Thanks to Lemma A.4, we know that we can divide WT into W̃T , that are
the fields that have to be id in all the transformations of Y , and WT \ W̃T , the
fields that can be associated with any constant transformation λa. Unless there
exists a field w for which no possible value aw is such that the predicates verified
by a are X2w

, we can thus choose an appropriate value for each tw such that

w ∈ WT \ W̃T . If it is not possible, then TAKE ONE fails and ωX1,Y,X2
is empty.

For each field w ∈ W̃T , tw has to be id. It is true that g(t(p)) = X2 if and only

if ∀w ∈W. g(t(p))w = X2w . For w ∈ W̃T this is the same as X1w = X2w , which
is checked by Algorithm 5, that fails if it does not holds.

A.5 Firewall Expressivity: Proofs

Lemma A.5 (IFCL universality). For each function τ : P→ TP there exists an
IFCL firewall F such that LF M = τ .

Proof. Trivial: just take a control diagram with a single node q and a configu-
ration such that f(q) = τ .

169

As stated in subsection 2.6.1, we only consider firewalls where no packets
cycle. Then we define the following function, that simplifies � by removing
cycle detection.

⊗(C,f) (q)(p) =

{
⊗(C,f)(q′)(p′) ◦ t if q 6= qf ∧ t 6= λ⊥

t if q = qf ∨ t = λ⊥

with t = f(q)(p), p′ = t(p) and q′ = δ(q, p′).
Now we state the following general property.

Lemma A.6. Let (C, f) be a firewall, then

∀p ∈ P. �(C,f)
{qi} (q)(p) = λ� ∨ �(C,f)

{qi} (q)(p) = ⊗(C,f)(q)(p)

Proof. We prove the more general statement

∀I ⊆ Q.∀p ∈ P. �(C,f)
I (q)(p) = λ� ∨ �(C,f)

I (q)(p) = ⊗(C,f)(q)(p)

The proof proceed by induction on �. If q = qf or t = λ⊥, then the thesis
trivially holds. Assume q 6= qf and t 6= λ⊥, let t′ = f(q)(p), p′ = t′(p) and
q′ = δ(q, p′), if q′ ∈ I then the premise is false and the thesis holds. The last case
is when q′ /∈ I and q 6= qf , then by definition ⊗(C,f)(q)(p) = ⊗(C,f)(q′)(p′) ◦ t′

and �(C,f)
I (q)(p) = �(C,f)

I∪{q′}(q
′)(p′) ◦ t′. By induction hypothesis, ∀J ⊆ Q,

∀p ∈ P, �(C,f)
J (q′)(p) = λ�∨�(C,f)

J (q′)(p) = ⊗(C,f)(q′)(p). Take J = I ∪{q′}, if

�(C,f)
I∪{q′}(q

′)(p′) = λ�, then �(C,f)
I (q)(p) = λ� and the thesis follows. Otherwise,

⊗(C,f)(q′)(p′) = �(C,f)
I (q′)(p′) and the thesis follows.

To prove Theorem 2.5 we use the following lemma.

Lemma A.7. Let C = (Q,A, qi, qf) be a control diagram, let V be a cap-label
assignment, then the two following condition are equivalent

(i) ∃f legal for V. ⊗(C,f)(q)(p) = t

(ii) ∃(π, v). π = q1 · . . . qn ∧ v = l1 · . . . ln
∧ ∀j.∃ψ. (qj , ψ, qj+1) ∈ A ∧ lj ∈ V (qj)

∧ ∀j 6= n. qj 6= qf ∧ lj 6= DROP

∧ ∀i, j. i 6= j ⇒ qi 6= qj

∧ q1 = q ∧ (qn = qf ∨ ln = DROP)∧
∃ t1, t2, . . . tn. ∀j. tj ∈ ε(lj)∧

tn ◦ tn−1 · · · ◦ t1 = t∧
∀j < n. ψj(pj)

Proof. We prove separately (i)⇒ (ii) and (ii)⇒ (i).
For (i) ⇒ (ii) we proceed for induction on the calls of function ⊗. We assume
the premise and consider the following exhaustive cases. If q = qf then t ∈ εl for

170

some l ∈ V (qf) and we take π = qf and v = l: (ii) trivially holds. Otherwise if
f(q)(p) = λ⊥, since f is legal for V then DROP ∈ V (q); we take π = q and v = DROP

for which (ii) trivially holds. Finally, assume q 6= qf , f(q)(p) = t′ 6= λ⊥ and
δ(q, p′) = q′ where p′ = t′(p), then ⊗(C,f)(q)(p) = t is equal to ⊗(C,f)(q′)(p′)◦ t′.
From the induction hypothesis we have that exists a pair (π′, v′) such that all
the conjuncts in (ii) hold for it. Since f is legal for V we know that a cap-label
l ∈ V (q) must be such that f(q)(p) ∈ ε(l). We build π = q · π′ and v = l · v′.
By the induction hypothesis and by construction ∀j.∃ψ. (qj , ψ, qj+1) ∈ A, since
δ(q, p′) = q′; also it holds that lj ∈ VL(qj). The condition ∀j 6= n. qj 6= qf ∧ lj 6=
DROP holds by hypothesis on q and by the induction hypothesis for the rest of π.
For construction q1 = q and by the induction hypothesis (qn = qf ∨ ln = DROP).
ψ(p′) holds because of δ(q, p′) = q′. Finally tn ◦ tn−1 · · · ◦ t1 = t holds because
the the induction hypothesis guarantee tn ◦tn−1 · · ·◦t2 = t′′ such that t′′ ◦t′ = t.

We then show that (ii) ⇒ (i) holds. We take f such that ∀j. f ′(qj)(p) = tj
and ∀q /∈ π. f(q)(p) = t for whichever t ∈ ε(l) with l assigned to q. Hence, by
construction f is legal for V ; ⊗(C,f)(q)(p) = t is now proved by induction on
the length n of π and v. If n = 1 then either q1 = qf or l1 = DROP. In the
first case then t ∈ εl for some l ∈ V (qf) and also ⊗(C,f)(q)(p) = t. Otherwise
if l1 = DROP then f(q)(p) = t1 = λ⊥. Finally suppose that the statement holds
for any π′ = q′ · π′′ and v′ of length n, and take (π, v) = (q · π′, l · v′) of length
n + 1. By the induction hypothesis and (ii) we have that ⊗(C,f)(q′)(p′) = t′′

where t′ = f(q)(p), p′ = t′(p) and t = t′′ ◦ t′.

Theorem 2.5. EL = ẼL.

Proof. Follows trivially from Lemma A.6 and A.7.

Lemma A.8. Given a trace h = (π, v) and a packet p, the following are equiv-
alent

(i) CHECK FLOW(h, p)

(ii) ∃p1, . . . , pn. p1 = p∧
∀j < n− 1. ψj(pj)∧
∀j < n.∃tj ∈ ε(lj). tj(pj) = pj+1

Proof. Formula (ii) is equivalent to the following in which packet fields are made
explicit:

∃p1w1
, . . . , pnw1

, p1w2
, . . . , pnw2

, . . . p1wm
, . . . , pnwm

.

p1w1
= pw1 ∧ . . . p1wm

= pwm ∧
∀j < n− 1. ψjw1

(pjw1
) ∧ · · · ∧ ψjwm

(pjwm
)∧

∀j < n.∃tj ∈ ε(lj). tj(pj)w1
= pj+1w1

∧ · · · ∧ tj(pj)wm
= pj+1wm

We can then substitute

∃tj ∈ ε(lj). tj(pj)w1
= pj+1w1

∧ · · · ∧ tj(pj)wm
= pj+1wm

171

with ∀w /∈ γ(lj). pjw = pj+1w

We omit the constraints on w ∈ γ(lj) because any value can be arbitrarily
chosen by tj for the fields in γ(lj). Substitution for constraints on w ∈ γ(lj)
is legal because, for every label l, every transformation t ∈ ε(l) and every field
w ∈ γ(lj), tw = id.

We can then replace p for every occurrence of p1 and remove the existential
quantification on its fields, since p = p1. Finally, for each pair of packet fields
such that piw = pjw with i < j we instantiate pjw to piw , removing the existential
quantification on pjw . We repeat the last step until we reach a fixpoint where
no further reduction is possible. The formula obtained is the conjunction of a
predicate on the packet p ((ii)A) and an existentially quantified predicate on
the fields of some intermediate packets ((ii)B).

The lemma holds because, for any iteration, (ii)A is true iff Ext(ψj , CL)(p)
at line 8 of CHECK FLOW(h, p) is true, and (ii)B is true iff Sat(ψ) at line 8 of
CHECK FLOW(h, p) is true. The first coimplication trivially holds because, for
every j, the use of Ext with CL excludes all and only the conjuncts ψjw of
ψj that predicate on existentially quantified field values that do not relate to
p. To show that the second coimplication holds, consider (ii)B . Note that for
each field w, the instantiation above partitions the constraints on existentially
quantified field-values in disjoint intervals of indexes. Those constraints are
the same accumulated by ψ, hence the thesis holds since asking for ψ to be
satisfiable is exactly the same as asking for constraint-satisfying field-values to
exists.

Theorem 2.6. Given a trace h = (π, v), the pair (p, t) is in Ẽh iff

t ∈ ε̂(v) ∧ CHECK FLOW(h, p) ∧ CHECK FLOW(REV(h), t(p))

Proof. (p, t) ∈ Ẽh implies by definition t ∈ ε̂(v). We then establish the following,
assuming t ∈ ε̂(v)

(a) ∃p1, . . . , pn+1. p1 = p∧
∀j < n. ψj(pj)∧
∀j ≤ n. ∃tj ∈ ε(lj). tj(pj) = pj+1 ∧

(b) ∃p′1, . . . , p′n+1. p
′
n+1 = t(p)∧

∀j < n. ψj(p
′
j)∧

∀j ≤ n. ∃t′j ∈ ε(lj). t′j(p′j) = p′j+1

is equivalent to

(c) ∃p′′1 , . . . , p′′n+1. p
′′
1 = p ∧ p′′n+1 = t(p)∧

∀j < n. ψj(p
′′
j)∧

∀j ≤ n. ∃t′′j ∈ ε(lj). t′′j (p′′j) = p′′j+1

(c)⇒ (a)∧(b) holds trivially. Now assume (a) and (b) and we build p′′1 , . . . , p
′′
n+1

such that p′′1 = p ∧ p′′n+1 = t(p) satisfying (c). It is sufficient to take, for each

172

j, t′′jw = t′jw if tw 6= id and id otherwise. Then, the thesis follows trivially by
Lemma A.8.

Before proving Theorem 2.7 we prove two auxiliary lemmata.

Lemma A.9. For any trace h and any pair of packets p, p′ that satisfy the
same set of predicates, i.e. such that g(p) = g(p′), the following holds

CHECK FLOW(h, p)⇔ CHECK FLOW(h, p′)

Proof. The statement follows trivially by definition since the p parameter of
CHECK FLOW in Algorithm 3 is only used when checking if it verifies the pred-
icates of the trace.

Lemma A.10. For each trace (π, v), ε̂(v) is in T.

Proof. We will prove separately that

(i) ε̂(l · ID) = ε̂(ID · l) = ε(l)

(ii) ε̂(SNAT · DNAT) = ε̂(DNAT · SNAT) = Λ× Λ

(iii) ε̂(v) = Λ× Λ ∧ l 6= DROP =⇒ ε̂(v · l) = ε̂(l · v) = Λ× Λ

(iv) ε̂(v · DROP) = ε̂(DROP · v) = ε(DROP)

Item (i) holds trivially since ε(ID) = {id}. For (ii) note that ε̂(SNAT · DNAT) =
ε(SNAT) ◦ ε(DNAT); take t ∈ ε̂(SNAT · DNAT), t = t′ ◦ t′′ with t′ ∈ ε(SNAT) and with t′′ ∈
ε(DNAT). By contradiction assume tsIP = tsPort = id, then t′sIP = t′sPort = id,
hence t′ /∈ ε(SNAT); same for DNAT. (iii) holds because id is the identity of ◦ and
because λa ◦ λa′ = λa. (iv) holds by definition of ε̂ and λ⊥.

Theorem 2.7. Ω is a partition of P × TP such that the elements of ωX1,Y,X2

are either all expressible or all not expressible.

Proof. We first prove that Ω is a partition, by separately establishing the two
following statements

(i) ∀(p, t) ∈ P× TP.∃X1, Y,X2. (p, t) ∈ ωX1,Y,X2

(ii) (X1, Y,X2) 6= (X ′1, Y
′, X ′2) ∧ ωX1,Y,X2

6= ωX′1,Y ′,X′2
⇒ ωX1,Y,X2 ∩ ωX′1,Y ′,X′2 = ∅

For (i), take a pair (p, t). If t = λ⊥ then the thesis follows by construction with
X1 = g(p), Y = ε(DROP) and any X2. Otherwise take X1 = g(p) and X2 =
g(t(p)); also if t = id take Y = ε(ID); if tdIP = tdPort = id take Y = ε(SNAT); if
tsIP = tsPort = id take Y = ε(DNAT); in the other cases take Y = Λ× Λ.

For (ii) assume that X1 6= X ′1, and by contradiction that (p, t) ∈ ωX1,Y,X2 ∩
ωX′1,Y ′,X′2 . Then by definition of ωX1,Y,X2 one has X1 = g(p) = X ′1. Instead,
assume Y 6= Y ′ and that (p, t) ∈ ωX1,Y,X2

∩ ωX′1,Y ′,X′2 , then by definition of
ωX1,Y,X2

we know that t ∈ Y and t ∈ Y ′, but T is trivially a partition of
TP, hence Y = Y ′. Finally, assume X2 6= X ′2: if Y = ε(DROP) we get that

173

ωX1,Y,X2 = ωX′1,Y ′,X′2 , contradicting the hypothesis; otherwise let (p, t) be ∈
ωX1,Y,X2 ∩ ωX′1,Y ′,X′2 , then X2 = g(t(p)) = X ′2 holds.

Now we prove that the elements of ωX1,Y,X2
are either all expressible or all

not expressible. By Theorem 2.5 and 2.6, it suffices proving the following, for
each trace h = (π, v), and for each (p, t), (p′, t′) ∈ ωX1,Y,X2

t ∈ ε̂(v) ∧ CHECK FLOW(h, p) ∧ CHECK FLOW(REV(h), t(p))

⇔
t′ ∈ ε̂(v) ∧ CHECK FLOW(h, p′) ∧ CHECK FLOW(REV(h), t′(p′))

We prove the following stronger statements

(a) t ∈ ε̂(v)⇔ t′ ∈ ε̂(v)

(b) CHECK FLOW(h, p)⇔ CHECK FLOW(h, p′)

(c) CHECK FLOW(REV(h), t(p))⇔ CHECK FLOW(REV(h), t′(p′))

From Lemma A.10 we know that ε̂(v) is one of the equivalence classes in T,
hence (a) holds because t, t′ ∈ ε̂(v)⇔ Y = ε̂(v), where Y indexes the considered
ω class. To prove (b) ((c), resp.) it suffices to apply Lemma A.9 to h (REV(h),
resp.).

Theorem 2.8. Epf = Eipfw (Eiptables = EIFCL = P× TP

Proof. The thesis trivially follows from Table 2.3.

Theorem 2.9. Given a language L and a fw-function τ

τ ∈ TL only if ∀p ∈ P. (p, τ(p)) ∈ EL.

Proof. By contradiction assume that ∃ p. (i) τ ∈ TL, and (ii) (p, τ(p)) /∈ EL.
Item (i) implies by definition that ∃f legal for VL is such that L (CL, f) M = τ ,
and hence ∀p ∈ P. L (CL, f) M(p) = τ(p). Finally, item (ii) is equivalent to @f
legal for VL such that L (CL, f) M(p) = τ(p). Contradiction.

Corollary A.1. EL * EL′ ⇒ TL * TL′

Theorem 2.10.

• Tpf (Tipfw (TIFCL

• Tiptables (TIFCL

• Tpf * Tiptables, Tiptables * Tpf

• Tipfw * Tiptables, Tiptables * Tipfw

Proof. IFCL dominates all the other languages by Lemma A.5. Moreover, by
Theorem 2.8 and Corollary A.1, the following holds trivially:

Tiptables * Tipfw Tiptables * Tpf

174

Then we show that (i) Tpf ⊆ T ipfw, we exhibit (ii) a function τ1 that is in
Tipfw but not in Tpf and (iii) a function τ2 that is in Tpf but not in Tiptables.

For proving (i) let f be a configuration legal for Vpf. Then we build an
equivalent configuration f ′ legal for Vipfw such that L (Cpf, f) M = L (Cipfw, f

′) M,
by taking f ′(q0) = f(q1) ◦ f(q0) and f ′(q1) = f(q3) ◦ f(q2) (note that in the
control diagram of ipfw, the cap-labels of q1 are the union of the cap-labels of
q2 and q3 in the control diagram of pf).

To establish (ii), take the following function τ1, where b, b′ ∈ S and c /∈ S.

τ1(p) =

(id : id, λb′ : id) if pdIP = c ∧ psIP = b

λ⊥ if (pdIP = c ∧ psIP = b′)∨
pdIP ∈ S ∨ psIP /∈ S

id otherwise

The function τ1 is in Tipfw, indeed L (Cpf, f) M = τ1 for f as follows.

f(q0)(p) = λ⊥

f(q1)(p) =

(id : id, λb′ : id) if pdIP = c ∧ psIP = b

λ⊥ if (pdIP = c ∧ psIP = b′)∨
pdIP ∈ S

id otherwise

To show that τ1 /∈ Tpf, by contradiction suppose that there is a configuration
f ′ legal for Vpf and such that L (Cpf, f

′) M = τ1. Consider two packets p and
p′ with source b and b′ resp., and the same destination c, which both traverse
the nodes q0 and q1 of pf. It must be f ′(q0)(p) = (id : id, λb′ : id), and
f ′(q0)(p′) = id, transforming the two packets in the same packet p′′ with source
b′ and destination c. Also it must be f ′(q1)(p′′) = id and at the same time that
f ′(q1)(p′′) = λ⊥, because τ1 keeps p and p′ apart: contradiction.

For proving (iii), take the following function τ2, where a, a′, a′′, b and b′ are
in S.

τ2(p) =

(λa′ : id, λb′ : id) if pdIP = a ∧ psIP = b

(λa′ : id, id : id) if pdIP = a ∧ psIP = b′

(λa′ : id, id : id) if pdIP = a′′ ∧ psIP = b

λ⊥ otherwise

The function τ2 is in Tpf, indeed L (Cpf, f) M = τ2 for f as follow.

f(q0)(p) =

{
(id : id, λb′ : id) if pdIP = a ∧ psIP = b

id otherwise

f(q1)(p) =

id if pdIP = a ∧ psIP = b′

id if pdIP = a′′ ∧ psIP = b

λ⊥ otherwise

175

f(q2)(p) =

(λa′ : id, id : id) if (pdIP = a ∧ psIP = b′)

∨(pdIP = a′′ ∧ psIP = b)

id otherwise

f(q3)(p) =

id if pdIP = a′ ∧

(psIP = b ∨ psIP = b′)

λ⊥ otherwise

To show that τ2 /∈ Tiptables, by contradiction suppose that there is a configu-
ration f ′ legal for Viptables and such that L (Ciptables, f

′) M = τ2. Consider two
packets p and p′ with the same source b and with destination a and a′′, resp.
They both traverse the nodes q8 and q5. It must be f ′(q8)(p) = f ′(q8)(p′) =
(λa′ : id, id : id), transforming the two packets in the same packet p′′ with
source b and destination a′. Also it must be f ′(q5)(p′′) = id and at the same
time that f ′(q5)(p′′) = (id : id, λb′ : id), because τ2 keeps p and p′ apart:
contradiction.

We formalize the assumptions of subsection 2.6.5.

Assumption A.1. For every firewall language L

1. Algorithm 4 does not consider any trace (π, v) with π = (q1, . . . qn) and
v = (l1, . . . , ln) where ln = DROP and ∃i. i < n such that either DROP ∈ V (qi)
or li 6= ID;

2. we do not consider configurations f such that, for some p, L (CL, f) M(p) =
λ⊥ and ¬χqi(p), where

χq(p) =

true if q = qf

(DROP ∈ VL(q) ∧ p 6= ⊥ ⇒ t = λ⊥)∧
t ∈ {id, λ⊥} ∧ χδ(q,t(p))t(p) o.w.

with t = f(q)(p);

3. every pair (p, t) is expressed by at most one trace h in HL.

4. The control diagram CL is such that no trace h ∈ HL contains repetitions
of SNAT or DNAT cap-labels.

Lemma A.11. For any language L, legal configuration f , packet p and trans-
formation t, (i) L (CL, f) M(p) = t iff

(ii) ∃(q1, . . . , qn, l1, . . . , ln) ∈ HL.
∃ t1, . . . tn. tn ◦ · · · ◦ t1 = t∧
∀j. f(qj)(pj) = tj ∧ j < n⇒ ψj(pj+1)

where p1 = p and ∀j. pj+1 = (tj ◦ · · · ◦ t1)(p).

176

Algorithm 6 Single packet version of Algorithm 4.

1: function check function(τ , C, V)
2: for all q ∈ Q do g(q)← ∅
3: for all (p, t) ∈ τ do
4: h← compute trace(C, V, (p, t))
5: if h = Null then print (p, t) not expressible
6: else g ← check pair(h, (p, t), g)

7: function compute trace(C, V, (p, t))
8: for all h ∈ HL do
9: if t ∈ ε̂(v) ∧ CHECK FLOW(h, p)∧

CHECK FLOW(REV(h), t(p)) then return h

10: return Null

11: function check pair(h, (p, t), g)
12: (p@, t., t/)← (p, t, (id : id, id : id))
13: for all (q, l) ∈ h do
14: (t@, t.)← split(t., l)
15: for all ((p̃@, t̃/, t̃@), (p̃, t̃)) ∈ g(q) s.t. t̃@ 6= t@ do
16: if p@ = p̃@ then
17: print (p, t) and (p̃, t̃) clash in q : (p@, t@, t̃@)

18: g(q)← g(q) ∪ {((p@, t/, t@), (p, t))}
19: t/ ← t@ ◦ t/
20: p@ ← t@(p@)

21: return g

Proof. Trivially follows from the definition of⊗ and Lemma A.6. As for Lemma A.7,
we can proceed for induction, on the calls of function ⊗ for (i) ⇒ (ii), and on
n for (ii)⇒ (i).

Theorem 2.11. For each firewall language L and fw-function τ , the Algo-
rithm 4 is correct because it prints all and only

1. the τ -pairs (P, t) not expressible by L;

2. the τ -pairs (P, t) and (P̃ , t̃) that clash on some node q.

Proof. We start with item 1), and we note that Algorithm 4 takes ([P], t) out of
each of the τ -pairs (P, t) ⊆ ω ∈ Ω, which by Theorem 2.7 faithfully represents
them all. By Theorem 2.6, checking expressivity for a trace is the same of using
CHECK FLOW as done by function COMPUTE TRACE. Finally, Theorem 2.5
reduces the expressivity of a language to that of its traces.

For proving item 2), we simplify Algorithm 4 to operate on a single pair
(p, t), obtaining Algorithm 6; then the statement follows trivially. Consider

177

Lemma A.11 and an expressible pair (p, t). Because of Property 3, we know
there is only one trace h such that

∃ t1, . . . tn.
tn ◦ · · · ◦ t1 = t ∧ ∀j. f(qj)(pj) = tj ∧ (j < n⇒ ψj(pj+1))

It is trivial to prove that, because of Property 4, for each expressible pair (p, t)
and trace h, there is only one legal way of decomposing t in such t1, . . . tn. Hence
L (CL, f) M(p) = t iff

∀j. f(qj)(pj) = tj ∧ (j < n⇒ ψj(pj+1))

with h returned by COMPUTE TRACE, and t1, . . . tn unique legal decomposition
of t.

Note that, as h and t1, . . . tn are uniquely determined, we can show that
∀j. f(qj)(pj) = tj ⇒ (j < n ⇒ ψj(pj+1)). Indeed, the opposite would im-
ply that (p, t) is not expressible, leading to a contradiction. Hence, we can
finally conclude that L (CL, f) M(p) = t iff ∀j. f(qj)(pj) = tj with h returned by
COMPUTE TRACE, and t1, . . . tn unique legal decomposition of t. To show the
correctness of Algorithm 6 it is then sufficient to prove that the list of trans-
formations t@ generated by Algorithm 6 is a legal decomposition of t, which is
true by definition of SPLIT.

Corollary 2.1. A fw-function τ is expressible by L if and only if Algorithm 4
prints nothing.

Proof. We show that τ is expressible by L (i.e. τ ∈ TL) iff

1. all pairs (p, τ(p)) are expressible by L;

2. no pairs (p, τ(p)) and (p̃, τ(p̃)) collide on some node q.

τ ∈ TL ⇒ (1), (2) trivially holds. Conversely, assume (1) and (2). For each
pair (p, τ(p)) there is only one possible trace and decomposition of t. Thus, we
can accumulate the set of conditions on f , that are necessary and sufficient to
have L (CL, f) M(p) = τ(p). Each of these conditions states that f(q@)(p@) = t@
for some q@, p@ and t@. Hence, for any p ∈ P we build a set Fp of triplets
(q@, p@, t@) such that, for any legal configuration f

L (CL, f) M(p) = τ(p)⇐⇒ ∀(q@, p@, t@) ∈ Fp. f(q@)(p@) = t@

We build then the following configuration f :

∀q, p. f(q)(p) =

{
t if (q, p, t) ∈

⋃
p∈P Fp

id o.w.

Note that f is indeed a function because we assume there are no clash.

178

Appendix B

Technical Details and
Proofs of Chapter 3

B.1 Formalizing CIL

CIL has qualified names, i.e., names prefixed by a path ρ in the nesting of
blocks and macros. ρ is a list of elements separated by dots. In CIL, qualified
names from the global namespace start with a dot (.). We instead use the
distinguished symbol #. Global qualifications σ start from the global namespace
#; other qualifications are called relative (e.g., #.A.a is globally qualified, A.a
is a relatively qualified).

The syntax of a CIL configuration is as follows, where [F] represents lists of
F entities, and CIL is the starting symbol.

CIL ::= [rule]

rule ::= declaration | command
declaration ::= (block n CIL) | (typeattribute n)

| (type n) | (macro n([x])(CIL))

command ::= (allow a a (class (perms)))

| (typeattributeset a (expr))

| (call m([a])) | (blockinherit B)

Here n, n′, . . . are unqualified names (of types, typeattributes, macros or blocks);
x, x′, . . . are formal parameter names; a, a′, . . . are types and typeattributes
(possibly qualified); m,m′, . . . are macro (possibly qualified) names; B,B′, . . .
are block (possibly qualified) names. Furthermore, we will use g, g′, . . . for
possibly qualified names of macros or blocks, and p, p′, . . . for possibly qualified
names in general. Finally, we use B#, B

′
#, . . . to refer to either # or a block

name B.
We abstractly represent a CIL configuration as a set of pairs (σ, r), where

the rule r occurs in the namespace σ.

179

evalσ;#(B) = B′
(N-1)

(σ, inherit B)→ (σ, inherit B′)

(σ, inherit B) ∈ Γ (B.ρ, r) ∈ Γ
(N-2)

add(σ.ρ, r)

evalσ;#(m) = m′
(N-3)

(σ, call m([a]))→ (σ, call m′([a]))

(σ, call m([a])) ∈ Γ (m, d) ∈ Γ
(N-4)

add(σ, d)

a occurs in c

evalm(a) = a′ 6= ⊥
evalm(a) = ⊥

(N-5a)
(m, c)→ ((m, c{a′/a})

(σ, call σ′.n([a])) ∈ Γ
(σ′.n, c) ∈ Γ

(σ′,macro m([x])) ∈ Γ
(¬∃m′, a′ : (σ′.n, call m′[a′]) ∈ Γ)

(N-5b)
add(σ, c{[a]/[x]})

(σ, call m([a])) ∈ Γ
(¬∃m′, [a′] : (m, call m′[a′]) ∈ Γ)

(N-5c)
remove(σ, call m([a]))

a occurs in c evalB#;#(a) = a′

(N-6)
(B#, c)→ (B#, c{a′/a})

Figure B.1: CIL normalization rules.

(B#, type n) ∈ Γ
(S-N1)

B#.n ∈ N
(B#, typeattribute n) ∈ Γ

(S-N2)
B#.n ∈ N

(B#, type n) ∈ Γ
(S-ta1)

(B#.n,B#.n) ∈ ta

(B#, typeattributeset a (expr))) ∈ Γ (B′#, type n) ∈ Γ JexprKΓ(B′#.t)
(S-ta2)

(a,B′#.t) ∈ ta

(B#, allow t t′ (class (perms))) ∈ Γ
(S-A1)

(t, perms, t′) ∈ A

(t1, perms, t2) ∈ A t1′ ∈ ta(t1) t2′ ∈ ta(t2)
(S-A2)

(t1′, perms, t2′) ∈ A

Figure B.2: CIL semantics.

180

Assume as given a set of CIL rules Γ. We define the following function
evalkσ(p) to resolve names, where p = ρ.n (the qualification ρ is possibly empty,
and n is the unqualified name) occurring in the globally qualified block or macro
σ, and where k ∈ {type, typeattribute, block, macro} indicates that we are
resolving a type, a typeattribute, etc. This function returns a fully qualified
name for p, or ⊥ is resolution is not possible in σ.

evalkσ(ρ.n) =

ρ.n if ρ = #.ρ′

σ.ρ.n if ρ = #.ρ′ ∧
(σ.ρ, k n) ∈ Γ

⊥ otherwise

Since typeattributes are treated as types in CIL, we abuse notation and simply
write evaltypeσ (a) for the function defined as evaltypeσ (a) if its result is different
from ⊥, and as evaltypeattributeσ (a) otherwise. Moreover, we omit k, assuming
that the correct parameter is used. In CIL, a name that cannot be resolved
in the namespace in which it occurs is often resolved in its parent namespace
(recursively). We formalize this as follows

eval
k

σ(p) =

evalkσ(p) if evalkσ(p) 6= ⊥
eval

k

σ′(p) if evalkσ(p) = ⊥ ∧
σ = σ′.n with σ′ 6= #

⊥ otherwise

Moreover, it is common that a name is resolved in the global namespace if
the resolution in the block or macro in which the name is used fails. We will
write evalσ;σ′(p) for a function that, evaluates p in σ unless the result is ⊥, and
evaluates it in σ′ otherwise.

The CIL normalization pipeline consists of the six rewriting rules in Fig-
ure B.1, with applicability conditions in the upper part and an action in the
lower one. We denote rules by r, r′, . . . ; declarations by d, d′, . . . ; and commands
by c, c′, The conditions predicate on the configuration in hand, and the ac-
tions either prescribe: (i) to rewrite a rule in Γ, as in (σ, r)→ (σ′, r′); (ii) to add
a rule in Γ, as in add (σ, r); and (iii) to remove a rule from Γ, as in remove(σ, r).
Each phase is iterated until a fixpoint is reached, with the only exception being
the fifth phase. The fifth phase is a sub-pipeline where rule (N-5a) is applied
first, then rule (N-5b), and finally (N-5c). In the fifth phase, each rule and the
whole pipeline are applied until a fixpoint is reached.

The rules for CIL’s semantics are given in Figure B.2, which yield the graph
G = (N, ta,A). Since attribute expressions expr are indeed boolean functions
on types and typeattributes, we assume a denotational semantics JexprK : N →
{true, false}.

181

(node)
n �n ∗

o ⊆ o′
(op)

o �o o′
(arrow)

> �a + >

o �o o′ w �a w′
(o-arrow)

(w, o) �oa (w′, o′)

P1 �P P ′1 P2 �P P ′2
(comp)

P1P2 �P P ′1P ′2

n1 �n n′1 n2 �n n′2 oa �oa oa′
(P-1)

n1 oa n2 �P n′1 oa′ n′2

n1 �n n′1 n2 �n n′2 o1 �o o′1 o1 �o o′2 o2 �o o′2
(P-2)

n1 + [o1] > ∗ [o2] > n2 �P n′1 [o′1] > ∗ + [o′2] > n′2

n1 �n n′1 n2 �n n′2 o1 �o o′ o2 �o o′
(P-3)

n1 + [o1] > ∗ + [o2] > n2 �P n′1 + [o′] > n′2

n1 �n n′1 n2 �n n′2 o1 �o o′1 o2 �o o′2 o2 �o o′1
(P-4)

n1 [o1] > ∗ + [o2] > n2 �P n′1 + [o′1] > ∗ [o′2] > n′2

P �P P ′
(R-1)

P � P
P �P P ′

(R-2)
˜P ′ � ˜P

P1 �P P ′1 P2 �P P ′2
(R-3)

P ′1 : P2 �P P1 : P ′2

Figure B.3: Definition of IFL requirement refinement and auxiliary relations.

B.2 IFL: Proofs

IFL requirement refinement is defined by the � operator in Figure B.3, where
reflexivity and transitivity rules are implicitly assumed for every defined relation,
and where arrows > or + > are sometimes represented by w, and an arrow w
labeled with a set of operations o is represented as a pair (w, o) (e.g., +[{read}] >
is represented as (+ >, {read})).

Lemma B.1 (Kind refinement). Let I be an information flow diagram, if P �
P ′ then for all path π in I, π .I P implies π .I P

′

Proof. Assume π .I P and not π .I P
′ and proceeds by proving for each rule in

Figure B.3 and for arbitrary π that if the lemma holds on the premises, that it
also does on the conclusion.

Consider rule (comp), and let i ∈ {1, 2}. From πi .I Pi we have that πi .I P
′
i .

Then π1π2 .I P
′
1P
′
2 by the definition of ..

Consider rule (P-1) and proceed by cases on the form of the arrow in oa.
If the arrow is > then from π .I (n1[o] > n2) we know that π = (n′′1 , o

′′, n′′2)
(since this is the only possible case in the definition of .). We also know that
n′′1 ∈ ta(n1) or n1 = ∗, but since n1 � n′1 either n1 = n′1 or n′1 = ∗, and then
n′′1 ∈ ta(n′1) or n′1 = ∗. Similarly for n′′2 . Finally, from the definition of . we
also know that o ∩ o′′ 6= ∅, but since o � o′, o ⊆ o′, thus o ∩ o′ 6= ∅. All the
requirements for π .I (n′1[o′] > n′2) are thus verified. If the arrow is + >, two
rules in the definition of . may be used. The first one has same condition of the

182

previous case, and the second one requires induction on the occurrences of the
previous case (note that ∗ � ∗).

Consider rule (P-2) and assume π .I n1 + [o1] > ∗ [o2] > n2. Then, by
the definition of . we have that π = π′(n, o, n′′2) with π′ .I n1 + [o1] > ∗;
n′′2 ∈ ta(n2) if n2 6= ∗, and o ∩ o2 6= ∅. From π′ .I n1 + [o1] > ∗ it follows that
either π′ = (n′′1 , o

′, n′) or π′ = (n′′1 , o
′, n′)π′′; in both cases n′′1 ∈ ta(n1) if n1 6= ∗,

and o′ ∩ o1 6= ∅. If π′ = (n′′1 , o
′, n′) then the thesis holds since π′ .I n

′
1 [o′1] > ∗

and (n, o, n′′2).I ∗[o′2] > n′2 (thus (n, o, n′′2).I ∗+[o′2] > n′2 by the definition of .).
If π′ = (n′′1 , o

′, n′)π′′, then from π′ .I n1 + [o1] > ∗ and all (n′′, o′′, n′′′) in π′,
o′′ ∩ o1 6= ∅ holds. The thesis follows, since o1 � o′2, π′′(n, o, n′′2) .I ∗+ [o′2] > n′2.

Consider rule (P-3) and assume π .I n1 + [o1] > ∗ + [o2] > n2. Then
split π as π′π′′ such that π′ .I n1 + [o1] > ∗ and π′′ .I ∗ + [o2] > n2. From
π′ .I n1 +[o1] > ∗, the first element of π′ is some (n, o, n′) such that n ∈ ta(n1)
if n1 6= ∗ and thus that n ∈ ta(n′1) if n′1 6= ∗. Moreover, for every (n′′1 , o

′
1, n
′′
2)

in π′, o′1 ∩ o1 6= ∅. From π′′ .∗ +[o1] > n2, the last element of π′ is some
(n′′, o′′, n′′′) such that n′′′ ∈ ta(n2) if n2 6= ∗ and thus n ∈ ta(n′1) if n′1 6= ∗.
Moreover, for every (n′′′1 , o

′
2, n
′′′
2) in π′′, o′2 ∩ o2 6= ∅. Finally, since o1 � o′, and

o2 � o′, for every (, o′′′,) in π, o′′′ ∩ o′ 6= ∅.
The proof of rule (P-4) is almost the same of the one of (P-2).

Theorem 3.1 (Refinement). Let I be an information flow diagram, and let R′
and R be two IFL requirements such that R′ � R. Then

I |= R′ ⇒ I |= R.

Proof. We consider the rules in Figure B.3, and for arbitrary I we show that if
the premises are met, then the theorem holds for the conclusion.

Consider rule (R-1) and assume that I |= P , then there exists a path π in I
such that π .I P . Since P � P ′, π .I P ′ by Lemma B.1, thus I |= P ′.

Consider rule (R-2), and assume that I |= ˜P ′. We proceed by refutation,
assuming I 6|= ˜P and showing a contradiction. By the definition, I 6|= ˜P
implies I |= P and thus there exists a path π in I such that π .I P . Since
P � P ′, π .I P ′ by Lemma B.1 and thus I |= P ′, i.e., I 6|= ˜P ′.

Consider rule (R-3), and assume that I |= P ′1 : P2. We proceed by refutation,
assuming I 6|= P1 : P ′2 and showing a contradiction. By the definition, I 6|= P1 :
P ′2 implies that there exists a path π in I such that π .I P1 and not π .I P

′
2.

Since P1 � P ′1, π .I P
′
1 by Lemma B.1. Thus, since I |= P ′1 : P2, π .I P2 must

hold, but since P2 � P ′2, then π .I P
′
2 must also hold.

The (not always defined) greatest lower bound, and least upper bound of a
pair of requirements φ and φ′ are represented as φu φ′, and φt φ′ respectively.

183

evalσ;#(B) = B′
(N-1)

(σ, inherit B R)→ (σ, inherit B′ R)

(σ, inherit B R) ∈ Γ
(B.ρ, r) ∈ Γ

(N-2)
add(σ.ρ, r)

(σ, inherit B R) ∈ Γ
(B.ρ, ;IFL; (l) φ ;IFL;) ∈ Γ
;IFL;(l′ : ρ.l) φ′;IFL; ∈ R

(N-2’)
add(σ.ρ, ;IFL;(l′) φ′ u φ ;IFL;)

(σ, inherit B R) ∈ Γ
(B.ρ, ;IFL; (l) φ ;IFL;) ∈ Γ

¬∃l′, φ′ : ;IFL;(l′ : ρ.l) φ′;IFL; ∈ R
(N-2”)

add(σ.ρ, ;IFL;(l′) φ ;IFL;)

evalσ;#(m) = m′
(N-3)

(σ, call m([a]) R)→ (σ, call m′([a]) R)

(σ, call m([a]) R) ∈ Γ
(m, d) ∈ Γ

(N-4)
add(σ, d)

a occurs in c

evalm(a) = a′ 6= ⊥
evalm(a) = ⊥

(N-5a)
(m, c)→ ((m, c{a′/a})

(σ, call σ′.n([a]) R) ∈ Γ
(σ′.n, c) ∈ Γ

(σ′,macro m([x])) ∈ Γ
(¬∃m′, a′, R′ : (σ′.n, call m′[a′] R′) ∈ Γ)

(N-5b)
add(σ, c{[a]/[x]})

(σ, call σ′.n([a]) R) ∈ Γ
(σ′.n, ;IFL;(l) φ ;IFL;) ∈ Γ

(σ′,macro m([x])) ∈ Γ
(¬∃m′, a′, R′ : (σ′.n, call m′[a′] R′) ∈ Γ)

;IFL;(l′ : l) φ′;IFL; ∈ R
(N-5b’)

add(σ, ;IFL;(l′) (φ u φ′){[a]/[x]} ;IFL;)

(σ, call σ′.n([a]) R) ∈ Γ
(σ′.n, ;IFL;(l) φ ;IFL;) ∈ Γ

(σ′,macro m([x])) ∈ Γ
(¬∃m′, a′, R′ : (σ′.n, call m′[a′] R′) ∈ Γ)
¬∃l′, φ′ : ;IFL;(l′ : l) φ′;IFL; ∈ R

(N-5b”)
add(σ, ;IFL;(l) φ{[a]/[x]} ;IFL;)

(σ, call m([a]) R) ∈ Γ
(¬∃m′, [a′] : (m, call m′[a′] R) ∈ Γ)

(N-5c)
remove(σ, call m([a]) R)

a occurs in c evalB#;#(a) = a′

(N-6)
(B#, c)→ (B#, c{a′/a})

Figure B.4: IFCIL normalization rules.

184

B.3 Syntax and semantics of IFCIL

The grammar for IFCIL is obtained by updating the two rules of command
concerning call and blockinherit in the following way.

command ::= (call m([a]) [IFLrefinement])

| (blockinherit B [IFLrefinement])

Moreover, the following rules are added to the grammar.

command ::= IFLrequirement

IFLrequirement ::= ;IFL; (label) R ;IFL;

IFLrefinement ::= ;IFL; (label : label) R ;IFL;

In the normalization pipeline, the rules are updated as shown in Figure B.4,
where r and c are rules and commands that are not IFL requirements. The
normalization procedure is the same as CIL, where rules (N-i), (N-i’), and (N-
i”) are applied together during phase i (1 ≤ i ≤ 6).

The semantics (G,R) of a IFCIL configuration Σ is obtained by applying
the rules in Figure B.2 for G, and the following one for R.

(B#, ;IFL;(l) φ ;IFL;) ∈ Γ
(S-R)

φ ∈ R

B.4 Verification: Proofs

In the following we will consider the redefinition of the grammar of P in Sec-
tion 3.4, and the following definition of .I , which is trivially equivalent to the
original one.

(n, o, n′) .I m [o′]> m′ iff (m = ∗ ∨ n ∈ ta(m))

∧ (m′ = ∗ ∨ n′ ∈ ta(m′))

∧ o ∩ o′ 6= ∅
(n, o, n′) .I m +[o′]> m′ iff (n, o, n′) .I m [o′]> m′

(n, o, n′)π .I m [o′]> m′ P iff (n, o, n′) .I m [o′]> ∗
∧ π .I P

(n, o, n′)π .I m +[o′]> m′ P iff ((n, o, n′) .I m +[o′]> ∗
∧ π .I P)

∨ ((n, o, n′) .I m +[o′]> ∗
∧ π .I ∗ +[o′]> ∗ P)

Given a path π = (n0, o0, n1)(n1, o1, n2) . . . (nm−1, om−1, nm) in an information
diagram I with K its KTS, we define $π% as the set of paths w in K such
that w = w′w′′, where w′ = (n0, op0, o1)(n1, op1, n2) . . . (nm−1, opm−1, nm), and
∀i : opi ∈ oi.

185

Lemma B.2. Let π be a path in the information diagram I with K its KTS,
and let P be a information flow kind. Then

(1) π .I P ⇒ ∃w ∈$π% : w |= $P%
(2) w |= $P%⇒ ∃π : w ∈$π% ∧ π .I P.

Proof. We proceed by induction on P . For P of the form m [o′]> m′ or m +[o′]> m′

the properties trivially hold. For the last two cases of P , we separately prove
(1) and (2).

Case P = m [o′]> m′ P ′. Consider (1) and assume π .I P . By the definition
of .I , π = (n, o, n′) π′, with o∩o′ 6= ∅. We also know by the induction hypothesis
that there exists a w′ ∈ $π′% such that w′ |= $P ′%. Since o ∩ o′ 6= ∅, there
exists an op ∈ o ∩ o′. Take w = (n, op, n′) w′. Then w ∈ $π% holds by the
definition, and also w |= $P%.

Consider now (2), and assume w |= $P%. Since $P% = m ∧
∨
op∈o′(op) ∧

X($P%), w = (n, op, n′)w′ with n ∈ ta(m) and op ∈ o′ trivially follows from the
semantics of LTL. We also know by the induction hypothesis that there exists
π′ such that π′ ∈ $w′% and π′ .I P

′. Take π = (n, {op}, n′)π′. Then w ∈ $π%
holds by the definition, and also π .I P .

Case P = m +[o′]> m′ P ′. Consider (1) and assume π .I P . We separately
consider the two disjunctive cases of the definition of . for this case. If (n, o, n′).I
m +[o′]> ∗ ∧ π .I P), then the proof is similar to the one for P = m [o′]> m′ P ′.
Otherwise, by the definition of .I we have that π = (n, o, n′) π′ with (n, o, n′).I
m+[o′] > ∗ and π′ .I ∗+[o′] > ∗ P ′. By the definition ocapo′ 6= ∅ and thus take
op ∈ ocapo′. By the definition, π′ .I ∗+[o′] > ∗ P ′ implies that π′ = π′′ π′′′ such
that π′′ .I ∗+ [o′] > ∗ and π′′′ . P ′. Let π′′ = (n1, o1, n2) . . . (np−1, op−1, np), by
the definition of .I , for each i there exists an opi ∈ o′∩oi. Since π′′′ .P ′, by the
induction hypothesis, there exists a w′ such that w ∈$π′′′% and w′′′ |= P ′. Then
the thesis trivially holds for w = (n, op, n′)(n1, op1, n2) . . . (np−1, opp−1, np)w

′.
Consider now (2) and assume w |= $P%. We have that w |= m∧

∨
op∈o’(op)∧

X(
∨

op∈o’(op) U $P ′%). By the semantics of LTL, this implies that w =

(n, op, n′)(n1, op1, n2) . . . (np−1, opp−1, np)w
′, with w′ |= $P ′%, op ∈ o′, and ∀i :

opi ∈ o′. By the induction hypothesis, there exists a π′ such that w′ ∈$π′% and
π′ .I P

′. Take π = (n, {op}, n′)(n1, {op1}, n2) . . . (np−1, {opp−1}, np)π′. Then
w ∈$π% trivially holds by the definition. Finally, if p = 0, then the first case in
the definition of .I for π.I m +[o′]> m′ P ′ holds; otherwise the second case holds
since (n, o, n′) .I m +[o′]> ∗, (n1, {op1}, n2) . . . (np−1, {opp−1}, np) .I ∗+[o′]>∗,
and π′ .I P

′.

Lemma B.3. Let I be an information diagram with K its KTS, then W =⋃
π in I$π%.

Proof. Trivially follows from the definition of K and $π%.

186

Theorem 3.2 (Correctness). Let Σ be an IFCIL configuration with require-
ments R, let I be its information flow diagram, and let K be the KTS of Σ.
Then

K ` R ⇒ I |= R.

Proof. We prove ∀R : K ` R ⇒ I |= R, considering all possible forms for R,
and assuming K ` R.

If R = P , ¬∀w ∈ W : w |= ¬$P%. Equivalently, there exists a w ∈ W such
that w |= $P%. By Lemma B.2, there exist a path π in I such that w ∈ $π%
and π .I P , hence I |= R.

If R = ˜P , ∀w ∈W : w |= ¬$P%. Assume by refutation that ¬I |= R, then
I |= P , i.e., there exists a π in I such that π .I P . But then, from Lemma B.2,
we know that exists a w̄ ∈$π% ⊆W such that w̄ |= $P%, and thus w̄ |= ¬$P%
does not hold.

If R = P : P ′, ∀w ∈ W : w |= ¬$P% ∨ w |= $P u P ′%. By Lemma B.2
and B.3, this implies that ∀π in I either π .I P does not hold or π .I P u P ′.
By Lemma B.1 and definition of u, the latter implies that π .I P

′, and thus the
thesis follows.

187

Appendix C

Technical Details and
Proofs of Chapter 4

C.1 CLNL* Immersion: Proofs

In the following we use `CLNL and `CLNL∗ for computational sequents in CLNL
and CNLN* respectively. Before proving the correctness of CLNL* deduction
rules, we give the following straightforward lemma.

Lemma C.1. For all Ψ, ϕ and ϕ′, if ϕ ⊆ ϕ′ then, ϕ′′ and a CLNL proof Πϕ,ϕ′

exist such that
Πϕ,ϕ′

Ψ;ϕ′ ` ϕ⊗ ϕ′′

Proof. By trivial induction on the cardinality of ϕ′ using (L-Ax), (⊗-left), (⊗-
right).

For convenience, we also enrich CLNL with the extra rule (LL-cut′), defined
as

Ψ; Φ ` ϕ Ψ; Φ′, ϕ ` ϕ′
(LL-cut′)

Ψ; Φ,Φ′ ` ϕ′

This rule is clearly admissible in CLNL, every occurrence can be substituted by

Ψ; Φ ` ϕ Ψ; Φ′, ϕ ` ϕ′
(LL-cut)

Ψ,Ψ; Φ,Φ′ ` ϕ′
(L-Cont)

Ψ; Φ,Φ′ ` ϕ′

We also enrich CNLN* with the extra rule (((-Merge’), that generalizes

188

(((-Merge), and is clearly derivable by multiple applications of (((-Merge).

Ω; Θ,

ni⊗
j=1

δi,j ((
ni⊗
j=1

δ′i,j

∣∣∣∣∣∣ i ∈ [1, k]

 ,∆,S ` S

(((-Merge’)
Ω; Θ, {δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]},∆,S ` S

We give the following auxiliary lemma.

Lemma C.2. If
⊗n

i=1 δ
′
i ⊆

⊗n
i=1 δi then, a LNLC proof exists for

{δi((δ′i | i ∈ [1, n]} `
n⊗
i=1

δi

Proof. The LNLC proof is

Π⊆1

n⊗
i=1

δi ` δ1 ⊗ ϕ Π1,n

(((-fix)

{{δi((δ′i | i ∈ [1, n]} `
n⊗
i=1

δi

Where Πj,n is defined recursively as

Π0
(((-fix)

{δi | i ∈ [1, n]} `
n⊗
i=1

δi

if j = n, and otherwise as

Π⊆j+1

n⊗
i=1

δi ` δj+1 ⊗ ϕ Πj+1,n

(((-fix)

{δi | i ∈ [1, j]}, {δi((δ′i | i ∈ [j + 1, n]} `
n⊗
i=1

δi

for suitable Π0 and Π⊆j for j ∈ [1, n].
The existence of Π⊆j trivially follows from Lemma C.1. The proof Π0 is

simply obtained by applying (L-Ax) and (⊗-right).

We now prove the main result.

Theorem 4.1 (CLNL* immersion). For all Ω, Θ, ∆, S and S,

Ω; Θ,∆,S ` S

is valid in CLNL* only if it is valid in CLNL.

189

Proof. We prove that If a proof ΠCLNL∗ exists in CLNL* for a computational
sequent, then a proof ΠCLNL exists in CNLN for the same sequent.

The only rules of ΠCLNL∗ that are not shared by CLNL are (((-Spend),
and (((-Merge’), thus we have only to prove that their occurrences can be
substituted with CLNL derivations. We prove it by induction on the length of
ΠCLNL∗. The case of depth 1 is trivial, no proof can contain((rules since the
only two rules without premises are (I-right) and (L-Ax).

Assume the thesis holds for any proof of depth m, and take Π of length
m + 1. We reduce to the case in which (((-Spend) or (((-Merge) is the last
rule of ΠCLNL∗, in all other cases the thesis trivially follows from induction
hypothesis.

Case (((-Spend): Assume the last rule of ΠCLNL∗ to be (((-Spend),
then ΠCLNL∗ is

δ ⊆ δ′
Π′CLNL∗

Ω; Θ,∆, δ′,S ` S
(((-Spend)

Ω; Θ, δ((δ′,∆,S ` S

for some Π′CLNL∗ of depth m. By induction hypothesis on Π′CLNL∗, and by
Lemma C.1, exist Π′CLNL and Πδ,δ′ such that

Πδ,δ′

δ′ ` δ ⊗ ϕ
(L-Ax)

δ′ ` δ′
(((-fix)

δ((δ′ ` δ′
Π′CLNL

Ω; Θ,∆, δ′,S ` S
(LL-cut)

Ω; Θ, δ((δ′,∆,S ` S

Case (((-Merge’): Finally, assume the last rule of ΠCLNL∗ to be (((-
Merge’), then ΠCLNL∗ is

Π′CLNL∗

Ω; Θ,

ni⊗
j=1

δi,j ((
ni⊗
j=1

δ′i,j

∣∣∣∣∣∣ i ∈ [1, k]

 ,∆,S ` S

(((-Merge’)
Ω; Θ, {δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]},∆,S ` S

for some Π′CLNL∗ with depth m.
We proceed by cases on the last rule (r) of Π′CLNL∗.
Case (r) = (L-Cont), (L-Weak), (L-∧-left1), (L-∧-left2), (G-left),

(⊗-left-Θ), (⊗-left-∆) or (⊗-left-S): The property trivially holds for the
following rules: (L-Cont), (L-Weak), (L-∧-left1), (L-∧-left2), (G-left), (⊗-left-
Θ), (⊗-left-∆), (⊗-left-S). Indeed, when considering them bottom-up, none
of them removes or modifies Θ, thus, δ ⊗ δ′′ ((δ′ ⊗ δ′′′ is unchanged in the

190

premises of these rules. Formally, for any of these rules, the proof ΠCLNL∗ is

Π′′CLNL∗

Ω′; Θ′,Θ′Merge,∆
′,S′ ` S

(r)
Ω; Θ,Θ′Merge,∆,S ` S

(((-Merge’)
Ω; Θ,ΘMerge,∆,S ` S

for some Π′′CLNL∗ of depth m − 1 and for suitable ΘMerge and Θ′Merge. This
proof can be rewritten as

Π′′CLNL∗

Ω′; Θ′,Θ′Merge,∆
′,S′ ` S

(((-Merge’)
Ω′; Θ′,ΘMerge,∆

′,S′ ` S
(r)

Ω; Θ,ΘMerge,∆,S ` S

By induction hypothesis on the proof of length m

Π′′CLNL∗

Ω′; Θ′,Θ′Merge,∆
′,S′ ` S

(((-Merge’)
Ω′; Θ′,ΘMerge,∆

′,S′ ` S

we know that a proof Π′CLNL exists in CLNL such that

Π′CLNL

Ω′; Θ′,ΘMerge,∆
′,S′ ` S

(r)
Ω; Θ,ΘMerge,∆,S ` S

Case (r) = (L-→-left), ((-left), (⊗-right): A similar procedure applies to
these rules, with the only difference that they have two premises.

Case (r) = (((-Spend): If the last rule of Π′CLNL∗ is (((-Spend), the
proof ΠCLNL∗ is

δ ⊆ δ′
Π′′CLNL∗

Ω; Θ′,∆, δ′,S ` S
(((-Spend)

Ω; Θ,

ni⊗
j=1

δi,j ((
ni⊗
j=1

δ′i,j

∣∣∣∣∣∣ i ∈ [1, k]

 ,∆,S ` S

(((-Merge’)
Ω; Θ, {δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]},∆,S ` S

for some suitable Θ′, δ, δ′, and Π′′CLNL∗ of depth m − 1. In the following let
ΘMerge and Θ′Merge be

{δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]} and

ni⊗
j=1

δi,j ((
ni⊗
j=1

δ′i,j

∣∣∣∣∣∣ i ∈ [1, k]

191

respectively. We consider two cases, either δ ((δ′ is in Θ, or it is in Θ′Merge.
Assume δ ((δ′ is in Θ, then Θ′ = (Θ \ {δ ((δ′}),Θ′Merge. Thus we can
rewrite the proof in the following form and reduce to a previous case.

δ ⊆ δ′

Π′′CLNL∗

Ω; Θ′,∆, δ′,S ` S
(((-Merge’)

Ω; Θ \ {δ((δ′},ΘMerge,∆, δ
′,S ` S

(((-Spend)
Ω; Θ,ΘMerge,∆,S ` S

Otherwise, δ((δ′ is in Θ′Merge, i.e.,

δ =

nq⊗
j=1

δq,j and δ′ =

nq⊗
j=1

δ′q,j

for some q ∈ [1, k]. Then Θ′ = Θ, (Θ′Merge \ {δ ((δ′}), and the proof can be
rewritten as follows.

δ ⊆ δ′

Π′′CLNL∗

Ω; Θ′,∆, δ′,S ` S
(((-Merge’)

Ω; Θ, {δi,j ((δ′i,j | i 6= q ∈ [1, k], j ∈ [1, ni]},∆, δ′,S ` S
(((-Spend)

Ω; Θ, δ((δ′, {δi,j ((δ′i,j | i 6= q ∈ [1, k], j ∈ [1, ni]},∆,S ` S
(((-Merge’)

Ω; Θ, {δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]},∆,S ` S

By induction hypothesis on the proof of length m

Π′′CLNL∗

Ω; Θ′,∆, δ′,S ` S
(((-Merge’)

Ω; Θ, {δi,j ((δ′i,j | i 6= q ∈ [1, k], j ∈ [1, ni]},∆, δ′,S ` S

a proof ΠCLNL−right exists in CLNL for

Ω; Θ, {δi,j ((δ′i,j | i 6= q ∈ [1, k], j ∈ [1, ni]},∆, δ′,S ` S

By Lemma C.2, a proof ΠCLNL−left exists in LNLC for

{δq,j ((δ′q,j | j ∈ [1, ni]} `
n⊗
j=1

δ′q,j

Then, a CLNL proof exists

ΠCLNL−left ΠCLNL−right
(LL-cut)

Ω; Θ, {δi,j ((δ′i,j | i ∈ [1, k], j ∈ [1, ni]},∆,S ` S

Case (r) = (((-Merge’): Finally, let the last rule of Π′CLNL∗ be ((
(-Merge’). Without loosing generality we assume the two (((-Merge’) rules

192

applies on the same set (note that ni may be 1 for some i). Then the proof is
as follows.

Π′′CLNL∗

Ω; Θ,

nz⊗
i=1

nz,i⊗
j=1

δz,i,j ((
nz⊗
i=1

nz,i⊗
j=1

δ′z,i,j

∣∣∣∣∣∣ z ∈ [1, k]

 ,∆,S ` S

(((-Merge’)

Ω; Θ,

nz,i⊗
j=1

δz,i,j ((
nz,i⊗
j=1

δ′z,i,j

∣∣∣∣∣∣ z ∈ [1, k], i ∈ [1, nz]

 ,∆,S ` S

(((-Merge’)
Ω; Θ, {δz,i,j ((δ′z,i,j | z ∈ [1, k], i ∈ [1, nz]j ∈ [1, nz,i]},∆,S ` S

And it can be rewritten in the following way as a proof of length m.

Π′′CLNL∗

Ω; Θ,

(nz,nz,i)⊗

(i,j)=(1,i)

δz,i,j ((
(nz,nz,i)⊗

(i,j)=(1,i)

δ′z,i,j

∣∣∣∣∣∣ z ∈ [1, k]

 ,∆,S ` S

(((-Merge’)
Ω; Θ, {δz,i,j ((δ′z,i,j | z ∈ [1, k], i ∈ [1, nz]j ∈ [1, nz,i]},∆,S ` S

Thus the thesis fallows by induction hypothesis.

C.2 CLNL* Decidability: Proofs

We start by reducing to decide normalized proofs only. Then we prove that our
algorithm is correct.

C.2.1 Normalized CLNL* proofs

We will prove the normalization of CLNL* proofs by mapping them to proofs
in a derived logic, called CLNL*2. Then we will reorder proofs in CLNL*2 and
map them back to CLNL* where a final reordering takes place.

Let CLNL*2 be the logic defined exactly as CLNL* but for the rules ((-left)
and (⊗-right) that are substituted with the following.

Ω; Θ,∆,S ` S Ω′; Θ′,∆′,S′, S′ ` S′′
((-left’)

Ω,Ω′; Θ,Θ′,∆,∆′,S,S′, S (S′ ` S′′

Ω; Θ,∆,S ` S Ω′; Θ′,∆′,S′ ` S′
(⊗-right’)

Ω,Ω′; Θ,Θ′,∆,∆′,S,S′ ` S ⊗ S′

Lemma C.3. ((-left’) is a derivable in CLNL* as

Ω; Θ,∆,S ` S
(L-Weak)

Ω,Ω′; Θ,∆,S ` S

Ω′; Θ′,∆′,S′, S′ ` S′′
(L-Weak)

Ω,Ω′; Θ′,∆′,S′, S′ ` S′′
((-left)

Ω,Ω′; Θ,Θ′,∆,∆′,S,S′, S (S′ ` S′′

193

and (⊗-right’) is a derivable in CLNL* as

Ω; Θ,∆,S ` S
(L-Weak)

Ω,Ω′; Θ,∆,S ` S

Ω′; Θ′,∆′,S′ ` S′
(L-Weak)

Ω,Ω′; Θ′,∆′,S′ ` S′
(⊗-right)

Ω,Ω′; Θ,Θ′,∆,∆′,S,S′ ` S ⊗ S′

Proof. Holds by definition.

From Lemma C.3 we can immediately derive the following.

Corollary C.1. If a CLNL* proof exists for a sequent, then an equivalent one
in CLNL*2 exists.

Proof. By substituting non common rules with their definitions in Lemma C.3.

Lemma C.4. If an instance of (⊗-right’) is such that Ω,Ω′ = ∅, then it is also
an instance of (⊗-right). If an instance of ((-left’) is such that Ω,Ω′ = ∅, then
it is also an instance of ((-left).

Proof. By definition.

We gives the following definitions and auxiliary lemmas about reordering
rules in CLNL*2.

Recall that

Sr = {(L-Weak), (L-Cont)}
Cr = {(C->), (C-Ax), (C-Cont), (C-Weak), (C-∧-left1), (C-∧-left2),

(C-→-left), (C-→-right), (L-∧-right),(L-∧-left2),(L-→-left), (CL-Cut)}
Lr = {((-left),(⊗-right),(⊗-left-Θ),(⊗-left-∆),(⊗-left-S)}
Gr = {(G-left-θ), (G-left-δ)}
Pr = {(((-Spend), (((-Merge)}

Let Lr′ be the set of CLNL*2 rules defined as follows.

Lr′ = {((-left’),(⊗-right’),(⊗-left-Θ),(⊗-left-∆),(⊗-left-S)}

In the following, we call unitary the rules with one premise only.

Lemma C.5. A derivation with two rules r ∈ Sr∪Cr∪Gr followed by r′ ∈ Lr′∪
Gr∪Pr can be rewritten as an equivalent derivation where no rule Lr′∪Gr∪Pr
follows a rule in Sr ∪ Cr ∪Gr.

Proof. The only non trivial cases are r = (L-→-left) or (CL-Cut), and r′ =
((-left’) or (⊗-right’). Take r = (L-→-left) and r′ = (⊗-right’), and let r be
applied to the left derivation

Ω ω Ω′, ω′; Θ,∆,S ` S
(L-→-left)

Ω,Ω′, ω → ω′; Θ,∆,S ` S Ω′′; Θ′,∆′,S′ ` S′
(⊗-right’)

Ω,Ω′,Ω′′, ω → ω′; Θ,Θ′,∆,∆′,S,S′ ` S ⊗ S′

194

We can swap the rules as follows.

Ω ω

Ω′′; Θ′,∆′,S′ ` S′ Ω′, ω′; Θ,∆,S ` S
(⊗-right’)

Ω′,Ω′′, ω′; Θ,Θ′,∆,∆′,S,S′ ` S ⊗ S′
(L-→-left)

Ω,Ω′,Ω′′, ω → ω′; Θ,Θ′,∆,∆′,S,S′ ` S ⊗ S′

If r is (CL-Cut) or it is applied to the right derivation the proof is almost
identical.

Take r = (L-→-left) and r′ = ((-left’), and let r be applied to the left
derivation

Ω ω Ω′, ω′; Θ,∆,S ` S
(L-→-left)

Ω,Ω′, ω → ω′; Θ,∆,S ` S Ω′′; Θ′,∆′,S′, S′ ` S′′
((-left’)

Ω,Ω′,Ω′′, ω → ω′; Θ,Θ′,∆,∆′, S (S′,S,S′ ` S′′

We can swap the rules as follows.

Ω ω

Ω′, ω′; Θ,∆,S ` S Ω′′; Θ′,∆′,S′, S′ ` S′′
((-left’)

Ω′,Ω′′, ω′; Θ,Θ′,∆,∆′, S (S′,S,S′ ` S′′
(L-→-left)

Ω,Ω′,Ω′′, ω → ω′; Θ,Θ′,∆,∆′, S (S′,S,S′ ` S′′

If r is (CL-Cut) or it is applied to the right derivation the proof is almost
identical.

Lemma C.6. If derivation Π with two rules r ∈ Sr ∪ Cr followed by r′ ∈ Gr
exists in CLNL*2, then an equivalent derivation Π′ exists where no rule in Gr
follows a rule in Sr ∪ Cr.

Proof. Let r and r′ be (L-→-left) and (G-left-θ) respectively, i.e., let Π be

Ω ω Ω′, ω′; Θ, θ,∆,S ` S
(L-→-left)

Ω,Ω′, ω → ω′; Θ, θ,∆,S,` S
(G-left-θ)

Ω,Ω′, ω → ω′, G(θ); Θ,∆,S,` S

Then, Π′ is as follows.

Ω ω

Ω′, ω′; Θ, θ,∆,S ` S
(G-left-θ)

Ω′, ω′, G(θ); Θ,∆,S,` S
(L-→-left)

Ω,Ω′, ω → ω′, G(θ); Θ,∆,S,` S

The proof is almost identical for any r ∈ Cr and r′ ∈ Gr.
Let r and r′ be (L-Weak) and (G-left-θ) respectively, i.e., let Π be

Ω; Θ, θ,∆,S ` S
(L-Weak)

Ω, ω; Θ, θ,∆,S,` S
(G-left-θ)

Ω, ω,G(θ); Θ,∆,S,` S

195

Then, Π′ is as follows.

Ω; Θ, θ,∆,S ` S
(G-left-θ)

Ω, G(θ); Θ,∆,S,` S
(L-Weak)

Ω, ω,G(θ); Θ,∆,S,` S

The proof is almost identical for (G-left-δ).
Let r and r′ be (L-Cont) and (G-left-θ) respectively, i.e., let Π be

Ω, ω, ω; Θ, θ,∆,S ` S
(L-Cont)

Ω, ω; Θ, θ,∆,S,` S
(G-left-θ)

Ω, ω,G(θ); Θ,∆,S,` S

Then, Π′ is as follows.

Ω, ω, ω; Θ, θ,∆,S ` S
(G-left-θ)

Ω, ω, ω,G(θ); Θ,∆,S,` S
(L-Cont)

Ω, ω,G(θ); Θ,∆,S,` S

The proof is almost identical for (G-left-δ).

Lemma C.7. If derivation Π with two rules r ∈ Pr followed by r′ ∈ Lr′ exists
in CLNL*2, then an equivalent derivation Π′ exists where no rule in Lr′ follows
a rule in Pr.

Proof. The only non trivial is r′ = ((-left’) or (⊗-right’).
Take r′ = (⊗-right’), and let r = (((-Merge) be applied to the left derivation

Ω; Θ, δ ⊗ δ′′((δ′ ⊗ δ′′′, θ,∆,S ` S
(((-Merge)

Ω; Θ, δ((δ′, δ′′((δ′′′,∆,S ` S Ω′; Θ′,∆′,S′ ` S′
(⊗-right’)

Ω,Ω′; Θ,Θ′, δ((δ′, δ′′((δ′′′,∆,∆′,S,S′ ` S ⊗ S′

We can swap the rules as follows.

Ω; Θ, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆,S ` S Ω′; Θ′,∆′,S′ ` S′
(⊗-right’)

Ω,Ω′; Θ,Θ′, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆,∆′,S,S′ ` S ⊗ S′
(((-Merge)

Ω,Ω′; Θ,Θ′, δ((δ′, δ′′((δ′′′,∆,∆′,S,S′ ` S ⊗ S′

For (((-Spend) and for (((-Merge) applied to the right derivation, the
proof is almost identical.

Take r′ = ((-left’), and let r = (((-Spend) be applied to the left derivation

δ ⊆ δ′ Ω; Θ,∆, δ′,S ` S
(((-Spend)

Ω; Θ, δ((δ′,∆,S ` S Ω′; Θ′,∆′,S′, S′ ` S′′
((-left’)

Ω,Ω′; Θ,Θ′, δ((δ′,∆,∆′, S (S′,S,S′ ` S′′

196

We can swap the rules as follows.

δ ⊆ δ′
Ω; Θ,∆, δ′,S ` S Ω′; Θ′,∆′,S′, S′ ` S′′

((-left’)
Ω,Ω′; Θ,Θ′,∆,∆′, δ′, S (S′,S,S′ ` S′′

(((-Spend)
Ω,Ω′; Θ,Θ′, δ((δ′,∆,∆′, S (S′,S,S′ ` S′′

For (((-Merge) and for (((-Spend) applied to the right derivation, the proof
is almost identical.

Recall that ΠA is a derivation applying rules in the set A only.
A CLNL*2 proof is normalized if it can be decomposed in

Π{(L-Ax), (I-right)}

..
..

..
..

..
..

..
..

.. ΠLr′

ΠPr

ΠGr

ΠCr∪Sr

Ω; Θ,∆,S ` S

Lemma C.8. A sequent Ω; Θ,∆,S ` S is valid in CLNL*2 if and only if a
normalized proof exists for Ω; Θ,∆,S ` S.

Proof. Given a proof Π in CLNL*2 for the sequent, we rewrite it using Lemma C.5
until a fix point is reached, obtaining the following.

Π{(L-Ax), (I-right)}

..
..

..
..

..
.

ΠLr′∪Pr
ΠGr∪Cr∪rS

Ω; Θ,∆,S ` S

We rewrite ΠGr∪Cr∪Sr using Lemma C.6, and ΠLr′∪Pr using Lemma C.7 until
a fix point is reached, obtaining a normalized proof.

We establish now some auxiliary results about reordering rules in CLNL*.

Lemma C.9. If derivation Π with two rules where an application of (((-
Spend) follows an application of (((-Merge) exists in CLNL*, then an equiva-
lent derivation Π′ exists where (((-Merge) follows (((-Spend).

Proof. Let Π be

δ0 ⊆ δ′0

Ω; Θ, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆, δ′0,S ` S (((-Merge)
Ω; Θ, δ((δ′, δ′′((δ′′′,∆, δ′0,S ` S (((-Spend)

Ω; Θ, δ0 ((δ′0, δ((δ′, δ′′((δ′′′,∆,S ` S

197

The derivation Π′ is then as follows.

δ0 ⊆ δ′0 Ω; Θ, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆, δ′0,S ` S (((-Spend)
Ω; Θ, δ0 ((δ′0, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆,S ` S

(((-Merge)
Ω; Θ, δ0 ((δ′0, δ((δ′, δ′′((δ′′′,∆,S ` S

Lemma C.10. If

δ ⊆ δ′
δ′′ ⊆ δ′′′ Ω; Θ,∆, δ′, δ′′′S ` S

(((-Spend)
Ω; Θ, δ′′((δ′′′,∆, δ′S ` S

(((-Spend)
Ω; Θ, δ((δ′, δ′′((δ′′′,∆,S ` S

is a CLNL* derivation, so is also the following.

δ ⊗ δ′′ ⊆ δ′ ⊗ δ′′′ Ω; Θ,∆, δ′, δ′′′S ` S
(((-Spend)

Ω; Θ, δ ⊗ δ′′((δ′ ⊗ δ′′′,∆S ` S
(((-Merge)

Ω; Θ, δ((δ′, δ′′((δ′′′,∆,S ` S

Proof. δ ⊆ δ′ and δ′′ ⊆ δ′′′ trivially implies δ ⊗ δ′′ ⊆ δ′ ⊗ δ′′′.

We prove now the main result.

Theorem C.1 (normal form). For any Ω,S, S, the initial sequent Ω;S ` S is
valid in CLNL* if and only if a normal proof Π exists for Ω; S ` S.

Proof. Of course if a normalized proof exists the sequent is valid. Assume
Ω;S ` S is proved by ΠCLNL∗. First, we rewrite every occurrence of (L-Ax)
where Ω 6= ∅ as follows

(L-Ax)
A ` A

(L-Weak)
Ω;A ` A

obtaining the equivalent proof Π′CLNL∗.
Then we rewrite Π′CLNL∗ as an equivalent proof ΠCLNL∗2 in CLNL*2 using

Corollary C.1.
By Lemma C.8, a normalized proof Π′CLNL∗2 exists as follows.

Π{(L-Ax), (I-right)}

..
..

..
..

..
..

..
..

..
..

.

ΠLr′

ΠPr

ΠGr

ΠCr∪Sr

Ω;S ` S

198

Since no (L-Weak) rule appears above ΠCr∪Sr, and Ω = ∅ in the leaves by
construction, in the derivation ΠLr′ , the non-linear part of the sequent Ω is ∅,
thus Π′CLNL∗2 is a CLNL* proof as well, by Lemma C.4.

If ΠP is an empty derivation, then Π′CLNL∗2 is in first normal form, otherwise
ΩG, Θ, ∆, ∆′ exist such that Π′CLNL∗2 is

ΠLr∪{(L-Ax), (I-right)}

∆′,S ` S
···· ΠPr

Θ,∆,S ` S
···· ΠGr

ΩG;S ` S
···· ΠCr∪Sr

Ω;S ` S

Then, we rewrite ΠPr using Lemma C.9 until a fix point is reached, obtaining
the following.

ΠLr∪{(L-Ax), (I-right)}

∆′,S ` S
····

Π(((-Spend)

Π(((-Merge)
Θ,∆,S ` S

···· ΠGr

ΩG;S ` S
···· ΠCr∪Sr

Ω;S ` S

Finally, we rewrite Π(((-Spend) using Lemma C.10 until a fix point is reached,
obtaining a proof in second normal form.

C.2.2 Deciding CLNL*

We prove now the decidability of CLNL*. As usual, we start be presenting
intermediate results.

Lemma C.11. If a sequent Ω; Θ,∆,S ` S is derivable from a sequent Ω′; Θ′,∆′,S′ `
S′ only using rules in C ∪ S, then Ω ω holds for all ω ∈ Ω′.

Proof. By trivial rule induction.

Lemma C.12. A proof in the first normal form exists for Ω; S ` S if and only
a proof in the first normal form exists for Ω?;S ` S where Ω? contains a single
occurence of any Gδ and Gθ such that Ω Gδ and Ω Gθ.

199

Proof. Assume a proof Π exists for Ω?;S ` S, and let Ω? be

{G(θi) | i ∈ [1, n]} ∪ {G(δi) | i ∈ [1,m]}

Then the following proves Ω,S ` S.

Ω ` G(θ1)

Ω ` G(δ1)

Π

Ω?;S ` S
···· Π{(CL-Cut)}

Ωm−1;G(θ1), . . . , G(θn), G(δ1); S ` S
(CL-Cut)

Ωm, G(θ1), . . . , G(θn); S ` S
···· Π{(CL-Cut)}

Ωn+m−1G(θ1); S ` S
(CL-Cut)

Ωn+m;S ` S
(L-Cont)

Ω;S ` S

Assume a proof Π exists for Ω;S ` S in first normal form as follows

Π′

ΩG;S ` S
···· ΠCr∪Sr

Ω;S ` S

where Π′ itself is in first normal form.
By Lemma C.11, all the elements in ΩG occurs also in Ω? with a single

occurrence. We write ΩG = Ω? ∪ Ωcont \ Ωweak where Ωcont contains the extra
occurences in ΩG with respect to Ω?, and Ωweak contains the elements of Ω?
that are not in ΩG.

Then, the following proof exists for Ω?;S ` S.

Π′

ΩG;S ` S
L-Weak

Ω?,Ωcont;S ` S
L-Cont

Ω?;S ` S

We establish some useful results for reducing proofs from second to first
normal form.

Lemma C.13. A derivation that only uses rules in Gr∪Sr exists from Θ,∆,S `
S to ΩG,S ` S, with

ΩG = {G(θi) | i ∈ [1, n]} ∪ {G(δj) | j ∈ [1,m]}

200

if and only if x1, . . . xn and z1, . . . zm nonnegative integers exist such that

Θ = {θxi
i | i ∈ [1, n]}

∆ = {δzjj | j ∈ [1,m]}

Proof. Assume a derivation exists. By trivial rule induction over rules in Gr ∪
Sr, the linear propositions δ and θ appearing in Θ,∆,S ` S are the same
that appears in ΩG,S ` S preceded by G, possibly with a different number of
occurences. Let xi and zj be such occurences. The thesis trivially follows.

Assume Θ and ∆ are defined as in the formula above. Let Ω′G and Ω′′G be

Ω′G = {G(θi) | θxi
i ∈ Θ ∧ xi 6= 0} ∪ {G(δj) | δzij ∈ ∆ ∧ zi 6= 0}

Ω′′G = {G(θi)
xi | θxi

i ∈ Θ ∧ xi 6= 0} ∪ {G(δj)
zj | δzjj ∈ ∆ ∧ zj 6= 0}

A derivation exists from Θ,∆,S ` S to ΩG,S ` S as follows.

Θ,∆,S ` S
···· ΠGr

Ω′′G,S ` S
(L-Cont)

Ω′G,S ` S
(L-Weak)

ΩG,S ` S

Lemma C.14. A derivation that only uses (((-Merge) exists from θ,∆S ` S
to Θ,∆S ` S, with

Θ = {δi((δ′i | i ∈ [0, n]}

if and only if

θ =

n⊗
i=1

δi((
n⊗
i=1

δ′i

Proof. Trivially derives from the fact that (((-Merge) preserves both the mul-
tisets of instances of δ that appears on the left side of ((and the multiset of
the instances of δ that appears on the right side of ((.

Lemma C.15. For any ΩG,∆?,S, S, a derivation exists from ∆?,S ` S to
ΩG;S ` S, in one of the following forms

∆?,S ` S
···· ΠGr∪Sr

ΩG;S ` S

∆?,S ` S
(((-Spend)

θ,∆,S ` S
···· Π(((-Merge)

Θ,∆,S ` S
···· ΠGr∪Sr

ΩG;S ` S

201

if and only if x1, . . . xn and zi, . . . zm nonnegative integers exist such that for-
mulas 4.10 and 4.11 hold.

Proof. Let ΩG be

ΩG = {G(θi) | i ∈ [1, n]} ∪ {G(δj) | j ∈ [1,m]}

Consider a derivation of the first form. By Lemma C.13, such a derivation exists
if and only if x1, . . . xn and z1, . . . zm nonnegative integers exist such that

∅ = Θ = {θxi
i | i ∈ [1, n]} i.e. xi = 0 for all i ∈ [1, n]

∆? = {δzjj | j ∈ [1,m]}

Consider now a derivation of the second form. By Lemma C.13 the derivation
ΠG∪S exists if and only if x1, . . . xn and z1, . . . zm nonnegative integers exist such
that

Θ = {θxi
i | i ∈ [1, n]}

∆ = {δzjj | j ∈ [1,m]}

Then, by Lemma C.14, the derivation Π(((-Merge) exists if and only if

θ =

m⊗
j=1

δ
zj
j ((

m⊗
j=1

(δ′j)
zj

and by definition of (((-Spend) the derivation exists if and only if

∆? = ∆ ∪ {
m⊗
j=1

(δ′j)
zj} (C.1)

and
m⊗
j=1

δ
zj
j ⊆

m⊗
j=1

(δ′j)
zj (C.2)

Note that these conditions reduces to the ones of first form when xi = 0
for any i ∈ [1, n]. Thus, we can conclude that a derivation exists if and only if
conditions C.1 and C.2 are met.

We conclude by showing that these conditions are equivalent to 4.10 and
4.10 are met respectively.

Recall that LΩG
= {`1, . . . `p} is the set of linear implications between atomic

propositions appearing as terms in ΩG. By definition of δ, we can rewrite
conditions C.1 and C.2 respectively as follows.

∆? = {(
p⊗
k=1

`
Ak,i

k)xi | i ∈ [1, n]} ∪ {
m⊗
j=1

(

p⊗
k=1

`
Ck,j

k)zj}

m⊗
j=1

(

p⊗
k=1

`
Bk,j

k)zj ⊆
m⊗
j=1

(

p⊗
k=1

`
Ck,j

k)zj

202

Where for each i, and k, Ak,i is the number of occurrences of `k in δi; for each
j, and k, Bk,j is the number of occurrences of `k in δj , and Ck,j is the number
of occurrences of `k in δ′j . By definition, AΩG

, contains Ak,i in row k, column
i; and BΩG

, and CΩG
contains Bk,j and Ck,j in row k, column j respectively.

The equivalence between condition 4.10 and C.1 trivially holds.
Take any z1, . . . zm. Condition C.2 holds if and only if, for any `k the number

of occurrences in the left part of C.2 is grater than the number of occurrences
in the right part, i.e.,

m⊗
j=1

(`
Bk,j

k)zj ⊆
m⊗
j=1

(`
Ck,j

k)zj for every `k

By definition, this holds if and only if the k-th rows Bk of BΩG
and Ck of CΩG

are such that

[
Ck,1 . . . Ck,1

] z1

...
zm

 ≥ [Bk,1 . . . Bk,1
] z1

...
zm

which, in turn, is true for every `k if and only if condition 4.11 holds.

203

	Introduction
	Two Layers Approach
	The Gap Between Specification and Implementation
	Our Proposal

	Three Solutions for Three Contexts
	Networks Firewalls as Functions
	Specifying Information Flow in Operating Systems
	Permission Exchanges in Collaborative Environments

	State of the Art
	Structure of the Thesis
	Published Work

	Network
	Background
	Formalizing the Low Level
	Intermediate Firewall Configuration Language: IFCL
	Encoding Unix Firewalls
	Legal Firewalls
	Operational Semantics
	Normal form

	Modeling the High Level
	Firewalls as functions
	Effective Representation of Firewalls
	The FireWall Query Language FWQL

	Decompilation
	Logical characterization of firewalls

	Compilation
	Ruleset Generation
	Ruleset Association

	The Problem of Expressivity
	Denotational Semantics
	Allowed Transformations
	Individual Expressivity
	Function Expressivity
	Checking the expressivity of a fw-function

	Implementation
	FWS
	F2F

	Related Work
	Conclusions and Future Work

	System
	Background
	Formalizing the Low Level
	Extending CIL with Information Flows
	The High Level: IFL
	IFCIL

	Requirement verification
	The tool IFCILverif

	Related Work
	Conclusions and future work

	Collaborative Environments
	Introducing the High Level: MuAC
	MuAC Access Control System
	Running Example
	MuAC Syntax

	The Low Level: A Logic for MuAC
	Contractual Linear Implication
	Contractual Linear Non-Linear Logic
	Deciding CLNL*

	Binding Layers: MuAC Formalization
	MuAC Semantics
	Formalizing MuAC System Evolution
	Examples

	Implementing the MuAC System
	Computing System Evolution
	MuAC as a Smart Contract
	Context of Application

	Dealing with Reusable Resources
	MuAC Semantics Revisited
	System Evolution Revisited
	Discussion About Linearity

	Related Work
	Conclusions and future work

	Conclusions
	Technical Details and Proofs of Chapter 2
	IFCL Normal Form: Proofs
	Decompilation: Proofs
	Compilation: Proofs
	Computing the Representative Pairs
	Firewall Expressivity: Proofs

	Technical Details and Proofs of Chapter 3
	Formalizing CIL
	IFL: Proofs
	Syntax and semantics of IFCIL
	Verification: Proofs

	Technical Details and Proofs of Chapter 4
	CLNL* Immersion: Proofs
	CLNL* Decidability: Proofs
	Normalized CLNL* proofs
	Deciding CLNL*

