Provably Correct Compilers

Matteo Busi
(matteo.busi@di.unipi.it)

Dipartimento di Informatica, Università di Pisa
Today's agenda

- From probably correct compilers to provably correct ones!
- A simple correct compiler for expressions
- Beyond simple expressions
- Compilers and notions of correctness
- State of the art
- An alternative approach: translation validation
- Wed: beyond correctness!
Correctness: trivial?

- Aren't all compilers correct? Isn't it a trivial property?
- Well...the following is **trivially wrong**

```c
for(i=0; i < 10; i++)
    printf("%d\n", i);

printf("42\n");
```
Correctness: trivial? (cont.)

What about:

```
int n = some_pt->n;
if (some_pt == NULL)
    // Some code
use (n)
```

```
int n = some_pt->n;
use (n)
```

Usually correct, but not when in kernel code! 🤔
Arithmetic expressions

Recall arithmetic expressions:

\[a ::= v \mid x \mid a_0 + a_1 \mid a_0 - a_1 \mid a_0 \ast a_1 \]

when translated to a stack-based expression language:

\[i ::= Iconst(v) \mid Ivar(x) \mid Iadd \mid Isub \mid Imul \mid i_0; i_1 \mid () \]

See the blackboard.
Correctness theorem

What's the meaning of correctness in this case?

Observe that:

1. Evaluation always terminates (why?)
2. We focus on the final result

So, show that

Theorem: $\sigma \vdash a \rightarrow^* v$ iff $\sigma \vdash []$, $\llbracket a \rrbracket \rightarrow^* \llbracket v \rrbracket$, ($\) .

Proof: By structural induction on a (see the blackboard).
Beyond expressions?

Phew! Not that simple 😞

Problem:

- This was an ad-hoc approach that does not scale well
- More complex programming languages?

Need to think *carefully* about:

- How to model compilers
- How to **define** correctness and its relation with the languages
A model for compilers

A compiler is a function $[\cdot]_T^S$ that translates programs written in a source language S into programs written into a target language T.

More in general, we can see the compiler as a composition:

$$[\cdot]_T^S \triangleq [\cdot]_{IR^n}^T \circ \ldots \circ [\cdot]_{IR_1}^S$$

Notation: When clear what S and T are, we will simply write $[\cdot]$.
Notions of correctness: intuition

Intuition:

The behavior of the compiled code $\mathcal{B}([s])$ must be the same as the behavior of the source $\mathcal{B}(s)$.

Crucial to define \mathcal{B} properly:

- For expressions:
 - $\mathcal{B}(a) = \{ v \mid \exists \sigma. \sigma \vdash a \rightarrow^* v \}$
 - $\mathcal{B}(i) = \{ v \mid \exists \sigma. \sigma \vdash [], i \rightarrow^* [v], () \}$
 - Shown above: $\mathcal{B}(a) = \mathcal{B}([a])$
- More in general?
Behaviours

\(\mathcal{B} \) depends on the set of observables of \(p \) (either in \(S \) or \(T \)):

- Set of observable actions \(\mathcal{O} \), e.g. I/O ops, memory ops, return values...
- Semantics of the languages enriched with elements of \(\mathcal{O} \):

\[
p \rightarrow p' \quad \text{becomes} \quad p \xrightarrow{o} p'
\]

meaning that the program performs an observable action \(o \) when moving from \(p \) to \(p' \)
Behaviours (cont.)

$\mathcal{B}(p)$ is then defined as the set of all possible strings of observable actions (traces) starting from any initial state.

In symbols:

$$\mathcal{B}(p) = \{o_0 \cdots o_k o_{k+1} \cdots \mid p \overset{o_0}{\rightarrow} \cdots \overset{o_k}{\rightarrow} p_k \overset{o_{k+1}}{\rightarrow} \cdots \}$$
Correctness, not a single notion

Issue: the equality works just in special cases.

Consider again the language of expressions and the compiler on the blackboard. What if we change the observables as follows

\[
\mathcal{O} = \{\epsilon\} \cup \{\text{op} \mid \text{op} \in \{+, -, *\}\}
\]

and observe each time an actual operation is performed (e.g., for debugging)?
Correctness...

Can we still consider $\mathcal{B} \cdot \mathcal{B}$ correct? Indeed.

But now

$$\mathcal{B}(a) \neq \mathcal{B}([a])$$

Why? Observables are chosen somewhat arbitrary!
Another notion of correctness

What's going on?
Our intuitive notion of correctness doesn't coincide with the formalization!

Now the compiled version has "less" behaviors, i.e.

$$\mathcal{B}(a) \supseteq \mathcal{B}([a])$$

this is called refinement.

Finally the real notion of correctness?
Backward (lockstep) simulation

A sufficient condition for refinement is the existence of a backward simulation, i.e. a relation \sim between target and source states, s.t.

1. Initial and final states are related by \sim;
2. If $t, \sigma_T \xrightarrow{0} t', \sigma_T' \text{ and } \sigma_T \sim \sigma_S$, then $(s, \sigma_S \xrightarrow{0} s', \sigma_S' \Rightarrow \sigma_T' \sim \sigma_S')$.

Pretty hard!

- Usually difficult to build for general languages (e.g. when considering non-terminating programs)
- Especially when a single step of the source is compiled to multiple steps in the target
- Not enough in most cases (e.g. our expression compiler! :)}
Example: (stuttering) backward simulation

That is: to show the existence of \(~\) we must define a \textit{decompilation} function!
Alternatives?

Also: stuttering (forward/backward) simulations, plus simulations, safe, ...
State of the art: CompCert and CakeML

This is just *theory*, show me some real compiler!

- **CompCert**: is one of the most famous verified compilers
 - Compiles and optimizes C language to many real-world architectures
 - Fully written in Coq
 - Mechanized proof of correctness via forward simulation (enough, why? :)
 - O: I/O and ops. on *volatile* variables

- **CakeML**: more recent
 - Compiles a subset of Standard ML
 - Bootstrapped compiler, proof mechanized in HOL4
 - O: values of the language(s) (source, intermediate and target)
An alternative: translation validation

In this lecture, we considered an a priori notion of correctness. What about considering just a single run of the compiler each time?

Translation validation (TV) requires this:
- Take an actual program s and compile it to $[s]$
- Verify that *that particular* run of the compiler produced the "right" compiler
Note: this is a fully automatic process (modulo decidability!)
Beyond whole programs

- Many real-world programs are partial, i.e. they are not written as a whole by programmers
- Partial programs are made "full" by linking with a context
 - Contexts model external definitions from standard libraries, code written by third parties, external components, ...

Issue: All the above cannot deal with partial programs.
Beyond whole programs (cont.)

Just a glimpse of the existing solutions

1. **Separate correctness:**
 - Compile the partial source program s to $[s]$
 - Compile the source context with the **same** compiler
 - Link them together
 - Correctness of the result is guaranteed!
Beyond whole programs (cont.)

2. **Compositional correctness:**
 - Compile the partial program s to $[s]$
 - Choose a target context that **correctly implements** the source one
 - Link them together
 - Correctness of the result is guaranteed!

This second variant:

- is much stronger
- much more useful (think of JVM/.NET interoperability!)
- also more difficult to achieve
Summing up

• Guaranteeing the correctness of a compiler via an a priori proof
• Saw a simple example of a correct compiler for arith. expressions
 ○ Many issues in proving it such
 ○ Much more issues for (slightly) more complex languages
• However, at least two real-world compilers following this approach
• Translation validation mitigates some issues, but still not widely used

So:

• Proofs are rather involved
• Usually need a manual (or assisted, but not automatic) proof
• Still niche adoption
• Huge improvements recently!
Wednesday: Is there something beyond correctness?
Bibliography

All the above material is inspired and distilled from the following papers:

[1]. "Optimization-unstable code." https://lwn.net/Articles/575563/
[3]. William J. Bowman. "What even is compiler correctness?" https://www.williamjbowman.com/blog/2017/03/24/what-even-is-compiler-correctness/