Ten Virtues of Structured Graphs
(or why structured graphs can be better than flat ones)

Roberto Bruni
also based on joint work with F. Gadducci, A. Lluch-Lafuente, U. Montanari, E. Tuosto

Department of Computer Science, University of Pisa
bruni@di.unipi.it

Research supported by

March 28-29, 2009, GT-VMT’09, York, UK
Outline

Introduction
Styles for Visual Support
Dynamics
ADR
Concluding Remarks
GT-VMT 2009

- **Graph-based techniques**
 - formal semantics, concurrency, logics, verification, tools

- **Visual modelling**
 - project planning, network management, traffic control, business processes, software architectures, www site design, and many more...

- **Modern software and Sensoria project (service-oriented computing)**
 - key issues such as scalability, representation distance, open-endedness, dynamicity, distribution
 - within specification, design, validation and verification phases
Sensoria Poster Collage (http://www.sensoria-ist.eu)

Software Engineering for **Service-Oriented** Overlay Computers www.sensoria-ist.eu

develops
semantically well-founded languages, novel theories, methods and tools for constructing and analysing the new generation of high-quality service-oriented systems

integrates
foundational theories, techniques, and methods with pragmatic software engineering

researches
- linguistic primitives for modelling and programming service-oriented systems
- qualitative and quantitative analysis methods for global services
- development and deployment techniques for systems services

offers
- model-driven approach for service-oriented software engineering
- modelling of service-oriented systems
- analysis of behaviour, security and quality of service properties
- suite of tools and techniques for
 - deploying service-oriented systems
 - reengineering legacy software into services

case studies
in automotive, finance, telecommunications and e-learning domains

List of partners
Co-ordinator: Prof. Dr. Martin Wirsing, Ludwig Maximilians-Universität München, Germany
Universita di Trento | University of Leicester | Warsaw University | TU Denmark at Lyngby | Università di Pisa
Università di Firenze | Università di Bologna | ISTI Pisa | Universidade de Lisboa | University of Edinburgh | ATX !
Telecom Italia Lab | Imperial College London | FAST GmbH | Budapest University of Technology and Economics
S&N AG | University College London | Politecnico di Milano

Ten Virtues of Structured Graphs (GT-VMT’09) 4/45
All That Graphs

<table>
<thead>
<tr>
<th>(n_0)</th>
<th>(n_1)</th>
<th>(n_2)</th>
<th>(n_3)</th>
<th>(n_4)</th>
<th>(n_5)</th>
<th>(n_6)</th>
<th>(n_7)</th>
<th>(n_8)</th>
<th>(n_9)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n_0)</td>
<td>(a_1)</td>
<td>(a_2)</td>
<td></td>
<td></td>
<td>(a_3)</td>
<td>(a_4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_1)</td>
<td></td>
<td>(a_5)</td>
<td>(a_6)</td>
<td>(a_7)</td>
<td></td>
<td></td>
<td>(a_8)</td>
<td>(a_9)</td>
<td>(a_{10})</td>
</tr>
<tr>
<td>(n_2)</td>
<td>(a_{11})</td>
<td></td>
<td>(a_{12})</td>
<td></td>
<td>(a_{13})</td>
<td></td>
<td>(a_{14})</td>
<td>(a_{15})</td>
<td></td>
</tr>
<tr>
<td>(n_3)</td>
<td>(a_{16})</td>
<td>(a_{17})</td>
<td>(a_{18})</td>
<td>(a_{19})</td>
<td>(a_{20})</td>
<td>(a_{21})</td>
<td>(a_{22})</td>
<td>(a_{23})</td>
<td>(a_{24})</td>
</tr>
<tr>
<td>(n_4)</td>
<td></td>
<td></td>
<td></td>
<td>(a_{25})</td>
<td></td>
<td>(a_{26})</td>
<td>(a_{27})</td>
<td>(a_{28})</td>
<td></td>
</tr>
<tr>
<td>(n_5)</td>
<td></td>
<td>(a_{29})</td>
<td>(a_{30})</td>
<td></td>
<td></td>
<td>(a_{31})</td>
<td>(a_{32})</td>
<td></td>
<td>(a_{33})</td>
</tr>
<tr>
<td>(n_6)</td>
<td>(a_{34})</td>
<td></td>
<td>(a_{35})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n_7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(a_{36})</td>
<td>(a_{37})</td>
<td></td>
<td></td>
<td>(a_{38})</td>
</tr>
<tr>
<td>(n_8)</td>
<td></td>
<td></td>
<td>(a_{39})</td>
<td>(a_{40})</td>
<td></td>
<td>(a_{41})</td>
<td>(a_{42})</td>
<td></td>
<td>(a_{43})</td>
</tr>
<tr>
<td>(n_9)</td>
<td>(a_{44})</td>
<td>(a_{45})</td>
<td>(a_{46})</td>
<td>(a_{47})</td>
<td>(a_{48})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
All That Graphs
All That Graphs

Our choice

Ten Virtues of Structured Graphs (GT-VMT’09) 5/45
A Scenario: Software Architectures as Graphs

D. Garlan & D. Perry, 1995

“... the structure of the components of a program / system, their interrelationship, and principles and guidelines governing their design and evolution over time.”

- components (and connectors) as hyper-edges
 - (here represented as boxes of various shapes)
- ports (and roles) as tentacles
 - (here represented as arrows)
- attachments as nodes
 - (here represented as smaller circles)
- connectors and attachments are sometimes omitted
Why “Spaghetti” Graphs are Considered Harmful

- When GT applied to large case studies, graphs better be structured in order to be comprehensible
- Analogies with structured programming and type theory
 - it is helpful to use graphs that are conveniently formatted and annotated
 - discard / ignore non-conformant graphs
- Analogies with process calculi
 - containment and links (as in bigraphs)
 - dynamics and reconfiguration via inductive, conditional rewrite rules
Our proposal

- From graphs to **hierarchical hypergraphs**
 - certain hyperedges can contain hypergraphs that can be hierarchical themselves
 - arbitrary depth of nesting
- **ADR (Architectural Design Rewriting)**
 - graphs + their **blueprint** (like binaries + source templates)
 - exploit blueprint for applying formal methods
 - please visit http://www.albertolluch.com/research/adr to know more
Outline

Introduction

Styles for Visual Support

Dynamics

ADR

Concluding Remarks
Visualization can Support Formal Methods
IEEE standard 1471

“... a set of patterns or rules for creating one or more architectures in a consistent fashion.”

Style = Vocabulary + Rules

- Used to construct and document
- Used to describe / explain
- Used to understand
- Used to validate
- Used for conformance check
- Used to reason about
- To be reused
Can you spot some “regularity”?
Graph Re-drawing

And now?
Well...

Another try?
Another Graph Re-drawing

Can you describe its “shape” (or style)?
Styles from Productions

- Legenda: titled boxes as non-terminals, ordinary boxes as terminals

- Several readings are possible:
 - Refinement
 - Types (Pipeline) and ops (station and cat(·), based on hyperedge replacement)
 - station \rightarrow Pipeline
 - cat : Pipeline \times Pipeline \rightarrow Pipeline
 - Abstraction
Types for Pipelines, Rings and Stars
Types and Ops for Pipelines, Rings and Stars

- $\text{cat : Pipeline Pipeline -> Pipeline}$
- $\text{net : Star -> Pipeline}$
- $\text{station : -> Pipeline}$
- $\text{par : Star Star -> Star}$
- $\text{cast : Ring -> Star}$
Simplified Memberships (for Pipelines and Stars)
An Example of Derivation (with "Blueprint")
An Example of Derivation (with “Blueprint”)

[Diagram of a pipeline with nodes labeled 'Pipeline' and 'Star']

Ten Virtues of Structured Graphs (GT-VMT'09) 20/45
An Example of Derivation (with “Blueprint”)

![Diagram of Pipeline and Star relationships]
An Example of Derivation (with “Blueprint”)
An Example of Derivation (with “Blueprint”)
An Example of Derivation (with “Blueprint”)

[Diagram showing a derivation process with nodes labeled Pipeline, Star, Ring, and connections between them.]

Ten Virtues of Structured Graphs (GT-VMT'09) 20/45
An Example of Derivation (with “Blueprint”)
An Example of Derivation (with “Blueprint”)
Simplified Typing and Drawing ("Flattening")

The corresponding proof term is

\[
\text{net}(\text{par}(\text{cast}(\text{node}(\text{cat}(\text{station},
\text{cat}(\text{station}, \text{station})))),
\text{cast}(\text{node}(\text{station}))))
\]

Or just

\[
\text{net}(\text{par}(\text{node}(\text{cat}(\text{station}, \text{station}, \text{station})),
\text{node}(\text{station})))
\]

Note that nodes need not be mentioned.
Another Example: Workflows

Activities composable in series and in parallel (fork & join): disconnected activity and cyclic parts are not allowed
Another Example: Workflows

Is this a well-formed workflow?
Another Example: Workflows

Activities composable in series and in parallel (fork & join): disconnected activity and cyclic parts are not allowed
Another Example: Workflows

Is this a well-formed workflow?
Six Virtues of Structured Graphs

- **Requirements**
 - Type graphs are ok (and synergic to our approach) but limited
 - Additional logic languages often needed
 - We can account for many patterns in a natural way

- **Parsing and browsing**
 - Large graphs are hard to “understand” and navigate
 - Their blueprint (if any available) helps quite a lot

- **Model Construction and Model conformance**
 - Conformance is guaranteed by construction
 - Otherwise hard to recover from scratch (proof-carrying graphs)

- **Compositionality and Abstraction & Refinement**
 - Interfaces are needed to constrain composition, but hard to recover in flat graphs
 - The hierarchical approach makes them available at any level
 - Different levels of granularity can be considered
Six Virtues of Structured Graphs

- **Requirements**
 - Type graphs are ok (and synergic to our approach) but limited
 - Additional logic languages often needed
 - We can account for many patterns in a natural way

- **Parsing and browsing**
 - Large graphs are hard to “understand” and navigate
 - Their blueprint (if any available) helps quite a lot

- **Model Construction and Model conformance**
 - Conformance is guaranteed by construction
 - Otherwise hard to recover from scratch (proof-carrying graphs)

- **Compositionality and Abstraction & Refinement**
 - Interfaces are needed to constrain composition, but hard to recover in flat graphs
 - The hierarchical approach makes them available at any level
 - Different levels of granularity can be considered
Six Virtues of Structured Graphs

- **Requirements**
 - Type graphs are ok (and synergic to our approach) but limited
 - Additional logic languages often needed
 - We can account for many patterns in a natural way

- **Parsing and browsing**
 - Large graphs are hard to “understand” and navigate
 - Their blueprint (if any available) helps quite a lot

- **Model Construction and Model conformance**
 - Conformance is guaranteed by construction
 - Otherwise hard to recover from scratch (proof-carrying graphs)

- **Compositionality and Abstraction & Refinement**
 - Interfaces are needed to constrain composition, but hard to recover in flat graphs
 - The hierarchical approach makes them available at any level
 - Different levels of granularity can be considered
Six Virtues of Structured Graphs

- **Requirements**
 - Type graphs are ok (and synergic to our approach) but limited
 - Additional logic languages often needed
 - We can account for many patterns in a natural way

- **Parsing and browsing**
 - Large graphs are hard to “understand” and navigate
 - Their blueprint (if any available) helps quite a lot

- **Model Construction and Model conformance**
 - Conformance is guaranteed by construction
 - Otherwise hard to recover from scratch (proof-carrying graphs)

- **Compositionality and Abstraction & Refinement**
 - Interfaces are needed to constrain composition, but hard to recover in flat graphs
 - The hierarchical approach makes them available at any level
 - Different levels of granularity can be considered
Outline

Introduction

Styles for Visual Support

Dynamics

ADR

Concluding Remarks
Style-Preserving Reconfiguration

- A reconfiguration is a change in an architecture
 - static? e.g. for deployment on different platforms, improvements, updates, upgrades, model-driven transformation
 - partially specified? e.g. some components are not known at design time, except for their types
 - run-time? e.g. triggered by security policies, load balancing, mobility, QoS assurance, components joining and leaving the system, dynamic binding, wrapping, self-* architectures

- Style-preservation is relevant
 - from well-formed graphs to well-formed graphs (but possibly with different shapes)

- Examples
 - reverse all actions in a pipeline, serialize a workflow, star to ring transformation, migrate all clients of a server, close all sub-sessions upon termination of their parents
How to Write Reconfiguration Rules

- **Using graph transformation**
 - direct manipulation of flat graphs
 - applicable in non well-formed graphs
 - well-formedness of results must be proved
 - in the flat case: rules manipulate components (many steps required)
 - in the hierarchical case: rules manipulate groups of components (one step can suffice)

- **Exploiting structured graphs**
 - rules manipulate well-formedness proofs
 - inductive localization of the least part of the proof where the change is needed
 - style-preserving by construction
An Example: 3hub Network

Network hubs have three degrees of connectivity and connections are driven by the style (only allowed: some sort of reversed pyramids)
An Example: 3hub Network

A valid 3hubs network
An Example: 3hub Network

A valid 3hubs network? or maybe not?
An Example: 3hub Network

A valid 3hubs network? or maybe not?
An Example: 2hub Network

Network hubs have just two degrees of connectivity and connections are driven by the style (only allowed: rings)
An Example: 2hub Network

A valid 2hubs network
An Example: From 3hub Networks to 2hub Networks

- Under certain circumstances, it is required to reconfigure any valid 3hub network to a valid 2hub network
 - the whole network must be reconfigured (not just part of it)
 - total number of hubs is unchanged
 - 2hubs must form a ring

- Idea:
 - exploit blueprint, not the flat graph
 - reconfiguration is defined inductively on the structure of the network
 - exploit conditional rewrite rules
An Example: From 3hub Networks to 2hub Networks

Reconfigure a single 3hub (note that type is changed: some sort of transduction, context must be adapted)
An Example: From 3hub Networks to 2hub Networks

Reconfigure the link structure (a transduction, again)
An Example: From 3hub Networks to 2hub Networks

Reconfigure the whole network (note that type is preserved, rewrite is silent, applicable in any larger context)
An Example: Rewrite Rules for Network Transformation

\[
\text{3hub} \xrightarrow{\text{3to2}} \text{2hub}
\]

\[
\begin{align*}
&x_1 \xrightarrow{\text{3to2}} y_1 & &x_2 \xrightarrow{\text{3to2}} y_2 & &x_3 \xrightarrow{\text{3to2}} y_3 \\
&\text{3link}(x_1, x_2, x_3) \xrightarrow{\text{3to2}} \text{2link}(y_1, \text{2link}(y_3, y_2)) \\
&x \xrightarrow{\text{3to2}} y \\
&\text{3net}(x) \xrightarrow{} \text{2net}(y)
\end{align*}
\]
Three More Virtues of Structured Graphs

- **Reconfiguration and Evolution**
 - (flat) graph transformation requires ad-hoc studies and techniques (e.g., negative application conditions, interfaces, atomicity issues), augmenting the representation distance (high expertise, technology transfer more difficult)
 - structured graph rewrites can be more handy and efficient (e.g. graph matching not necessarily required)
 - style preservation: to be proved vs guaranteed by proofs
 - concurrency? special cases (edge to edge rules)?

- **Graphical encoding**
 - seamless grouping of item through the hierarchy (e.g. for representing nested sessions, transactions, scopes)
 - in the case of process calculi, facilitated by suitable graph algebras (see next part of the talk)
 - Encoding properties (soundness, completeness) shown by structural induction
Three More Virtues of Structured Graphs

- **Reconfiguration and Evolution**
 - (flat) graph transformation requires ad-hoc studies and techniques (e.g., negative application conditions, interfaces, atomicity issues), augmenting the representation distance (high expertize, technology transfer more difficult)
 - structured graph rewrites can be more handy and efficient (e.g. graph matching not necessarily required)
 - style preservation: to be proved vs guaranteed by proofs
 - concurrency? special cases (edge to edge rules)?

- **Graphical encoding**
 - seamless grouping of item through the hierarchy (e.g. for representing nested sessions, transactions, scopes)
 - in the case of process calculi, facilitated by suitable graph algebras (see next part of the talk)
 - Encoding properties (soundness, completeness) shown by structural induction
Outline

Introduction

Styles for Visual Support

Dynamics

ADR

Concluding Remarks
ADR in a Nutshell

ADR formulas:
- \(ADR = \text{Designs} + \text{Term Rewriting} \)
- Designs = Typed Hierarchical Graphs (with Interfaces)

ADR ingredients:
- **Sorts**: Vocabulary, Types (edge and node labels)
- **Values**: Designs (hierarchical graphs with interfaces)
- **Operations**: Graph-grammar-like rules
- **Terms**: proofs of construction
- **Terms (with variables)**: partial Designs, partial proofs
- **Axioms**: properties of operations
- **Membership predicates**: additional style rules
- **Rewrite rules**: behaviour, reconfigurations
- **Rewrite strategies**: style conformance, style analysis, etc.
A Flexible Unifying Framework for Design, Execution, Reconfiguration

- Not necessarily in the spirit of universal models:
 - node as names + hyper-edge as ops + parallel composition + name fusion + name hiding = any graph can be obtained
 - node as names + hyper-edge as ops + type annotation + tailored constructors = only well-formed designs are described
- Some other ADR features:
 - Membership equational theory (e.g. ACI1, subsorting, overloading)
 - Flattening axioms (e.g. not all operators are hierarchic)
- Some ADR caveats:
 - different proof terms for the same graph are possible
 - constraints not fully integrated yet
 - concurrency aspects not addressed yet
Maude Prototype for ADR

- Basic Modules
 - Maps, Sets, Lists, etc.

- Algebra of Hierarchical Designs
 - Graphs, Graph Morphisms, etc.
 - Hierarchical Designs

- Other ADR Algebras

- Other Scenarios
 - Spam Filter Scenario
 - Symbolic Modules
 - Design-Interpreted Modules

- Exporting Modules
 - designs2dot
 - designs2gml
Maude Prototype for ADR

Why Maude?

- built-in membership equational theories (e.g. to support style conformance check)
- conditional rewrite rules supported
- standard encoding of LTS
- built-in search strategies (e.g. to support model finding)
- built-in LTL model-checker
- defineable logic languages (within the same framework): e.g. graph logics (Courcelle’s MSO), modal logics, spatial logics
ADR Case Studies

Leg-o-motive Case Study

Network Topologies

Dynamics

Architectural Styles

Process Algebras

Service Modelling Languages
An Example: From Process Calculi to Graphs

The syntax of process calculi (with name handling)

\[P, Q ::= \sum_{i \in I} \pi_i P_i \quad \text{Guarded Sum} \]

\[| s.P \quad \text{Service Definition} \]

\[| \overline{s}.P \quad \text{Service Invocation} \]

\[| r > P \quad \text{Session} \]

\[| P > Q \quad \text{Pipeline} \]

\[| P | Q \quad \text{Parallel Composition} \]

\[| (\forall n)P \quad \text{Restriction} \]

\[| !P \quad \text{Replication} \]

Algebraic form:
- grammar
- structural congruence
An Example: From Process Calculi to Graphs

Terms as graphs

syntax trees, term graphs, bigraphs, etc.
An Example: From Process Calculi to Graphs

The syntax of graphs

Definition 22 (bigraph) A bigraph over the signature \mathcal{K} takes the form $G = (V, ctrl, G^T, G^M) : I \rightarrow J$ where $I = (m, X)$ and $J = (n, Y)$ are its inner and outer interfaces, each combining a width (a finite ordinal), or each and

Definition 7 (hypergraph morphisms). A hypergraph G is a triple $\langle E_G, N_G, t_G \rangle$ such that E_G is the set of edges, N_G is the set of nodes, and $t_G : E_G \rightarrow N_G^*$ is the function of

Definition 2.1 (Graph term). A graph term has form $\Gamma \vdash G$ where:

1. $\Gamma \subseteq \mathcal{N}$ is a finite set of names (the free nodes of the graph);
2. G is a graph term generated by the grammar

$$G ::= L(x) \mid G|G \mid vy\ G \mid nil$$

where x is a tuple of names, $L \in L$, rank(L) = $|x|$ and y is a name.
An Example: From Process Calculi to Graphs

Encoding can become cumbersome

\[
\llbracket (\nu a)P \rrbracket_G = \begin{cases}
\llbracket P \rrbracket_G & \text{if } a \notin \text{fn}(P) \\
(\text{id}_P \otimes \nu_c \otimes \text{id}_G) \circ \llbracket P \rrbracket_G \otimes \llbracket \{c/a\} \rrbracket_G & \text{otherwise}
\end{cases}
\]

\[
\llbracket P \mid Q \rrbracket_G = \llbracket P \rrbracket_G \otimes \llbracket Q \rrbracket_G
\]

\[
\llbracket 0 \rrbracket_G = 0 \otimes 0
\]

\[
\llbracket (a(b))P \rrbracket_G = (\text{in}_{a,c} \otimes \text{id}_G) \circ \llbracket P \rrbracket_G \otimes \llbracket \{c/b\} \rrbracket_G
\]

\[
\llbracket ab.P \rrbracket_G = (\text{out}_b \otimes \text{id}_G) \circ \llbracket P \rrbracket_G
\]

\[
[0]_X = 1 \land X
\]

\[
[P \mid Q]_X = [P]_X \land [Q]_X
\]

\[
[\exists x.P]_X = \text{get}^{x,z} \circ [P]_X
\]

\[
[\forall x.P]_X = \text{send}^{x,z} \circ [P]_X
\]

\[
[[(\nu a)P]_n] = \text{hide}_n([(P \mid \cdots \mid a)]_{n+1})
\]

\[
[\forall P \mid Q]_n = \text{par}_n([P]_n \otimes [Q]_n)
\]

\[
[0]_n = \text{nil}_n
\]

\[
[\forall y].P]_n = \text{in}_n([P]_{n+1})
\]

\[
[M \mid N]_n = \text{choice}_n([M]_n \otimes [N]_n)
\]

Ten Virtues of Structured Graphs (GT-VMT'09) 37/45
A Re-usable Graph Algebra for Process Calculi

Components as edges \(l(\vec{x}) \), types as design labels \(L \).

\[
\begin{align*}
\text{(designs)} & \quad \mathcal{D} ::= L_{\vec{x}}[G] \\
\text{(graphs)} & \quad G ::= 0 \mid x \mid l(\vec{x}) \mid G \mid G \mid (\nu x)G \mid \mathcal{D}\langle \vec{y} \rangle
\end{align*}
\]

- In \(L_{\vec{x}}[G] \), the nodes \(\vec{x} \) in \(G \) are bound by the interface (as arguments), the other free names of \(G \) are global.
- We write \(L_{\langle \vec{y} \rangle}[G\{\vec{y}/\vec{x}\}] \) as a shorthand for \(L_{\vec{x}}[G]\langle \vec{y} \rangle \)
- A flattening axiom for some inessential design label \(L \) takes the form \(L_{\vec{x}}G\langle \vec{y} \rangle \equiv G\{\vec{y}/\vec{x}\} \) (but \(G\{\vec{y}/\vec{x}\} \) has still type \(L \))
- Structural equivalence as graph isomorphism
A Re-usable Graph Algebra for Process Calculi

Components as edges $I(\vec{x})$, types as design labels L.

\[
\begin{align*}
\text{(designs)} & \quad \mathbb{D} ::= L_{\vec{x}}[G] \\
\text{(graphs)} & \quad G ::= 0 \mid x \mid I(\vec{x}) \mid G\mid G \mid (\nu x)G \mid \mathbb{D}\langle \vec{y} \rangle \\
\end{align*}
\]

- In $L_{\vec{x}}[G]$, the nodes \vec{x} in G are bound by the interface (as arguments), the other free names of G are global.
- We write $L_{\langle \vec{y} \rangle}[G\{\vec{y}/\vec{x}\}]$ as a shorthand for $L_{\vec{x}}[G]\langle \vec{y} \rangle$.
- A flattening axiom for some inessential design label L takes the form $L_{\vec{x}}G\langle \vec{y} \rangle \equiv G\{\vec{y}/\vec{x}\}$ (but $G\{\vec{y}/\vec{x}\}$ has still type L).
- Structural equivalence as graph isomorphism.
A Re-usable Graph Algebra for Process Calculi

Components as edges $I(\vec{x})$, types as design labels L.

\[
\begin{align*}
\text{(designs)} & \quad \mathcal{D} ::= L_{\vec{x}}[G] \\
\text{(graphs)} & \quad G ::= 0 \mid x \mid I(\vec{x}) \mid G \mid G \mid (\nu x)G \mid \mathcal{D}\langle \vec{y} \rangle
\end{align*}
\]

- In $L_{\vec{x}}[G]$, the nodes \vec{x} in G are bound by the interface (as arguments), the other free names of G are global.
- We write $L_{\langle \vec{y} \rangle}[G\{\vec{y}/\vec{x}\}]$ as a shorthand for $L_{\vec{x}}[G]\langle \vec{y} \rangle$.
- A flattening axiom for some inessential design label L takes the form $L_{\vec{x}}G\langle \vec{y} \rangle \equiv G\{\vec{y}/\vec{x}\}$ (but $G\{\vec{y}/\vec{x}\}$ has still type L).
- Structural equivalence as graph isomorphism.
A Re-usable Graph Algebra for Process Calculi

Components as edges $I(\vec{x})$, types as design labels L.

\[
\begin{align*}
\text{(designs)} & \quad \mathcal{D} ::=} L_{\vec{x}}[G] \\
\text{(graphs)} & \quad G ::=} 0 \mid x \mid I(\vec{x}) \mid G \mid G \mid (\nu x)G \mid \mathcal{D}\langle \vec{y}\rangle
\end{align*}
\]

- In $L_{\vec{x}}[G]$, the nodes \vec{x} in G are bound by the interface (as arguments), the other free names of G are global.
- We write $L_{\langle \vec{y}\rangle}[G\{\vec{y}/\vec{x}\}]$ as a shorthand for $L_{\vec{x}}[G]\langle \vec{y}\rangle$
- A flattening axiom for some inessential design label L takes the form $L_{\vec{x}}G\langle \vec{y}\rangle \equiv G\{\vec{y}/\vec{x}\}$ (but $G\{\vec{y}/\vec{x}\}$ has still type L)
- Structural equivalence as graph isomorphism
A Re-usable Graph Algebra for Process Calculi

Components as edges $I(\vec{x})$, types as design labels L.

(designs) $\mathbb{D} ::= L_{\vec{x}}[G]$

(graphs) $G ::= 0 \mid x \mid I(\vec{x}) \mid G|G \mid (\nu x)G \mid D\langle \vec{y} \rangle$

- In $L_{\vec{x}}[G]$, the nodes \vec{x} in G are bound by the interface (as arguments), the other free names of G are global.
- We write $L_{\langle \vec{y} \rangle}[G\{\vec{y}/\vec{x}\}]$ as a shorthand for $L_{\vec{x}}[G]\langle \vec{y} \rangle$
- A flattening axiom for some inessential design label L takes the form $L_{\vec{x}}G\langle \vec{y} \rangle \equiv G\{\vec{y}/\vec{x}\}$ (but $G\{\vec{y}/\vec{x}\}$ has still type L)

Structural equivalence as graph isomorphism
A Re-usable Graph Algebra for Process Calculi

Components as edges $I(\vec{x})$, types as design labels L.

\[(\text{designs}) \quad D ::= L_{\vec{x}}[G]\]
\[(\text{graphs}) \quad G ::= 0 \mid x \mid I(\vec{x}) \mid G|G \mid (\nu x)G \mid D\langle \vec{y} \rangle\]

- In $L_{\vec{x}}[G]$, the nodes \vec{x} in G are bound by the interface (as arguments), the other free names of G are global.
- We write $L_{\langle \vec{y} \rangle}[G\{\vec{y}/\vec{x}\}]$ as a shorthand for $L_{\vec{x}}[G]\langle \vec{y} \rangle$.
- A flattening axiom for some inessential design label L takes the form $L_{\vec{x}}G\langle \vec{y} \rangle \equiv G\{\vec{y}/\vec{x}\}$ (but $G\{\vec{y}/\vec{x}\}$ has still type L).
- Structural equivalence as graph isomorphism.
Some Sketches of Encoding

π-calculus in ADR (P process type, G guarded sums type)

\[
\begin{align*}
\sem{(\nu x)Q} &= P_p[(\nu x)\sem{Q} \langle p \rangle] \\
\sem{N + M} &= G_p[\sem{N} \langle p \rangle | \sem{M} \langle p \rangle] \\
\sem{Q \parallel R} &= P_p[\sem{Q} \langle p \rangle | \sem{R} \langle p \rangle]
\end{align*}
\]

CaSPiS in ADR (P process type, S session type)

\[
\begin{align*}
\sem{Q \parallel R} &= P_{p,i,o,r}[p | i | o | r | \sem{Q} \langle p, i, o, r \rangle | \sem{R} \langle p, i, o, r \rangle] \\
\sem{s^+ \triangleright Q} &= P_{p,i,o,r}[i | o | S_{\langle p,r \rangle}[\sem{Q} \langle p, s^+, s^-, r \rangle]] \\
\sem{s^- \triangleright Q} &= P_{p,i,o,r}[i | o | S_{\langle p,r \rangle}[\sem{Q} \langle p, s^-, s^+, r \rangle]]
\end{align*}
\]
Some Sketches of Encoding

π-calculus in ADR (\mathbf{P} process type, \mathbf{G} guarded sums type)

$$
\llbracket (\nu x) Q \rrbracket = \mathbf{P}_p [(\nu x) \llbracket Q \rrbracket \langle p \rangle]
$$
$$
\llbracket N + M \rrbracket = \mathbf{G}_p [\llbracket N \rrbracket \langle p \rangle | \llbracket M \rrbracket \langle p \rangle]
$$
$$
\llbracket Q | R \rrbracket = \mathbf{P}_p [\llbracket Q \rrbracket \langle p \rangle | \llbracket R \rrbracket \langle p \rangle]
$$

CaSPiS in ADR (\mathbf{P} process type, \mathbf{S} session type)

$$
\llbracket Q | R \rrbracket = \mathbf{P}_{p,i,o,r}[p | i | o | r | \llbracket Q \rrbracket \langle p, i, o, r \rangle | \llbracket R \rrbracket \langle p, i, o, r \rangle]
$$
$$
\llbracket s^+ \triangleright Q \rrbracket = \mathbf{P}_{p,i,o,r}[i | o | \mathbf{S}_{(p,r)}[\llbracket Q \rrbracket \langle p, s^+, s^-, r \rangle]]
$$
$$
\llbracket s^- \triangleright Q \rrbracket = \mathbf{P}_{p,i,o,r}[i | o | \mathbf{S}_{(p,r)}[\llbracket Q \rrbracket \langle p, s^-, s^+, r \rangle]]
$$
Visualization: adr2graphs (Early Prototype)

Please have a try at http://www.albertolluch.com/adr2graphs

a simple visualiser of term-like specifications

choose the input language: [pi-calculus] choose the output format: [formal hierarchical graph]

enter a term: (nu "secret" . "gossipers" ! "secret") | "gossipers"? "message"

Ten Virtues of Structured Graphs (GT-VMT'09) 40/45
One Last Virtue of Structured Graphs

▶ Logical specification and verification
 ▶ ad-hoc spatial logics: from “general” to “derived” modalities
 ▶ formulas closer to visualization (easier to use)
 ▶ types as properties: a property \mathcal{P} demonstrated by structural induction on type T show that all graphs of type T satisfy \mathcal{P}.
 ▶ re-use existing (efficient) tools whenever possible
Outline

Introduction

Styles for Visual Support

Dynamics

ADR

Concluding Remarks
Where ADR can help

- Design of software architectures
 - drop & bind components + check + correct: tedious, error prone
 - bounded FO/SAT (Alloy): performant, but trial & error, no hint, no guidance

- Guaranteed reconfiguration
 - prove theorems on GT: ad-hoc, manual, limited re-use
 - model checking on GT: validate a particular instance, scalability issues, undecidable in general
 - monitor & repair: no guarantees

- Usability
 - other integrated environment require acquaintance with many different languages and theories
Related work

- **Ordinary GT:**
 - nice theory of concurrency, but structure must be encoded somehow in flat graphs,
 - problems with grouping and atomicity

- **Hierarchical graphs:**
 - main difference relies on interfaces

- **Alloy:**
 - highly specialized SAT solver, but Maude is more flexible
End of Talk (Graphs Powered by yEd)
End of Talk (Graphs Powered by yEd)