
Sessions and Pipelines for
Structured Service Programming

Michele Boreale1 Roberto Bruni2

Rocco De Nicola1 Michele Loreti1

1Dipartimento di Sistemi ed Informatica
Università di Firenze

2Dipartimento di Informatica
Università di Pisa

FMOODS 2008
Oslo, Norway

June 5th, 2008

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 1 / 34

Outline

1 Introduction & Motivation

2 CaSPiS in a Nutshell

3 About Graceful Termination

4 Concluding Remarks

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 2 / 34

Service Oriented Computing (SOC)

Services
SOC is an emerging paradigm where
services are understood as

autonomous

platform-independent

computational entities that can be:

described

published

categorised

discovered

dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.

e-Expectations

Big companies put many efforts in
promoting service delivery on a variety
of computing platforms.
Tomorrow, there will be a plethora of
new services for e-government,
e-business, and e-health, and others
within the rapidly evolving Information
Society.

A crucial fact
Industrial consortia are developing
orchestration and choreography
languages, targeting the
standardization of Web Services and
xml-centric technologies, but they
lack neat semantic foundations.

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 3 / 34

Service Oriented Computing (SOC)

Services
SOC is an emerging paradigm where
services are understood as

autonomous

platform-independent

computational entities that can be:

described

published

categorised

discovered

dynamically assembled

for developing massively distributed,
interoperable, evolvable systems.

e-Expectations

Big companies put many efforts in
promoting service delivery on a variety
of computing platforms.
Tomorrow, there will be a plethora of
new services for e-government,
e-business, and e-health, and others
within the rapidly evolving Information
Society.

A crucial fact
Industrial consortia are developing
orchestration and choreography
languages, targeting the
standardization of Web Services and
xml-centric technologies, but they
lack neat semantic foundations.

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 3 / 34

Sensoria (http://www.sensoria-ist.eu)

IST-FET Integrated Project funded by the EU in the GC Initiative (6th FP).

Aim
Developing a novel, comprehensive approach to the engineering of software
systems for service-oriented overlay computers.

Strategy

Integration of foundational theories, techniques, methods and tools in a
pragmatic software engineering approach.

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 4 / 34

http://www.sensoria-ist.eu

The role of process calculi

Coordinating and combining services

A crucial role in the project is played by formalisms for service description
that can lay the mathematical basis for analysing and experimenting with
components interactions, and for combining services.

Sensoria workpackage 2

We seek for a small set of primitives that might serve as a basis for
formalizing and programming service oriented applications over global
computers.

Sensoria core calculi

Signal Calculus: middleware level

SOCK, COWS: service level, correlation-based

SCC-family (SCC, SSCC, CC, CaSPiS): service level, session-based

cc-pi, lambda-req: SLA contract level
Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 5 / 34

Sketch of Multiple Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 6 / 34

Sketch of Multiple Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 7 / 34

Sketch of Multiple Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 8 / 34

Sketch of Multiple Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 9 / 34

Sketch of Nested Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 10 / 34

Sketch of Nested Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 11 / 34

Sketch of Nested Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 12 / 34

Sketch of Nested Sessions

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 13 / 34

Main Contribution

Proceedings

Syntax + LTS semantics + reduction semantics (see Lemma 3)

Basics of the language by several simple examples

Flexibility of the language by a couple more sophisticated examples

Graceful termination of (nested) sessions: We define a class of
processes, called balanced, for which we can guarantee that no
session-side is forced to hang forever after the abandon of its partner
(see Theorem 1).

Talk

Sketches of Syntax + Semantics by examples

Balanced processes, informally + Graceful termination by examples

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 14 / 34

Disclaim

To keep in mind

We are dealing with conceptual abstractions: the syntax does not
necessarily expose implementation details.

Examples

A session is a logical entity that can be implemented by an additional
sid parameter carried by all related messaging

All service instances (serving different requests) can be handled by
one service port

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 15 / 34

Outline

1 Introduction & Motivation

2 CaSPiS in a Nutshell

3 About Graceful Termination

4 Concluding Remarks

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 16 / 34

CaSPiS Genesis

Sources of inspiration

SCC [WS-FM 2006] was inspired by:

π (names, communication): x(y).P , xy .P , (νx)P

πI , session types (primitives for sessions): a(k).P , a(k).P
(roughly, think of a(k).P as (νk)ak .P)

Orc (pipelining and pruning of activities):
(

EAPLS〈2008〉 |EATCS〈2008〉
)

> cfp > Email〈rb@gmail.it, cfp〉

Email〈rb@gmail.it, cfp〉 where cfp :∈
(

EAPLS〈2008〉 |EATCS〈2008〉
)

CaSPiS is inspired by SCC and:

webπ, cjoin, Sagas (primitives for LRT and compensations)

KLAIM (pattern matching)

All source were relevant to the SOC paradigm, but so far

not available in a single calculus

yet to be amalgamated in some disciplined way
Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 17 / 34

CaSPiS Genesis

Sources of inspiration

SCC [WS-FM 2006] was inspired by:

π (names, communication): x(y).P , xy .P , (νx)P

πI , session types (primitives for sessions): a(k).P , a(k).P
(roughly, think of a(k).P as (νk)ak .P)

Orc (pipelining and pruning of activities):
(

EAPLS〈2008〉 |EATCS〈2008〉
)

> cfp > Email〈rb@gmail.it, cfp〉

Email〈rb@gmail.it, cfp〉 where cfp :∈
(

EAPLS〈2008〉 |EATCS〈2008〉
)

CaSPiS is inspired by SCC and:

webπ, cjoin, Sagas (primitives for LRT and compensations)

KLAIM (pattern matching)

All source were relevant to the SOC paradigm, but so far

not available in a single calculus

yet to be amalgamated in some disciplined way
Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 17 / 34

CaSPiS Genesis

Sources of inspiration

SCC [WS-FM 2006] was inspired by:

π (names, communication): x(y).P , xy .P , (νx)P

πI , session types (primitives for sessions): a(k).P , a(k).P
(roughly, think of a(k).P as (νk)ak .P)

Orc (pipelining and pruning of activities):
(

EAPLS〈2008〉 |EATCS〈2008〉
)

> cfp > Email〈rb@gmail.it, cfp〉

Email〈rb@gmail.it, cfp〉 where cfp :∈
(

EAPLS〈2008〉 |EATCS〈2008〉
)

CaSPiS is inspired by SCC and:

webπ, cjoin, Sagas (primitives for LRT and compensations)

KLAIM (pattern matching)

All source were relevant to the SOC paradigm, but so far

not available in a single calculus

yet to be amalgamated in some disciplined way
Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 17 / 34

CaSPiS Genesis

Sources of inspiration

SCC [WS-FM 2006] was inspired by:

π (names, communication): x(y).P , xy .P , (νx)P

πI , session types (primitives for sessions): a(k).P , a(k).P
(roughly, think of a(k).P as (νk)ak .P)

Orc (pipelining and pruning of activities):
(

EAPLS〈2008〉 |EATCS〈2008〉
)

> cfp > Email〈rb@gmail.it, cfp〉

Email〈rb@gmail.it, cfp〉 where cfp :∈
(

EAPLS〈2008〉 |EATCS〈2008〉
)

CaSPiS is inspired by SCC and:

webπ, cjoin, Sagas (primitives for LRT and compensations)

KLAIM (pattern matching)

All source were relevant to the SOC paradigm, but so far

not available in a single calculus

yet to be amalgamated in some disciplined way
Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 17 / 34

CaSPiS: General Principles

Service definitions: s.P

services expose their protocols

services can be deployed dynamically, shut down and updated

services can handle multiple requests separately

Service invocations: s .P

service invocations expose their protocols

sequential composition via pipelining (á la Orc)

Sessions: r ⊲ P

service invocation spawns fresh session parties (locally to each partner)

sessions are: two-party (service-side + client-side) + private

interaction between session protocols: bi-directional

nested sessions: values can be returned outside sessions (one level up)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 18 / 34

CaSPiS: General Principles

Service definitions: s.P

services expose their protocols

services can be deployed dynamically, shut down and updated

services can handle multiple requests separately

Service invocations: s .P

service invocations expose their protocols

sequential composition via pipelining (á la Orc)

Sessions: r ⊲ P

service invocation spawns fresh session parties (locally to each partner)

sessions are: two-party (service-side + client-side) + private

interaction between session protocols: bi-directional

nested sessions: values can be returned outside sessions (one level up)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 18 / 34

CaSPiS: General Principles

Service definitions: s.P

services expose their protocols

services can be deployed dynamically, shut down and updated

services can handle multiple requests separately

Service invocations: s .P

service invocations expose their protocols

sequential composition via pipelining (á la Orc)

Sessions: r ⊲ P

service invocation spawns fresh session parties (locally to each partner)

sessions are: two-party (service-side + client-side) + private

interaction between session protocols: bi-directional

nested sessions: values can be returned outside sessions (one level up)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 18 / 34

CaSPiS Syntax

Prefixes, Values, Patterns

π ::= (F) Abstraction
| 〈V 〉 Concretion
| 〈V 〉↑ Return

V ::= u | f (Ṽ) Value (f ∈ Σ)

F ::= u | ?x | f (F̃) Pattern (f ∈ Σ)

Processes

P , Q ::=
∑

i∈I
πiPi Guarded Sum

| sk .P Service Definition
| sk .P Service Invocation
| P > Q Pipeline
| close Close
| k · P Listener

| �(k) Signal
| r ⊲k P Session
| ◮ P Terminated Session
| P |Q Parallel Composition
| (νn)P Restriction
| !P Replication

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 19 / 34

CaSPiS Syntax

Prefixes, Values, Patterns

π ::= (F) Abstraction
| 〈V 〉 Concretion
| 〈V 〉↑ Return

V ::= u | f (Ṽ) Value (f ∈ Σ)

F ::= u | ?x | f (F̃) Pattern (f ∈ Σ)

Processes

P , Q ::=
∑

i∈I
πiPi Guarded Sum

| sk .P Service Definition
| sk .P Service Invocation
| P > Q Pipeline
| close Close
| k · P Listener

| �(k) Signal
| r ⊲k P Session
| ◮ P Terminated Session
| P |Q Parallel Composition
| (νn)P Restriction
| !P Replication

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 19 / 34

Example 1: Digital Documents

Service definition

!sign.(?x)(νt)〈K{x , t}〉
sign is a (replicated and thus persistent) service

a sign instance waits for a digital document x , generates a fresh
nonce t and then sends back both the document and the nonce
signed with a key K

Service invocation

sign.〈plan〉(?y)〈y〉↑

a client of sign

it passes the argument plan to the service, then waits for the signed
response from the server and returns this value outside the session as
a result

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 20 / 34

Example 1: Digital Documents

Service definition

!sign.(?x)(νt)〈K{x , t}〉
sign is a (replicated and thus persistent) service

a sign instance waits for a digital document x , generates a fresh
nonce t and then sends back both the document and the nonce
signed with a key K

Service invocation

sign.〈plan〉(?y)〈y〉↑

a client of sign

it passes the argument plan to the service, then waits for the signed
response from the server and returns this value outside the session as
a result

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 20 / 34

Example 1: Digital Documents

A run

!sign.(?x)(νt)〈K{x , t}〉 | sign.〈plan〉(?y)〈y〉↑

!sign.(?x)(νt)〈K{x , t}〉 | (νr)
(

r ⊲ (?x)(νt)〈K{x , t}〉 | r ⊲ 〈plan〉(?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 〈K{plan, t}〉 | r ⊲ (?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 0 | r ⊲ 〈K{plan, t}〉↑
)

Sessions for separation
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

The protocols of the two clients will run in separate sessions and will not interfere.

Pipelines for composition
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

> (?z)store.〈z〉

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 21 / 34

Example 1: Digital Documents

A run

!sign.(?x)(νt)〈K{x , t}〉 | sign.〈plan〉(?y)〈y〉↑

!sign.(?x)(νt)〈K{x , t}〉 | (νr)
(

r ⊲ (?x)(νt)〈K{x , t}〉 | r ⊲ 〈plan〉(?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 〈K{plan, t}〉 | r ⊲ (?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 0 | r ⊲ 〈K{plan, t}〉↑
)

Sessions for separation
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

The protocols of the two clients will run in separate sessions and will not interfere.

Pipelines for composition
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

> (?z)store.〈z〉

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 21 / 34

Example 1: Digital Documents

A run

!sign.(?x)(νt)〈K{x , t}〉 | sign.〈plan〉(?y)〈y〉↑

!sign.(?x)(νt)〈K{x , t}〉 | (νr)
(

r ⊲ (?x)(νt)〈K{x , t}〉 | r ⊲ 〈plan〉(?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 〈K{plan, t}〉 | r ⊲ (?y)〈y〉↑
)

!sign.(?x)(νt)〈K{x , t}〉 | (νr , t)
(

r ⊲ 0 | r ⊲ 〈K{plan, t}〉↑
)

Sessions for separation
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

The protocols of the two clients will run in separate sessions and will not interfere.

Pipelines for composition
(

sign.〈plan1〉(?y)〈y〉↑ | sign.〈plan2〉(?y)〈y〉↑
)

> (?z)store.〈z〉

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 21 / 34

Example 2: Common Patterns of Interaction

One way

s.(?x) s.〈V 〉

Request response

s.(?x)〈f (x)〉 s.〈V 〉(?r)〈r〉↑

π-calculus channels

a(x).P
△
= a.(?x)〈x〉↑ > (?x)P av .P

△
= a.〈v〉〈−〉↑ > (−)P

Proxy (service name passing)

!proxy .(?s, ?x)s .〈x〉!(?y)〈y〉↑

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 22 / 34

Example 2: Common Patterns of Interaction

One way

s.(?x) s.〈V 〉

Request response

s.(?x)〈f (x)〉 s.〈V 〉(?r)〈r〉↑

π-calculus channels

a(x).P
△
= a.(?x)〈x〉↑ > (?x)P av .P

△
= a.〈v〉〈−〉↑ > (−)P

Proxy (service name passing)

!proxy .(?s, ?x)s .〈x〉!(?y)〈y〉↑

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 22 / 34

Example 2: Common Patterns of Interaction

One way

s.(?x) s.〈V 〉

Request response

s.(?x)〈f (x)〉 s.〈V 〉(?r)〈r〉↑

π-calculus channels

a(x).P
△
= a.(?x)〈x〉↑ > (?x)P av .P

△
= a.〈v〉〈−〉↑ > (−)P

Proxy (service name passing)

!proxy .(?s, ?x)s .〈x〉!(?y)〈y〉↑

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 22 / 34

Example 3: Selection

Select

select F1, . . . , Fn from P
△
= (νs)

(

s.(F1). . . . (Fn)〈F
−?
1 , . . . , F−?

n 〉↑ | s.P
)

where F−?
i

denotes the value Vi obtained from Fi by replacing each ?x with x

Select-from

select F1, . . . , Fn from P in Q
△
= select F1, . . . , Fn from P > (F1, . . . , Fn)Q

Select first two CfP

select ?x , ?y from
(

EAPLS
∗
| EATCS

∗
| TYPES

∗)

in emailMe.〈x , y〉
where

s∗
△
= s .!(?x)〈x〉↑

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 23 / 34

Outline

1 Introduction & Motivation

2 CaSPiS in a Nutshell

3 About Graceful Termination

4 Concluding Remarks

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 24 / 34

CaSPiS: Advanced Principles

Service definitions: sk .P, k · P

services expose their protocols + generic termination handlers

services can be deployed dynamically, shut down and updated

services can handle multiple requests separately

Service invocations: sk .P, k · P

service invocations expose their protocols + specific termination handlers

sequential composition via pipelining (á la Orc)

Session termination: r ⊲k P, close , ◮ P, �(k)

local session termination: autonomous + on partner’s request

the local closure of a session activates partner’s handler (if any)

session termination cancels all locally nested processes (including service
definitions) + informs their partners

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 25 / 34

Termination Handlers

Step 1: Exchanging information about handlers

sk1 .Q|sk2 .P can evolve to (νr)(r ⊲k2 Q|r ⊲k1 P)

Step 2: Closing own session

r ⊲k

(

close |P
)

can evolve to �(k)| ◮ P

Step 3: Structural congruence (see Figure 7) + Propagation

◮ r ⊲k P ≡ ◮ r⊲k ◮ P ◮ (P > Q) ≡ (◮ P) > Q

◮ r ⊲k P
τ

−−→ ◮ P |�(k)

Step 4: Inform handlers

k · P
k

−−→ P �(k)
k

−−→ 0 P
k

−−→ P ′ Q
k

−−→ Q ′

P |Q
τ

−−→ P ′|Q ′

Default closing policy

(νk1)sk1 .(P1|k1 · close) and (νk2)sk2 .(P2|k2 · close)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 26 / 34

Termination Handlers

Step 1: Exchanging information about handlers

sk1 .Q|sk2 .P can evolve to (νr)(r ⊲k2 Q|r ⊲k1 P)

Step 2: Closing own session

r ⊲k

(

close |P
)

can evolve to �(k)| ◮ P

Step 3: Structural congruence (see Figure 7) + Propagation

◮ r ⊲k P ≡ ◮ r⊲k ◮ P ◮ (P > Q) ≡ (◮ P) > Q

◮ r ⊲k P
τ

−−→ ◮ P |�(k)

Step 4: Inform handlers

k · P
k

−−→ P �(k)
k

−−→ 0 P
k

−−→ P ′ Q
k

−−→ Q ′

P |Q
τ

−−→ P ′|Q ′

Default closing policy

(νk1)sk1 .(P1|k1 · close) and (νk2)sk2 .(P2|k2 · close)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 26 / 34

A Last Example: All Sides are Active

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 27 / 34

A Last Example: BBC-side Terminates

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 28 / 34

A Last Example: BBC-partner-side Terminates

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 29 / 34

A Last Example: News-side is Triggered to Terminate

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 30 / 34

A Last Example: Client-sides and Nested-sides Terminate

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 31 / 34

A Last Example: ANSA/CNN-sides Terminate

News
△
= !(νk)collectk .

`

k · close | (νk1)ANSAk1
.(!(?x)〈x〉↑ | k1 · (close |�(k)))

| (νk2)BBCk2
.(!(?x)〈x〉↑ | k2 · (close |�(k)))

| (νk3)CNNk3
.(!(?x)〈x〉↑ | k3 · (close |�(k)))

´

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 32 / 34

Outline

1 Introduction & Motivation

2 CaSPiS in a Nutshell

3 About Graceful Termination

4 Concluding Remarks

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 33 / 34

Conclusion and Related Work

CaSPiS

Original mix of several ingredients

Flexible and expressive

Only proposal, up to our knowledge, able to guarantee a disciplined
termination of nested sessions.

Related work

Prototype implementation (as seen in Michele Loreti’s talk)

Type systems available (UGO65, AMAST 2008)

Type inference is possible (see Leonardo Mezzina’s talk)

Boreale, Bruni, De Nicola, Loreti (FI, PI) CaSPiS FMOODS 2008 34 / 34

	Introduction & Motivation
	CaSPiS in a Nutshell
	About Graceful Termination
	Concluding Remarks

