Instructions to use online the BioHML Prolog interpreter of
Linda Brodo, Roberto Bruni and Moreno Falaschi.

The online interpreter extends to verification of BioHML formulas and biosimilarity a
previous version defined by Moreno Falaschi and Giulia Palma for the execution of basic
Reaction Systems. The source code of the online interpreter has been adapted for
compatibility issues with Tau-Prolog.

A Reaction System is a term sys (Delta,E,Ks,Rs), where Delta is the environment,
E the current set of entities, Ks the list of context processes and Rs the list of reactions
(their syntax is explained later). For the underlying theory please see the paper:

“SOS rules for Equivalences of Reaction Systems”, by L. Brodo, R. Bruni and M. Falaschi.

To customize the program you have to modify the following predicates:

- myentities/l, myreactions/1l, mycontext/l, myenvironment/1l: they are
used to define the main Reaction System RS of interest.

- mybhml/1: it is used to define a BioHML formula G and to check if it is satisfied by
the main Reaction System RS.

- myassert/1l, advenvironment/l, adventities/1l, advreactions/1,
advcontext/1: they are used to define an assertion F and an adversary Reaction
System ARS and to check if RS and ARS are F-biosimilar.

On the web page, the code is divided in two parts: in the upper textarea you find all
main predicates; in the lower textarea you find the code that you must edit to
experiment with custom Reaction Systems. You can press the following buttons:

LTS: the query main (digraph, X) . is invoked, which returns a graph description
in .dot format representing (a summary of) the Labelled Transition System of the
Reaction System RS. The answer if automatically copied in the bottom left panel. By
pressing the button Draw the graph is drawn in the bottom right panel.

The graph visualization tool is based on the library Vis.js. The nodes of the graph show
the current set of entities and the context processes (omitting all sorts of brackets), the
labels of transitions show just the available and produced entities. To change the graph,
you can edit the graph description and click the button Draw.

biohml: the query main (biohml, X) . is invoked, which either returns ok (if the
BioHML formula G is satisfied by RS), or the reason why G is not satisfied.

biosim: the query main (biosim, X) . is invoked, which either returns a F-biosimulation
relation proving that RS and ARS are F-biosimilar or false.

Adv: the query main (adv, X) . is invoked, which returns the LTS of ARS.

In all the above cases the result is shown in the Result section of the page.

How to customize the queries:

1) Normally, the predicate myentities/1 defines the empty list of reagents (as the
context sequence will provide other reagents, including the initial ones). However, the
predicate can be updated to define a (non empty) list of reagents, like in
myentities([al,..,an]).

from which the computation of the reaction system will start.

2) the predicate myreactions/1 defines the list of reactions of the Reaction System.
Its unique argument must be a list of terms react (R, I, P), like in

myreactions ([react (R1,I1,P1),..,react(Rn,In,Pn)]).

Each term react (Ri, Ii, Pi) contains a list of reagents Ri, a list of inhibitors Ii and
a list of products Pi. Single reagents, inhibitors and products are just constant symbols.

3) the predicate mycontext/1 defines the list of contexts. The Prolog Herbrand syntax
for contexts is the following:

K ::= nil | rec(X) | pre(C,K) | plus(K1l,K2)

Where nil stops the computation, rec (X) invokes the declaration of the constant x
from the environment, pre (C, K) makes available the reagents C in the current step
and then behaves as K at the next step, plus (K1,K2) behaves as either K1 or k2.

By using the predicate parse ctx/2, a more convenient syntax can be used in the
defining clause

K ::=nil | x | C.K | (K1 + .. + Kn)

C ::= {al,..,an}

For example the following two clauses are equivalent:

mycontext ([plus (pre(la,b],rec(x)),pre(la]l,pre(lal,nil)))]).
mycontext (Ks) : - parse ctx('[({a,b}.x + {a}.{a}.nil)]', Ks).

4) the predicate myenvironment/1 takes a list of constant declarations def (X, K). By
using the predicate parse env/2, the more convenient syntax x=K can be used.

For example the following two clauses are equivalent:
mycontext ([def (x,pre([a]l,rec(x)))]1).
mycontext (Ks) : - parse ctx('[x={a}.x)]',Ks).

5) the predicate mybhml/1 takes a BioHML formula G, defined over some assertion F.
The BioHML formulas abstract syntax is expressed by Prolog Herbrand terms as follows:
G ::= truel|falseland(Gl,G2) |or(Gl,G2) |diamond (F,G) |box (F,G)

F sub (C,N) |nonempty (N) |and (F1,F2) |or (Fl1,F2) |xor (F1,F2) |not (F)
where N is a natural number between 1 and 4, which identifies the corresponding set in
a transition label obs (E, R, I, P). So number 1 is list E, number 2 is R, and so on.

By using the predicate parse bhml/2, and parse assert/2 a more convenient
syntax can be used in the defining clauses

G ::= true | false | (G1 & .. & Gn) | (G1 * .. * Gn) | <F>G | [F]G
F ::= C inE | C inR | C inI | C inP

| 2 inE | ? inR | ? inI | ? inP

| (F1 & .. & Fn) | (F1 * .. * Fn) | (F1"F2) | -F

For example the following two clauses are equivalent:
mybhml ([box (not (sub ([c],1)),diamond (not (sub([c],1)),true))]).
mybhml (G) : -parse bhml (' [-{c} inE]<-{c} inE>true',G).

6) the predicate myassert/1 takes an assertion F, as defined above.

Examples:

In the customizable textarea there is an already included example:

/* a Reaction System Process */

myenvironment ([]) .

myentities([]) .

myreactions ([react ([a,bl, [c], [b])]).

mycontext (Ks) : -parse ctx ("[({a,b}.{a}.{a,c}.nil + {a,b}.{a}.{a}.nil)]',Ks).

/* a BioHML formula to check */
mybhml (G) :- parse bhml ('<-{c} inE>[-{c} inE]<-{c} inE>true',G).

/* a F-biosimilarity check against an adversary process*/

myassert (F) :- parse assert('-{c} inE',F).
advenvironment ([]) .

adventities ([]) .

advreactions ([react ([a,b]l, [c], [b])]).

advcontext (Ks) :- parse ctx('[{a,b}.{a}.{a,c}.nil]"',Ks).

Feel free to change it, or you can choose to load in the textarea one of the other
predefined examples just clicking on their names.

