Program analysis: from proving correctness to proving incorrectness

Roberto Bruni, Roberta Gori
(University of Pisa)
Exam questions

BISS 2024
March 11-15, 2024
Exam 1

Prove that rule \{\text{conj}\} is sound

\[
\frac{\{P_1\} \vdash \{Q_1\} \quad \{P_2\} \vdash \{Q_2\}}{\{P_1 \land P_2\} \vdash \{Q_1 \land Q_2\}} \quad \{\text{conj}\}
\]

Exam 2

Show that the following rule for assignment is not sound

\[
\{P\} \ x := a \ {P[a/x]}
\]
Exam 3

Prove that rule [conj] is unsound

\[
\frac{[P_1] \ r \ [\epsilon : Q_1] \quad [P_2] \ r \ [\epsilon : Q_2]}{[P_1 \land P_2] \ r \ [\epsilon : Q_1 \land Q_2]} \quad \text{[conj]}
\]

Exam 4

Is this “mixed” HL+IL inference rule valid?

\[
\frac{[P \land b] \ c \ [\text{ok} : P]}{\{P\} \ \text{while} \ b \ \text{do} \ c \ \{P \land \neg b\}}
\]
Consider the abstract domain Sign' in the figure

1. Define the corresponding α and γ.

2. Does it admit a complete abstract multiplication?

3. If not, can you add some abstract elements to Sign' so that a complete abstract multiplication can be designed?
Is the bca of $f : \mathbb{Z} \rightarrow \mathbb{Z}$ below complete on the Interval domain?

$$f(x) = \begin{cases}
 x & \text{if } x \leq 10 \\
 10 & \text{Otherwise}
\end{cases}$$
Let $C \triangleq \wp(\Sigma^*)$ be the domain of sets of strings over a (finite) alphabet Σ. Let the abstract domain be $A \triangleq \wp(\Sigma)$. Assuming $|\Sigma| \geq 2$:

1. Define suitable α and γ and prove that they form a Galois Insertion.

2. Lift the concrete operation \cdot of string concatenation to sets of string.

3. Define its best correct approximation.

4. Prove whether the previously defined abstract operation is complete.
Exam 8

Prove that [conj] is unsound for LCL

\[
\frac{\vdash_{A} [P_1] r [Q_1] \quad \vdash_{A} [P_2] r [Q_2]}{
\vdash_{A} [P_1 \land P_2] r [Q_1 \land Q_2]}
\]

[conj]

Exam 9

Show that the following rule is not sound

\[
\vdash_A [P] x := \text{nondet()} [P[v/x]]
\]
Can you find a derivation for the LCL triple

\[\vdash_{\text{Sign}^+} \begin{array}{l} \neg (\forall x > 0) \; x := x + 1; x := x - 1 \; \forall x > 0 \end{array} \]

repairing the domain if necessary?
Exam 11

Find a derivation for the SIL triple
\[\langle \text{true} \rangle \text{ if } x \geq y \text{ then } z := x \text{ else } z := y \langle z = \max(x, y) \rangle \]

Exam 12

Prove or disprove the validity of the following axiom in SIL

\[\langle P \rangle (b) \Rightarrow \langle P \land b \rangle \]
Consider the imprecise list segment definition below
\[ils(a_1, a_2) \triangleq (a_1 = a_2 \land \text{emp}) \lor (\exists v . a_1 \mapsto v \ast ls(v, a_2)) \]

Prove that \(ils(a_1, a_2) \not\equiv ls(a_1, a_2) \) by finding a state that distinguishes \(ls(11, 11) \) from \(ils(11, 11) \).
Complete the following derivations, if possible

\[
\{ P \ast x \mapsto _{_} \} \ [x] := 11 \ \{ P \ast ??? \}
\]
\[
\{ \text{true} \} \ [x] := 11 \ \{ ??? \}
\]

\[
\{ P \ast x \mapsto _{_} \} \ \text{free}(x) \ \{ ??? \}
\]
\[
\{ \text{true} \} \ \text{free}(x) \ \{ ??? \}
\]
Can we derive the following ISL triple?

\[x \mapsto 1 \quad \text{free}(x); \quad x := \text{alloc()} \quad \text{ok} : x \mapsto 2 \]
Prove the SepSIL triple $\langle \langle p \leftrightarrow \text{nil} \ast \text{true} \rangle \rangle \ c \ \langle \langle i = 0 \rangle \rangle$ where

$$c \triangleq i := 0 ; q := \ast p ; \text{while} \ (q \neq \text{nil}) \ \text{do} \ \{ \ q := \ast q ; i := i + 1 \ \}$$