

Exam 1

Prove that rule $\{\mathrm{conj}\}$ is sound $\frac{\left\{P_{1}\right\} r\left\{Q_{1}\right\}\left\{P_{2}\right\} r\left\{Q_{2}\right\}}{\left\{P_{1} \wedge P_{2}\right\} r\left\{Q_{1} \wedge Q_{2}\right\}}$ \{conj\}

Exam 2

Show that the following rule for assignment is not sound

$$
\{P\} x:=a\{P[a / x]\}
$$

Exam 3

Prove that rule [conj] is unsound

$$
\begin{gathered}
\frac{\left[P_{1}\right] r\left[\epsilon: Q_{1}\right] \quad\left[P_{2}\right] r\left[\epsilon: Q_{2}\right]}{\left[P_{1} \wedge P_{2}\right] r\left[\epsilon: Q_{1} \wedge Q_{2}\right]} \\
\text { Exam } \mathbf{4}
\end{gathered}
$$

Is this "mixed" HL+IL inference rule valid?

$$
\frac{[P \wedge b] c[\text { ok }: P]}{\{P\} \text { while } b \text { do } c\{P \wedge \neg b\}}
$$

Exam 5

Consider the abstract domain Sign' in the figure

1. Define the corresponding α and γ.
2. Does it admit a complete abstract multiplication?
3. If not, can you add some abstract elements to Sign' so that a complete abstract multiplication can be designed?

Abs.Int.

Exam 6

Is the bca of $f: \mathbb{Z} \rightarrow \mathbb{Z}$ below complete on the Interval domain?

$$
f(x)= \begin{cases}x & \text { if } x \leq 10 \\ 10 & \text { Otherwise }\end{cases}
$$

Abs.Int.

Exam 7

Let $C \triangleq \wp\left(\Sigma^{*}\right)$ be the domain of sets of strings over a (finite) alphabet Σ. Let the abstract domain be $A \triangleq \wp(\Sigma)$. Assuming $|\Sigma| \geq 2$:

1. Define suitable α and γ and prove that they form a Galois Insertion.
2. Lift the concrete operation • of string concatenation to sets of string.
3. Define its best correct approximation.
4. Prove whether the previously defined abstract operation is complete.

Exam 8

Prove that [conj] is unsound for LCL

$$
\begin{gathered}
\frac{\vdash_{A}\left[P_{1}\right] r\left[Q_{1}\right] \vdash_{A}\left[P_{2}\right] r\left[Q_{2}\right]}{\vdash_{A}\left[P_{1} \wedge P_{2}\right] r\left[Q_{1} \wedge Q_{2}\right]} \\
\text { Exam } 9
\end{gathered}
$$

Show that the following rule is not sound

$$
\overline{\vdash_{A}[P] x:=\operatorname{nondet}()[P[v / x]]}
$$

Repair

Exam 10

Can you find a derivation for the LCL triple

$$
\vdash_{\operatorname{sign}^{+}}[x>0] x:=x+1 ; x:=x-1[x>0]
$$

repairing the domain if necessary?

Exam 11

Find a derivation for the SIL triple $\langle\langle$ true $\rangle\rangle$ if $x \geq y$ then $z:=x$ else $z:=y\langle\langle z=\max (x, y)\rangle\rangle$

Exam 12

Prove or disprove the validity of the following axiom in SIL

$$
\langle\langle P\rangle\rangle(b) ? \quad\langle\langle P \wedge b\rangle\rangle
$$

Exam 13

Consider the imprecise list segment definition below ils $\left(a_{1}, a_{2}\right) \triangleq\left(a_{1}=a_{2} \wedge \mathrm{emp}\right) \vee\left(\exists v, a_{1} \mapsto \nu^{*} \operatorname{ls}\left(v, a_{2}\right)\right)$

Prove that ils $\left(a_{1}, a_{2}\right) \not \equiv \mathrm{Is}\left(a_{1}, a_{2}\right)$ by finding a state that distinguishes $\operatorname{ls}(11,11)$ from ils $(11,11)$

Exam 14

Complete the following derivations, if possible

$\left\{P^{*} x \mapsto_{-}\right\}[x]:=11\left\{P^{*} ? ?\right\}$ $\{$ true $\}[x]:=11$ \{??\}
$\left\{P^{*} x \mapsto{ }_{-}\right\}$free $(x)\{? ?\}$ \{true $\}$ free $(x)\{? ?\}$

Exam 15

Can we derive the following ISL triple?
$[x \mapsto 1]$ free $(x) ; x:=\operatorname{alloc}()$ [ok : $x \mapsto 2]$

SepSIL

Exam 16

Prove the SepSIL triple $\langle\langle p \mapsto$ nil * true $\rangle\rangle c\langle\langle i=0\rangle\rangle$ where
$c \triangleq i:=0 ; q:=* p ;$ while $(q \neq$ nil $)$ do $\{q:=* q ; i:=i+1\}$

