
Program analysis:
from proving correctness
to proving incorrectness

Roberto Bruni, Roberta Gori
(University of Pisa)

Lecture #11
BISS 2024

March 11-15, 2024

Separation SIL

Ongoing work
“Separation SIL can yield more succinct
postconditions and provide stronger
guarantees than ISL and can support
effective backward reasoning”

ar
X

iv
:2

31
0.

18
15

6v
3

 [c
s.L

O
]

30
 Ja

n
20

24

Sufficient Incorrectness Logic: SIL and Separation SIL

FLAVIO ASCARI, Università di Pisa, Italy
ROBERTO BRUNI, Università di Pisa, Italy
ROBERTA GORI, Università di Pisa, Italy
FRANCESCO LOGOZZO, Meta Platforms, Inc., USA

Sound over-approximation methods have been proved effective for guaranteeing the absence of errors, but in-
evitably they produce false alarms that can hamper the programmers. Conversely, under-approximationmeth-
ods are aimed at bug finding and are free from false alarms. We introduce Sufficient Incorrectness Logic (SIL),
a new under-approximating, triple-based program logic to reason about program errors. SIL is designed to
set apart the initial states leading to errors. We prove that SIL is correct and complete for a minimal set of
rules, and we study additional rules that can facilitate program analyses. We formally compare SIL to existing
triple-based program logics. Incorrectness Logic and SIL both perform under-approximations, but while the
former exposes only true errors, the latter locates the set of initial states that lead to such errors. Hoare Logic
performs over-approximations and as such cannot capture the set of initial states leading to errors in nonde-
terministic programs – for deterministic and terminating programs, Hoare Logic and SIL coincide. Finally, we
instantiate SIL with Separation Logic formulae (Separation SIL) to handle pointers and dynamic allocation
and we prove its correctness and, for loop-free programs, also its completeness. We argue that in some cases
Separation SIL can yield more succinct postconditions and provide stronger guarantees than Incorrectness
Separation Logic and can support effective backward reasoning.

CCS Concepts: • Theory of computation→ Logic and verification; Proof theory; Hoare logic; Separation
logic; Programming logic.

Additional KeyWords and Phrases: Sufficient Incorrectness Logic, Incorrectness Logic, Necessary Conditions,
Outcome Logic

1 INTRODUCTION

Formal methods aim to provide tools for reasoning and establishing program guarantees. His-
torically, research in formal reasoning progressed from manual correctness proofs to effective,
automatic methods that improve program reliability and security. In the late 60s, Floyd [1967]
and Hoare [1969] independently introduced formal systems to reason about programs. In the
70s/early 80s, the focus was on mechanization, with the introduction of numerous techniques
such as predicate transformers [Dijkstra 1975], Abstract Interpretation [Cousot and Cousot 1977],
model checking [Clarke and Emerson 1981], type inference [Damas and Milner 1982] and mech-
anized program proofs [Coquand and Huet 1985]. Those seminal works, in conjunction with the
development of automatic and semi-automatic theorem provers (e.g., [de Moura 2007]) brought
impressive wins in proving program correctness of real-world applications. For instance, the As-
trée abstract interpreter automatically proves the absence of runtime errors in millions of lines
of safety-critical C [Blanchet et al. 2003], the SLAM model checker was used to check Windows
drivers [Ball and Rajamani 2001], CompCert is a certified C compiler developed in Coq [Leroy
2009], and VCC uses the calculus of weakest precondition to verify safety properties of annotated
Concurrent C programs [Cohen et al. 2009].
Despite the aforementioned successes, effective program correctness methods struggle to reach

mainstream adoption. As program correctness is undecidable, all those methods over-approximate
programs behaviours. Over-approximation guarantees soundness (if the program is proved to be

Authors’ addresses: Flavio Ascari, Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy,
flavio.ascari@phd.unipi.it; Roberto Bruni, Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3, 56127,
Pisa, Italy, roberto.bruni@unipi.it; Roberta Gori, Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo 3,
56127, Pisa, Italy, roberta.gori@unipi.it; Francesco LogozzoMeta Platforms, Inc., USA, logozzo@meta.com.

SepSIL = SIL + SL

 ⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩
SIL {P} r {Q}

 {P * R} r {Q * R}

SL

SepSIL
 ⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩
 ⟨⟨P * R⟩⟩ r ⟨⟨Q * R⟩⟩

Regular commands

 |

 | +

 |

r ::= e
r1; r2
r1 r2
r⋆

regular
command atomic

command

Kleene
star

skip

 |

 |

 | // read

 | // write

 | alloc()

 |

e ::=
b?
x := a
x := [y]
[x] := y
x :=
𝖿𝗋𝖾𝖾(x)

choice
simplified

Assertion language
 | | | | …

 | | | | …

 |

 |

 |

 |

P ::= 𝗍𝗋𝗎𝖾 𝖿𝖺𝗅𝗌𝖾 a1 < a2 a1 = a2
¬P P1 ∧ P2 ∃x . P
𝖾𝗆𝗉
a1 ↦ a2
P1 * P2
x /↦

assertion

Boolean and
classical

assertions

structural
assertions

track deallocated
locations

Local axioms: write
 {x ↦ _} [x] := y {x ↦ y}

 [x ↦ v] [x] := y [𝗈𝗄 : x ↦ y]

SL

ISL

 ⟨⟨x ↦ _⟩⟩ [x] := y ⟨⟨x ↦ y⟩⟩SepSIL

weakest pre

Local axioms: read

ISL

 {y ↦ v} x := [y] {x = v ∧ y ↦ v}SL

 [y ↦ v] x := [y] [𝗈𝗄 : x = v ∧ y ↦ v]

 ⟨⟨y ↦ v ∧ (v = x′)⟩⟩ x := [y] ⟨⟨y ↦ v ∧ (x = x′)⟩⟩SepSIL

applicable to any
postHoare style

Local axioms: allocation

ISL

 ⟨⟨𝖾𝗆𝗉⟩⟩ x := 𝖺𝗅𝗅𝗈𝖼() ⟨⟨x ↦ _⟩⟩SepSIL

SL {𝖾𝗆𝗉} x := 𝖺𝗅𝗅𝗈𝖼() {x ↦ _}

 [𝖾𝗆𝗉] x := 𝖺𝗅𝗅𝗈𝖼() [𝗈𝗄 : x ↦ _]

Local axioms: dispose

ISL

SL {x ↦ _} 𝖿𝗋𝖾𝖾(x) {𝖾𝗆𝗉}

 [x ↦ v] 𝖿𝗋𝖾𝖾(x) [𝗈𝗄 : x /↦]

 ⟨⟨x ↦ _⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩SepSIL

using cons can be
strengthened to x ↦ v

Different proofs of a real bug

228 A. Raad et al.

void deref_after_pb(std::vector<int> *v) {
int *x = &v->at(1);
v->push_back(42);
std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was
potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));
6. v->push_back(42);
7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.

ISL Triples. The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ϵ : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing C,
where ϵ denotes an exit condition indicating either normal or exceptional (erro-
neous) termination. The under-approximate triples can be equivalently inter-
preted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the post-
condition post describes a superset of states that are reachable from the precon-
dition pre, and may include states unreachable from pre. Hoare logic is about
over-approximation, allowing false positives but not negatives, whereas ISL is
about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v). Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v !→ a ∗ a !→−] client(v)
[
er(lrx) : ∃a′. v !→ a′ ∗ a′ !→− ∗ a ̸!→

]
(PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).

Use-after-lifetime bug

abstracted from real
occurrences at Facebook

from std::vector library, can deallocate and then reallocate v

if v is reallocated, x is invalidated

From C++ to regular commands
Local Reasoning About the Presence of Bugs 5

void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) ,
local z, y in

z := *;
(assume(z 6= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) ,
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

as a is invalidated after the push back(v) call, the instruction following the call
in client(v) dereferences invalidated memory at lrx, causing an error.

Note that the result assertion in PB-Ok is strictly under-approximate in that
it is smaller (stronger) than the exact “strongest post”. Given the assertion in
the presumption, the strongest post must also consider the else clause of the
conditional, when nondet() returns zero and push back(v) does nothing. That is,
the strongest post is the disjunction of the given result and the presumption. The
ability to go below the strongest post soundly is a hallmark of under-approximate
reasoning: it allows for compromise in an analyzer, where we might choose, e.g.,
to limit the number of paths explored for e�ciency reasons, or to concretize an
assertion partially when symbolic reasoning becomes di�cult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in §3. For
legibility, uses of the 4.2 rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a 7!� with a 67! . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x 7! �] free(x) [ok : emp ^ loc(x)]

C version ISL version SepSIL version

// client, inlining proc call

(// push_back

+

)

x := [v];

y := [v];
𝖿𝗋𝖾𝖾(y);
y := 𝖺𝗅𝗅𝗈𝖼();
[v] := y

𝗌𝗄𝗂𝗉

[x] := 88

228 A. Raad et al.

void deref_after_pb(std::vector<int> *v) {
int *x = &v->at(1);
v->push_back(42);
std::cout << *x << "\n"; }

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was
potentially invalidated by ’std::vector::push_back()’ on line 6.

5. int *x = &(v->at(1));
6. v->push_back(42);
7. > std::cout << *x << "\n"; }

Fig. 1. The C++ use-after-lifetime bug (above); the Pulse error message (below).

needs to grow to accommodate new elements. If the internal array is reallocated
during the v->push back(42) call, a use-after-lifetime bug occurs on the next
line as x points into the previous array. Note how the Pulse error message (at
the bottom of Fig. 1) refers to memory that has been invalidated. As we describe
shortly, this information is tracked in Pulse with an invalidated heap assertion.

For the theory in this paper, we do not want to descend into the details of
C++, vectors, and so forth. Thus, for illustrative purposes, in Fig. 2 we present
an adaptation of such use-after-lifetime bugs in C rather than C++, alongside its
representation in the ISL language used in this paper. In this adaptation, the
array at v is of size 1, and is reallocated in push back non-deterministically to
model its dynamic reallocation when growing. We next demonstrate how we can
use ISL to detect the use-after-lifetime bug in the client procedure in Fig. 2.

ISL Triples. The ISL theory uses under-approximate triples [35] of the form
[presumption] C [ϵ : result], interpreted as: the result assertion describes a subset
of the states that can be reached from the presumption assertion by executing C,
where ϵ denotes an exit condition indicating either normal or exceptional (erro-
neous) termination. The under-approximate triples can be equivalently inter-
preted as: every state in result can be obtained by executing C on a starting
state in presumption. By contrast, given a Hoare triple {pre} C {post}, the post-
condition post describes a superset of states that are reachable from the precon-
dition pre, and may include states unreachable from pre. Hoare logic is about
over-approximation, allowing false positives but not negatives, whereas ISL is
about under-approximation, allowing false negatives but not positives.

Bug Specification of client(v). Using ISL, we can specify the use-after-
lifetime bug in client(v) as follows:

[v !→ a ∗ a !→−] client(v)
[
er(lrx) : ∃a′. v !→ a′ ∗ a′ !→− ∗ a ̸!→

]
(PB-Client)

We make several remarks to illustrate the crucial features of ISL:

• As in standard SL, ∗ denotes the separating conjunction, read “and sepa-
rately”. It implies, e.g., that v, a′ and a are distinct in the result assertion.

• The exit condition er(lrx) denotes an erroneous termination: an error state
is reached at line lrx , where a is dangling (invalidated).

 ⟨⟨v ↦ a * a ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ 𝗋𝖼𝗅𝗂𝖾𝗇𝗍 ⟨⟨x /↦ _ * 𝗍𝗋𝗎𝖾⟩⟩

more succint
post

stronger guarantee:
any state in pre can

lead to error

Local Reasoning About the Presence of Bugs 5

void push_back(int **v)

{

if (nondet()) {

free(*v);

*v = malloc(sizeof(int));

}

}

void client(v) {

int* x = *v;

push_back(v);

*x = 88; }

push back(v) ,
local z, y in

z := *;
(assume(z 6= 0); lrv : y :=[v];
lf : free(y);
y :=malloc(); [v] := y)

+ (assume(z = 0); skip)

client(v) ,
local x in

x := [v];
push back(v);
lrx : [x] := 88

Fig. 2. The push back example in C (left); and in the ISL language (right).

as a is invalidated after the push back(v) call, the instruction following the call
in client(v) dereferences invalidated memory at lrx, causing an error.

Note that the result assertion in PB-Ok is strictly under-approximate in that
it is smaller (stronger) than the exact “strongest post”. Given the assertion in
the presumption, the strongest post must also consider the else clause of the
conditional, when nondet() returns zero and push back(v) does nothing. That is,
the strongest post is the disjunction of the given result and the presumption. The
ability to go below the strongest post soundly is a hallmark of under-approximate
reasoning: it allows for compromise in an analyzer, where we might choose, e.g.,
to limit the number of paths explored for e�ciency reasons, or to concretize an
assertion partially when symbolic reasoning becomes di�cult [35].

We present proof outlines for PB-Ok and PB-Client in Fig. 3, where we
annotate each step with a proof rule to connect to the ISL theory in §3. For
legibility, uses of the 4.2 rule are omitted as it is used in almost every step,
and the consequence rule Cons is usually omitted when rewriting a formula
to an equivalent one. For the moment, we encourage the reader to attempt to
follow, prior to formalization, by mentally executing the program instructions
on the assertions and asking: does the assertion at each program point under-
approximate the states that can be obtained from the prior state? Note that
each step updates assertions in-place, just as concrete execution does on concrete
memory. For example, lf : free(y) replaces a 7!� with a 67! . In-place reasoning
is a capability that the separating conjunction brings to symbolic execution;
formally, this in-place aspect is achieved in the logic by applying the frame rule.

3 Incorrectness Separation Logic (ISL)

As a first attempt, it is tempting to obtain ISL straightforwardly by composing
the standard semantics of SL [41] and the semantics of incorrectness logic [35].
Interestingly, this simplistic approach does not work. To see this, consider the
following axiom for freeing memory, adapted from the corresponding SL axiom:

[x 7! �] free(x) [ok : emp ^ loc(x)]

ISL derivation
6 A. Raad, J. Berdine, H.-H. Dang, D. Dreyer, P. O’Hearn, and J. Villard

[v 7! a ⇤ a 7!�]

local y, z in

z :=*; //Havoc

[ok :z=1 ⇤ v 7! a ⇤ a 7!�]

(assume(z 6= 0); //Assume

[ok :z=1 ⇤ z 6=0 ⇤ v 7! a ⇤ a 7!�]

lrv : y := [v]; //Load

[ok :z=1 ⇤ y=a ⇤ v 7! a ⇤ a 7!�]

lf : free(y); //Free

[ok :z=1 ⇤ y=a ⇤ v 7! a ⇤ a 67!]

y := malloc(); //Alloc1,Choice

[ok :z=1 ⇤ v 7! a ⇤ a 67! ⇤ y 7!�]
[v] := y; //Store

[ok :z=1 ⇤ v 7! y ⇤ a 67! ⇤ y 7!�]
) + (. . .) //Choice

[ok :z=1 ⇤ v 7! y ⇤ a 67! ⇤ y 7!�]
//Local

[ok : 9a0. v 7! a0 ⇤ a0 7!� ⇤ a 67!]

[v 7! a ⇤ a 7!�]

local x in

x := [v]; //Load

[ok :x=a ⇤ v 7! a ⇤ a 7!�]

push back(v); //PB-Ok

[ok :9a0.x=a ⇤ v 7!a0⇤ a0 7!�⇤a 67!]//Cons

[ok :9a0.x=a ⇤ v 7!a0⇤ a0 7!�⇤x 67!]

lrx : [x] := 88; //StoreEr

[er(lrx) : 9a0. x=a ⇤ v 7! a0 ⇤ a0 7!� ⇤ x 67!]

//Local

[er(lrx) : 9a0. v 7! a0 ⇤ a0 7!� ⇤ a 67!]

Fig. 3. The proof sketches of PB-Ok (left) and PB-Client (right).

Here, emp describes the empty heap and loc(x) states that x is an addressable
location; e.g., x cannot be null. Note that this ISL triple is valid in that any
state satisfying the result assertion can be obtained from one satisfying the
presumption assertion, and thus we do have a true under-approximate triple.

However, in SL one can arbitrarily extend the state using the frame rule:

` [p] C [✏ :q] mod(C) \ fv(r) = ;
` [p ⇤ r] C [✏ :q ⇤ r]

(4.2)

Intuitively, the state described by the frame assertion r lies outside the footprint
of C and thus remains unchanged when executing C. However, if we do this with
the free(x) axiom above, choosing x 7! � as our frame, we run into a problem:

[x 7! � ⇤ x 7! �] free(x) [ok : (emp ^ loc(x)) ⇤ x 7! �]

Here, the presumption is inconsistent but the result is not, and thus there is no
way to get back to the presumption from the result; i.e., the triple is invalid. In
over-approximate reasoning this does not cause a problem since an inconsistent
precondition renders an over-approximate triple vacuously valid. By contrast, an
inconsistent presumption does not validate under-approximate reasoning.

Our way out of this conundrum is to consider a modified model in which
the knowledge that a location was previously freed is a resource-oriented fact,
using negative heap assertions. The negative heap assertion x 67! conveys more
knowledge than the loc(x) assertion. Specifically, x 67! conveys: 1) the knowledge
that x is an addressable location; 2) the knowledge that x has been deallocated;

SepSIL derivation

 // Load + Frame

 (// push_back: Choice

 // Load + Frame

 // Free + Frame

 // Alloc + Frame

 // Write + Frame

 +

 // Skip + Frame

)

⟨⟨v ↦ a * a ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨v ↦ a * a ↦ _ * (a = a ∨ a /↦) * 𝗍𝗋𝗎𝖾⟩⟩
x := [v];

⟨⟨v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨(v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾) ∨ (x /↦ * 𝗍𝗋𝗎𝖾)⟩⟩

⟨⟨v ↦ a * a ↦ _ * (x = a ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩
y := [v];

⟨⟨v ↦ a * y ↦ _ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨v ↦ _ * y ↦ _ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩
𝖿𝗋𝖾𝖾(y);

⟨⟨v ↦ _ * y /↦ * (x = y ∨ x /↦) * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * v ↦ _ * 𝖾𝗆𝗉 * 𝗍𝗋𝗎𝖾⟩⟩
y := 𝖺𝗅𝗅𝗈𝖼();

⟨⟨x /↦ * v ↦ _ * y ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * v ↦ _ * 𝗍𝗋𝗎𝖾⟩⟩
[v] := y

⟨⟨x /↦ * v ↦ y * 𝗍𝗋𝗎𝖾⟩⟩ ⇒ ⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩

⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩ 𝗌𝗄𝗂𝗉 ⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩

⟨⟨x /↦ * 𝗍𝗋𝗎𝖾⟩⟩
[x] := 88

Correctness and completeness

Relational semantics

[[𝗌𝗄𝗂𝗉]] ≜ {(σ, σ)}
[[b?]] ≜ {(σ, σ) ∣ σ = ⟨s, h⟩ ∧ s ⊧ b}
[[x := a]] ≜ {(⟨s, h⟩, ⟨s[x ↦ [[a]]s], h⟩)}

[[x := [y]]] ≜ {(⟨s, h⟩, ⟨s[x ↦ v], h⟩) ∣ v = h(s(y)) ∈ ℤ}

[[[x] := y]] ≜ {(⟨s, h⟩, ⟨s, h[s(x) ↦ s(y)]⟩) ∣ h(s(x)) ∈ ℤ}

[[x := 𝖺𝗅𝗅𝗈𝖼()]] ≜ {(⟨s, h⟩, ⟨s[x ↦ n], h[n ↦ v]⟩) ∣ v ∈ ℤ ∧ (n ∉ 𝖽𝗈𝗆(h) ∨ h(n) = ⊥)}

[[𝖿𝗋𝖾𝖾(x)]] ≜ {(⟨s, h⟩, ⟨s, h[s(x) ↦ ⊥]⟩) ∣ h(s(x)) ∈ ℤ}

Actual rules of SepSIL
1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

For HL we can only distinguish a precondition which always
causes divergence: if {%} r {;}, all states in the precondition % will
always diverge. However, if just one state in % has one terminat-
ing computation, its �nal state must be in & < ;, so we cannot
say whether states in % diverge or not. Moreover, because of the
over-approximation, a non empty & does not mean there truly are
�nite executions, as those may be introduced by the approximation.
Dually, NC cannot say much about reachability of & unless % is
empty, in which case & is unreachable.

On the contrary, under-approximation o�ersmuch stronger guar-
antees on termination/reachability. Any IL triple [%] r [&] ensures
that all states in & are reachable (in particular, from states in %).
Dually, a SIL triple hh%ii r hh&ii means that all states in % have a
convergent computation that ends in some state in & . This obser-
vation motivates the design of a forward iteration rule in IL (resp.
backward in SIL): a backward (resp. forward) rule would need to
prove reachability of all points in the post (resp. pre). Instead, the
forward rule of IL (resp. backward rule of SIL) ensures reachability
(resp. termination) by construction, as it builds & (resp. %) only
with points known to be reachable (resp. terminating).

6 SEPARATION SIL
We instantiate SIL to handle pointers and dynamic memory alloca-
tion, introducing Separation SIL. The goal of Separation SIL is to
identify the causes of memory errors: it takes the backward under-
approximation feature of SIL and combines it with the principles
of Separation Logic (SL) [38, 42].

Heap Regular Commands. We denote by HRCmd the set of all heap
regular commands obtained by plugging the following de�nition
of heap atomic commands in (7) (in blue the new primitives):

HACmd 3 c ::= skip | x := a | b? |
x := alloc() | free(x) | x := [y] | [x] := y

The primitive alloc() allocates a new memory location con-
taining a nondeterministic value, free deallocates memory, and
[·] dereferences a variable. The syntax only allows to allocate, free
and dereference (both for reading and writing) single variables. To
use a value from the heap in an arithmetic a 2 AExp or Boolean
expressions b 2 BExp, it must be loaded in a variable beforehand.

Given a heap command r 2 HRCmd, we let fv(r) ✓ Var be the
set of (free) variables appearing in r and mod(r) ✓ Var be the set of
variables modi�ed by r. The de�nition is standard (see Appendix,
De�nition A.4), but we remark that free(x) and [x] := y do not
modify x: this is because they only modify the value pointed by x,
not the actual value of x (the memory address itself).

Assertion Language. Our assertion language for pre and postcondi-
tions is derived from SL and Incorrectness Separation Logic (ISL):

Asl 3 ?,@, C ::= false | true | ? ^ @ | ? _ @ | 9G .? | 0 ⇣ 0

| emp | G 7! a | G 67! | ? ⇤ @
In the above grammar, ⇣ replaces standard comparison operators,
G 2 Var is a generic variable and a 2 AExp is an arithmetic expres-
sion. The �rst six constructs describe the existential fragment of
�rst-order logic. The others describe heaps and come from Separa-
tion Logic, except G 67! , introduced by ISL [39].

hhempii skip hhempii hhskipii hh@ [0/G] ii x := a hh@ii hhassignii

hh@ ^ 1 ii b? hh@ii hhassumeii hhG 7! �ii free(x) hhG 67! ii hhfreeii

hhempii x := alloc() hhG 7! Eii hhallocii

G 8 fv(0)
hh~ 7! 0 ⇤ @ [0/G] ii x := [y] hh~ 7! 0 ⇤ @ii hhloadii

hhG 7! �ii [x] := y hhG 7! ~ii hhstoreii

hh? ii r hh@ii G 8 fv(r)
hh9G .? ii r hh9G .@ii hhexistsii

hh? ii r hh@ii fv(C) \mod(r) = ;
hh? ⇤ C ii r hh@ ⇤ C ii hhframeii

Figure 7: Rules unique to Separation SIL. We omit the SIL
rules already presented in Figure 6.

The constant emp denotes an empty heap. The assertion G 7! 0
stands for an heap with a single memory cell pointed by G and
whose content is 0, while G 67! describes that G points to a previ-
ously deallocated memory cell. The separating conjunction ? ⇤ @
describes an heap which can be divided in two disjoint sub-heaps,
one satisfying ? and the other@. We let G 7! � ¨ 9E .G 7! E describe
that G is allocated but we do not care about its exact value. Given a
formula ? 2 Asl, we call fv(?) ✓ Var the set of its free variables.

6.1 Proof System
We present rules unique to Separation SIL in Figure 7. We de�ne
the capture-avoiding substitution as usual: @ [0/G] is the formula
obtained replacing all free occurrences of G in @ with the expression
0. Unlike ISL, we do not distinguish between correct and erroneous
termination – the goal of SIL is to trace back the causes of errors,
not to follow the �ow of a program after an error has occurred.

We split the new rules of Separation SIL in two groups. The �rst
group holds the rules for atomic commands c 2 HACmd, i.e., all
instances of the the SIL rule hhatomii. The second has rules adapted
from SL. Of course, Separation SIL also inherits all rules of SIL from
Figure 6, translated in its own assertion language (see Figure 12).

Rule hhskipii does not specify anything about its pre and postcon-
ditions: whatever is true before and after the skip can be addedwith
hhframeii. Rule hhassignii is Hoare’s backward assignment rule [30].
Rule hhassumeii conjoins the assertion b to the postcondition: only
states satisfying the Boolean guard have an execution. Rule hhallocii
allocates a new memory location for G . The premise is empty: if
the previous content of G is needed, G = I can be introduced in the
premise with hhconsii. Rule hhfreeii requires G to be allocated before
freeing it. Rule hhloadii is similar to hhassignii, with the addition of
the (disjoint) ~ 7! 0 to make sure that ~ is allocated. Rule hhstoreii
requires that G is allocated, and updates the value it points to. All
these rules are local: thanks to hhframeii, they can specify only pre
and postconditions for the modi�ed part of the heap.

Rule hhexistsii allows to “hide" local variables. Rule hhframeii is
typical of separation logics [39, 42]: it allows to add a frame around

10

Correctness

Th. [correctness]

If then

Proof. By induction on the derivation.

⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩ P ⊆ [[r]]Q

(Relative) completeness

Th. [completeness]

Any valid triple can be derived

Proof. See ArXiV draft.

⟨⟨P⟩⟩ r ⟨⟨Q⟩⟩

Su�icient Incorrectness Logic: SIL and Separation SIL 27

one of the four atomic commands. In all cases, we start with a postcondition, then strengthen it
to be able to apply the right rule: this usually means adding some constraint on the shape of the
heap. In particular, to apply the rule hhfreeii we need ~ to be deallocated, and this can happen in
two di�erent ways: either if ~ = G , since G is deallocated; or if ~ is a new name. This is captured by
the disjunction G = ~ _ G 67! .

Using the derivation in Figure 14a, we complete the proof as shown in Figure 14b. We can apply
hhloadii to prove the triple hh?ii x := [v] hhCii because ? is equivalent to

(E 7! I ⇤ I 7! � ⇤ (I = I _ I 67!) ⇤ true) :

I 7! � ⇤ I 67! is not satis�able, so we can remove that disjunct.
The same example was used in Zilberstein et al. [2023a] to illustrate the e�ectiveness of outcome-

based separation logic for bug-�nding. Even though the OL derivation shown in Zilberstein et al.
[2023a, Fig. 6] proves essentially the same triple as the SIL one in Fig. 14, the deduction processes
are quite di�erent. In fact, OL reasoning is forward oriented, as witnessed by the presence of the
implication that concludes the proof and by the triple for the skip branch, whereas SIL is naturally
backward oriented, to infer the preconditions that lead to the error.

6.6 Observations on SIL Principles
In Section 6.5, we use hhconsii to drop the disjunct @ from hh?ii x := [v] hhC _ @ii. Similarly, we
could have used hhconsii to drop the disjunct G 67! in the precondition for ~ := alloc() in r1 . This is
analogous to the IL ability to drop disjuncts in the post, but with respect to the backward direction.
Furthermore, we use the postcondition G 67! ⇤ true. The reader might be wondering why we

had to include the (⇤ true): is it not possible to just frame it in when we plug the proof in a larger
program? The issue is that in �nal reachable states G is not the only variable allocated (there are
also E and ~), so the �nal heap should talk about them as well. Adding (⇤ true) is just a convenient
way to focus only on the part of the heap that describes the error, that is G 67! , and just leave
everything else unspeci�ed since we do not care about it.

6.7 Relative completeness of Separation SIL
The proof system in Section 6.3 is not complete. To move towards completeness, we �rst limit the
assertion language to the existential fragment of �rst-order logic:

Asl 3 ?,@, C ::= false | true | ? ^ @ | ? _ @ | 9G .? | 0 ⇣ 0

| emp | G 7! a | G 67! | ? ⇤ @

We remove negation, so we don’t include universal quanti�ers and heap assertions must be positive.
However, we argue that this is su�cient to �nd bugs: for instance, in the example in Section 6.5,
we only used assertions from this subset.

With this limited assertion language, the proof system in Section 6.3 is complete for all atomic
commands except alloc. To deal with alloc, we need the ability to refer to the speci�c memory
location that was allocated. However, the naive solution to add a constraint G = U in the post of
hhallocii makes the frame rule unsound: for instance, the following triple is not valid:

hhemp ⇤ U 7! �ii x := alloc() hh(G 7! � ^ G = U) ⇤ U 7! �ii.

To recover the frame rule, just like ISL needs the deallocated assertion in the post [Raad et al. 2020,
§3], we need a "will be allocated" assertion in the pre. To this end we use the 67! assertion, and
change the semantic model to only allocate a memory location that is explicitly ? instead of one
not in the domain of the heap. We formalize this by letting avail(;) , ⌘(;) = ? in Figure 13a, and28 Flavio Ascari, Roberto Bruni, Roberta Gori, and Francesco Logozzo

replacing the axiom hhallocii with

hhV 67! ii x := alloc() hhG = V ^ G 7! Eii hhallocii

Soundness still holds for this di�erent semantics. Moreover, we can prove relative completeness
[Apt and Olderog 2019, §4.3] for loop-free programs:

T������ 6.3 (R������� ������������ ��� ��������� ��������). Suppose to have an oracle to
prove implications between formulas in Asl. Let r 2 HRCmd be a regular command without ⇤ and
?,@ 2 Asl such that J �r K{|@ |} ◆ {|? |}. Then the triple hh?ii r hh@ii is provable.

The proof relies on the possibility to rewrite any @ in an equivalent assertion of the form
9G1. · · · 9G= .

‘
18: @8 where all @8 are assertions involving atoms composed with ^ and ⇤ only.

This way, completeness is proved for such @8 �rst and then extended to the entire @ thanks to rules
hhdisjii and hhexistsii. Notably, we show that the weakest (possible) precondition J �r K{|@ |} of loop-free
programs is always expressible as an assertion C 2 Asl, namely {|C |} = J �r K{|@ |}, and prove that the
triple hhCii r hh@ii can be derived. Then, by hhconsii, the theorem follows for any ? that implies C .

7 CONCLUSION AND FUTUREWORK
We have introduced SIL as a correct and complete program logic aimed to locate the causes of
errors. Furthermore, we instantiated SIL to a sound and (relatively) complete proof system for
handling memory errors and discussed its advantages over ISL and OL.
Unlike IL, which was designed to expose erroneous outputs, SIL provides su�cient conditions

that explain why such errors can occur. SIL can be characterized as a logic based on backward
under-approximation, which helped us to compare it against HL, IL and NC. This is captured
in the taxonomy of Figure 3 and in the rule-by-rule comparison of Figure 11, which we used to
clarify the analogies and di�erences between the possible approaches. We obtained some surprising
connections: although NC and IL share the same consequence rules, they are not comparable; NC
triples are isomorphic to HL ones, but such a correspondence cannot be extended to relate IL and
SIL; and we pointed out the main reasons why duality arguments cannot apply in this case. The
following list addresses the overall connections between the di�erent logics:

HL vs NC: there is an isomorphism given by {%} r {&} i� (¬%) r (¬&).
HL vs IL: in general there is no relation between forward over- and under-approximation triples:

the only triples common to HL and IL are the exact ones.
HL vs SIL: for deterministic and terminating programs HL and SIL judgements do coincide. More

precisely, we have that for terminating programs {%} r {&} implies hh%ii r hh&ii and for
deterministic programs hh%ii r hh&ii implies {%} r {&}. OL [Zilberstein et al. 2023a] is correct
for both HL and SIL and the revised OL in the preprint [Zilberstein 2024] is also complete.

NC vs IL: although NC and IL share the same consequence rule, they are not comparable unless
the program is reversible (in which case IL implies NC).

NC vs SIL: in general there is no relation between backward over- and under-approximation
triples: the only triples common to NC and SIL are the exact ones.

IL vs SIL: there is no relation. The independently developed preprint [Raad et al. 2024] proposes a
correct and complete proof system for IL and SIL.

We conclude that each logic focuses on di�erent aspects: none of them is “better” than the others;
instead, each one has its merits.

Questions

Question 1
Which SepSIL triples are valid ?

 ⟨⟨𝖾𝗆𝗉⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩

 ⟨⟨x /↦ ⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨x /↦ ⟩⟩

 ⟨⟨𝖿𝖺𝗅𝗌𝖾⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨𝖾𝗆𝗉⟩⟩

 ⟨⟨x ↦ _⟩⟩ 𝖿𝗋𝖾𝖾(x) ⟨⟨𝖾𝗆𝗉⟩⟩

Question 2
Transform the following C-like code in the syntax of SepSIL

while () do { }i := 0 ; q := * p ; q ≠ 𝗇𝗂𝗅 q := * q ; i := i + 1

 (?) ; ;

(?)

i := 0 ;
q := [p] ;
(q ≠ 𝗇𝗂𝗅 q := [q] ; i := i + 1)⋆

q = 𝗇𝗂𝗅

* Exam 16
Prove the SepSIL triple where⟨⟨p ↦ 𝗇𝗂𝗅 * 𝗍𝗋𝗎𝖾⟩⟩ c ⟨⟨i = 0⟩⟩

while () do { }c ≜ i := 0 ; q := * p ; q ≠ 𝗇𝗂𝗅 q := * q ; i := i + 1

Exam registration form

Some references

{many} (HL ; IL ; AI ; LCL ; NC ; SIL
+

SL ; ISL ; SepSIL)* [thanks]

