4

e

i’

Mversity of P“sa)

Lecture #11

.-MarCh“11 -1 5,_ 2024

BISS 2024

Separation SIL

2310.18156v3 [cs.LO] 30 Jan 2024

arxiv

Ongoing work

Sufficient Incorrectness Logic: SIL and Separation SIL

FLAVIO ASCARI, Universita di Pisa, Italy

ROBERTO BRUNI, Universita di Pisa, Italy
ROBERTA GORI, Universita di Pisa, Italy
FRANCESCO LOGOZZO, Meta Platforms, Inc., USA

Sound over-approximation methods have been proved effective for guaranteeing the absence of errors, but in-
evitably they produce false alarms that can hamper the programmers. Conversely, under-approximation meth-
ods are aimed at bug finding and are free from false alarms. We introduce Sufficient Incorrectness Logic (SIL),
a new under-approximating, triple-based program logic to reason about program errors. SIL is designed to
set apart the initial states leading to errors. We prove that SIL is correct and complete for a minimal set of
rules, and we study additional rules that can facilitate program analyses. We formally compare SIL to existing
triple-based program logics. Incorrectness Logic and SIL both perform under-approximations, but while the
former exposes only true errors, the latter locates the set of initial states that lead to such errors. Hoare Logic
performs over-approximations and as such cannot capture the set of initial states leading to errors in nonde-
terministic programs — for deterministic and terminating programs, Hoare Logic and SIL coincide. Finally, we
instantiate SIL with Separation Logic formulae (Separation SIL) to handle pointers and dynamic allocation
and we prove its correctness and, for loop-free programs, also its completeness. We argue that in some cases
Separation SIL can yield more succinct postconditions and provide stronger guarantees than Incorrectness
Separation Logic and can support effective backward reasoning.

CCS Concepts: « Theory of computation — Logic and verification; Proof theory; Hoare logic; Separation
logic; Programming logic.

Additional Key Words and Phrases: Sufficient Incorrectness Logic, Incorrectness Logic, Necessary Conditions,
Outcome Logic

1 INTRODUCTION

Formal methods aim to provide tools for reasoning and establishing program guarantees. His-
torically, research in formal reasoning progressed from manual correctness proofs to effective,
automatic methods that improve program reliability and security. In the late 60s, Floyd [1967]
and Hoare [1969] independently introduced formal systems to reason about programs. In the
70s/early 80s, the focus was on mechanization, with the introduction of numerous techniques
such as predicate transformers [Dijkstra 1975], Abstract Interpretation [Cousot and Cousot 1977],
model checking [Clarke and Emerson 1981], type inference [Damas and Milner 1982] and mech-
anized program proofs [Coquand and Huet 1985]. Those seminal works, in conjunction with the
development of automatic and semi-automatic theorem provers (e.g., [de Moura 2007]) brought
impressive wins in proving program correctness of real-world applications. For instance, the As-
trée abstract interpreter automatically proves the absence of runtime errors in millions of lines
of safety-critical C [Blanchet et al. 2003], the SLAM model checker was used to check Windows
drivers [Ball and Rajamani 2001], CompCert is a certified C compiler developed in Coq [Leroy
2009], and VCC uses the calculus of weakest precondition to verify safety properties of annotated
Concurrent C programs [Cohen et al. 2009].

Despite the aforementioned successes, effective program correctness methods struggle to reach
mainstream adoption. As program correctness is undecidable, all those methods over-approximate
programs behaviours. Over-approximation guarantees soundness (if the program is proved to be

Authors’ addresses: Flavio Ascari, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, 56127, Pisa, Italy,
flavio.ascari@phd.unipi.it; Roberto Bruni, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, 56127,
Pisa, Italy, roberto.bruni@unipi.it; Roberta Gori, Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3,
56127, Pisa, Italy, roberta.gori@unipi.it; Francesco LogozzoMeta Platforms, Inc., USA, logozzo@meta.com.

“Separation SIL can yield more succinct
postconditions and provide stronger
guarantees than ISL and can support
effective backward reasoning”

SepsSlL = SIL + SL

SL
SIL

(P} r{0}
(P) Q) P*R r{O*R}

SepSliL

Py r Q)
(P*R) r (Q*R)

Regular commands

regular o _
atomic oo —
command e .= skip
| b7
€

g

|= . m | X = simplified
| r1,+2r | x :=[y]/ //read
| 2
|

et | |x] :=y // write

| free(x)

m Assertion language

P:= true | false | a,<a, | a=a, | ..

Boolean and

| P | P AP, | dx.P | .. plassical
| emp

| a; ~ a
|

|

assertions

structural

K assertions
P, *P, t
Xt

track deallocated
locations

Local axioms: write

SL| {x— _}[x]l:==y{x+—y}
SL x> v][x] i =y|ok:x V]

SepSIL (x> NY[x]:=y{x—y)

Local axioms: read

SL| {ymvlx=Dl{x=vAy— v}
Sk [y~ v]lx:=[y]lok:x=VvAy— V]

SRS S A= O X =BT = VA G =)

Hoare style applicable to any

post

| ocal axioms: allocation

SL | {emp) x := alloc() {x — _}
SL | femplr =aloc ok T T

SepSIL Temp)) x = alloc() (x — _)

. ocal axioms: dispose

SL | [x+— _} free(x) {emp}
Sk |l x — v| free(x) [ok : x >]

SepSliL

(x —) free(x) (x >)

Different proofs of a real bug

Use-after-lifetime bug

void deref_after_pb(std::vector<int> *v) {
int *x = &v->at(1);
v—->push_back(42) ;

b

std::cout << *x << "\n":; }

from std::vector library, can deallocate and then reallocate v

push_back.cpp:7: error: VECTOR_INVALIDATION. accessing memory that was
potentially invalidated by ’std::vector::push_back()’ on line 6.
5. int *x = &(v->at(1));
6. v->push_back(42) ;
7. > std::cout << *x << "\n"; }

If v Is reallocated, x Is invalidated

The C++ use-after-lifetime bug (above); the Pulse error message (below).

abstracted from real

occurrences at Facebook

From C++ to regular commands

. — / / /
v +— a*xa+——| client (v) [67’(Lm):—a.fUHa x aQ *a%]
push_back(v) =
void push_back(int **v) local 2,y in = [l:
{ Z = *; - ,
if (nondet()) A (assume (z # 0); Lyy: y:=[v]; (y = [v];
free(*v) ; Lf:free(y); free(y); |
*v = malloc(sizeof (int)); y:=malloc(Q); |[v]:= y) ’
’ , y := alloc();
} + (assume(z = 0); skip) :
} vl =y
client (v) = +
void client(v) { local z 1in skip
int* x = *v; z:= |v];)
push_back(v) ; push_back (v); [x] := 88
*x = 88: } Lm:[m]:: 88
: : more succint :
C version ISL version post SepSIL version
stronger guarantee: .
any state in pre can (v a*ar _*true)) rclient (x > _*true))

lead to error

U |ISL derivation

local y,z 1in

z:=%; // HAVOC

ok:z=1xv+— ax*xa+——]

(assume(z # 0); // ASSUME
ok:z=1%2A0%xv — a* a > —]
Lro:y:= [v]; // LOAD
ok:z=1lxy=a*xvr— a*xa+—>—]

v axa——]
local x 1in
r:= [v]; // LOAD
ok:x=a*xvr— ax*xa——
push_back(v); // PB-OK
ok :
ok :
Lrg: |z]:= 88; // STOREER

Ls:free(y);// FREE

a.r=a*vrsa *a — —x*at’]// CONS
ok :z=1*%y=a*v+—> ax*xat’] |

a.x=a*xva xa — —%z
y:=malloc(); //ALLocCl, CHOICE |

ok:z=1*%v— a*a * Y > — :
_ A] _er(Lm):Ha’.x:a*v%a/*a/%—*m'ﬁ]

// LOCAL

ler(Log): Jda’. v a xa ——xa b]

v|:=1y; // STORE

:ok:zzl*va*a% *yH—]
) + (...) // CHOICE
[Ok:z:l*v%y*a% *y%—]

// LOCAL

(ok:3ad". v~ a xa ——xab]

SepSlL derivation

(v a*ar _*true)) > (v a*ar _*(a=aVaw)*true))
x := |v];// Load + Frame
(va*ar _*(x=aVvx)*true) > (W a*ar— _*(x=aVxw)*true) VvV (x > *true)))
(// push_back: Choice
(v a*ar- _*(x=aVx)*true))
y :=|v];// Load + Frame
(v a*ye _*x=yvxt)Ftrue) > (v _Fyb> _F(x=yVxib)*true))
free(y); // Free + Frame
(vi> _*yib *(x=yVx i)*true) = (x b *v > _*emp * true))
y := alloc(); // Alloc + Frame
(x> * v _*ye _*true)) = (x > *v > _ *true))
[v] := y // Write + Frame
(x > *v > y*true)) = {(x > *true))

+
(x > *true)) skip {x b *true)) // Skip + Frame
)

(x > *true))
[x] := 88

Correctness and completeness

Relational semantics

[skipll = {(5,0)}
[62] = {(6,0) | 6 = (s,h) A s E b)

[x := all £ {({s, h), (s[x = [alls], h)))

[x == [y = {({s,h), (s[x = V], b)) | v = h(s(y) € Z]

[[x] := y1 = {({(s, h), (s, hls(x) = sO])) | Als(x)) € Z)

[x == allocO)] £ {((s,h), (s[x = nl,h[n = v])) | v € Z A (n & dom(h) Vv h(n) = L)}

[free()] = {((s,h), (s, Als(x) = L 1)) | h(s(x) € Z]

Actual rules of SepSIL

ki Ign
{emp) skip (emp) (skip) (gla/x]) x := a{q) {assign)

um fl’
{gAD)Db?(q) {assume} (x — =) free(x) (x>) (free)

{alloc)

{(emp) x := alloc() {(x — 0)

x ¢ tv(a)
(y—axqla/x]) x := [yl {y— a=xq)

(store)

(load)

(x> —)[x] = y{x—y)

(p) r{q) x¢&tv(r)
(dx.p) r {Idx.q)

(p)rdq) tv(z) Nmod(r) =10
(pxt)r{gx=t)

{exists)

{frame)

Correctness

Th. [correctness]

f (P)) r (Q)) then P C [T 10

Proof. By induction on the derivation.

(Relative) completeness

Th. [completeness]

Any valid triple ((P)) r ((Q)) can be derived

Proof. See ArXiV draft.

6.7 Relative completeness of Separation SIL

The proof system in Section 6.3 is not complete. To move towards completeness, we first limit the
assertion language to the existential fragment of first-order logic:

Asl > p,q,t ==false | true | pAg|pVq|Ixplaxa
lemp x> alxi [pig

We remove negation, so we don’t include universal quantifiers and heap assertions must be positive.
However, we argue that this is sufficient to find bugs: for instance, in the example in Section 6.5,
we only used assertions from this subset.

With this limited assertion language, the proof system in Section 6.3 is complete for all atomic
commands except alloc. To deal with alloc, we need the ability to refer to the specific memory
location that was allocated. However, the naive solution to add a constraint x = « in the post of
alloc) makes the frame rule unsound: for instance, the following triple is not valid:

(emp*a—> —)x := alloc() {((x > —Ax=a) xa > —).

To recover the frame rule, just like ISL needs the deallocated assertion in the post [Raad et al. 2020,
§3], we need a "will be allocated" assertion in the pre. To this end we use the /> assertion, and
change the semantic model to only allocate a memory location that is explicitly L instead of one
not in the domain of the heap. We formalize this by letting avail(l) 2 h(l) = L in Figure 13a, and

replacing the axiom (alloc) with

(B) x = alloc() {x = B Ax > 0) (alloc)

Soundness still holds for this different semantics. Moreover, we can prove relative completeness
[Apt and Olderog 2019, §4.3] for loop-free programs:

THEOREM 6.3 (RELATIVE COMPLETENESS FOR LOOP-FREE PROGRAMS). Suppose to have an oracle to
prove implications between formulas in Asl. Let r € HRCmd be a regular command without * and

p.q € Asl such that []{ql} 2 {pl}. Then the triple (p) r {q) is provable.

The proof relies on the possibility to rewrite any ¢ in an equivalent assertion of the form
Jxy. - Ixn. Vi<ci<k i Where all g; are assertions involving atoms composed with A and * only.
This way, completeness is proved for such g; first and then extended to the entire g thanks to rules
{disj) and {exists). Notably, we show that the weakest (possible) precondition [[(r_]] {ql} of loop-free
programs is always expressible as an assertion t € Asl, namely {t} = [T]{q[}, and prove that the
triple {t) r {g) can be derived. Then, by {cons}), the theorem follows for any p that implies ¢.

Questions

Question 1
Which SepSIL triples are valid ?

(emp)) free(x) ((x #>) @

(x>) free(x) (x #))

(false)) free(x) ((emp)) <

(x = _) free(x) ((emp))

Question 2

Transform the following C-like code in the syntax of SepSIL

1:=0;g:=*p;while(g#nldo{ g:=*qg;i:=i+1}

1 =0

[p]
(q#ml? q:=Ilgl;i=i+1)%
(g = nil?)

>Q

*Exam 16
Prove the SepSIL triple ((p — nil * true)) ¢ (i = 0)) where

c=2i:=0;g:=%p;while(@#nil)do{ g:=*q;i:=i+1)

Exam registration form

* Obbligatoria

1. First name

0

Inserisci la risposta

Registration to the exam

2. Last name
*

Inserisci la risposta

| 3. University * [T}

Inserisci la risposta

4. email * 1}

Inserisci la risposta

I L I I 5. Are you willing to give the exam?
Yes

6. Which deadline should we set for receiving your solutions?
09

Immetti la data (dd/MM/yyyy)

Some references

POPL Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Isabel Garcia-Contreras @, Dusko Pavlovic:
(‘\, Abstract extensionality: on the properties of incomplete abstract interpretations.
et - Proc. ACM Program. Lang. 4(POPL): 28:1-28:28 (2020)

"""" Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato: Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
L|C52 021 A Logic for Locally Complete Abstract Interpretations. LICS 2021: 1-13 A Correctness and Incorrectness Program Logic. |. ACM 70(2): 15:1-15:45 (2023)

/‘ ETAPS Flavio Ascari, Roberto Bruni, Roberta Gori:
. momemmenceor o LIMItS and difficulties in the design of under-approximation abstract domains.
FoSSaCsS 2022: 21-39

;\PLDF Roberto Bruni, Roberto Giacobazzi, Roberta Gori, Francesco Ranzato:
N _ 202> Abstract interpretation repair. PLDI 2022: 426-441

Roberto Bruni, Roberta Gori, Nicolas Manini:
Deciding Program Properties via Complete Abstractions on Bounded Domains.
SAS 2022: 175-200

Z\@/‘%
i

Flavio Ascari, Roberto Bruni, Roberta Gori:
/“ ETAPS Logics for Extensional, Locally Complete Analysis via Domain Refinements.

EUROPEAN JOINT CONFERENCES ON

THEORY & PRACTICE OF SOFTWARE E SO P 2 023: 1 '27

AV Flavio Ascari, Roberto Bruni, Roberta Gori, Francesco Logozzo:
= I')\lV @ Sufficient Incorrectness Logic: SIL and Separation SIL.
CoRR abs/2310.18156 (2023)

{many} (HL ; IL ; Al ; LCL ; NC ; SIL
+
SL ; ISL ; SepSIL)* [thanks]

