

Footprint property

Footprint recipe

Given a command r

1. Derive the specification of r using local axioms
2. Apply rule frame to complete the specification

$$
\begin{gathered}
\left\{P^{*} x \mapsto-\right\} \\
\{x \mapsto-\} \\
{[x]:=1 ;} \\
\{x \mapsto 1\} \\
a:=[x] \\
\{x \mapsto 1 \wedge a=1\} \\
\left\{P^{*} x \mapsto 1 \wedge a=1\right\}
\end{gathered}
$$

Footprint fails in SL

Counterexample:

We would like to derive


```
{y\mapsto _*emp}
    {emp}
        x:= alloc();
        {\existsv.v\mapsto _^x=v}
        free(x)
        {\existsv.x=v}
{\existsv.y\mapsto _^x=v} // strongest derivable spec: incomplete spec
```


Information loss

$$
\begin{aligned}
& \left\{x \mapsto \mapsto_{-}\right\}[x]:=y\{x \mapsto y\} / / \text { write } \\
& \{y \mapsto v\} x:=[y]\{x=v \wedge y \mapsto v\} / / \text { read resourcos can grow } \\
& \{\operatorname{emp}\} x:=\operatorname{alloc}()\left\{x \mapsto{ }_{-}\right\} / / \text {alloc } \\
& \left\{x \mapsto \mapsto_{-}\right\} \text {free }(x)\{\mathrm{emp}\} / / \text { dispose } \\
& \text { but should never shirink! }
\end{aligned}
$$

Incorrectness Separation Logic (ISL)

CAV 2020

 Peter O'Hearn ${ }^{2}, 3$, and Jules VillardMax Planck Institute for Software Systems (MPI-SWS), Kaiserslautern and Saarbrï̈ken, Germany
\{azalea, haidang dreyer\} ©
 ${ }^{2}$ Facebook, London, UK ${ }^{3}$ University College London, London, UK

Abstract. There has been a large body of work on local reasoning for proving the absence of bugs, but none for proving their presence. We
present a new formal framework for local reasoning about the presence of present a new formal framework for local reasoning a about the presence of
bugs, building on two complementary foundations: 1) separation logic and 2) incorrectness logic. We explore the theory of this new incorrectness separation logic (ISL), and use it to derive a begin-anywhere, intra-procedural symbolic execution analysis that has no false positives by construction. In
so doing, we take a step towards transferring modular, scalable techniques from the world of program verification to bug catching.

Keywords: Program logics • Separation logic • Bug catching
1 Introduction
There has been significant research on sound, local reasoning about the state for proving the absence of bugs (e.g., $[2,13,26,29,30,41])$. Locality leads to techniques that are compositional both in code (concentrating on a program component) and in the resources accessed (spatial locality), without tracking the entire global state or the global program within which a component sits. Com-
positionality enables reasoning to scale to large teams and codebases: reasoning can be done even when a global program is not present (e.g., a library, or during program construction), without having to write the analogue of a test or verifiefficiently [11].
Meanwhile, many of the practical applications of symbolic reasoning have aimed at proving the presence of bugs (i.e., bug catching), rather than proving
their absence (i.e., correctness). Logical bug catching methods include symbolic model checking [7,12] and symbolic execution for testing [9]. These methods are usually formulated as global analyses; but, the rationale of local reasoning holds just as well for bug catching as it does for correctness: it has the potential to S. K. Lhe Authrir and C) C. Wang (Eds.): CAV 2020 , LNCS 12225, pp. 225-252, 2020.
"bugs are a fundamental enough phenomenon to warrant a fundamental compositional theory for reasoning positively about their existence"

ISL = IL + SL

Regular commands

Disclaim

for the sake of presentation, some technical aspects are not fully detailed

Local axioms: write

$$
\mathrm{SL}\{x \mapsto-\}[x]:=y\{x \mapsto y\}
$$

$[x \mapsto v][x]:=y[$ ok $: x \mapsto y]$

$$
\overline{[x=\text { nil }][x]:=y[\mathrm{er}: x=\text { nil }]}
$$

Local axioms: read

$$
\mathrm{SL} \overline{\{y \mapsto v\} x:=[y]\{x=v \wedge y \mapsto v\}}
$$

$$
\overline{[y \mapsto v] x:=[y][\text { ok }: x=v \wedge y \mapsto v]}
$$

$$
[y=\text { nil }] x:=[y][\mathrm{er}: y=\text { nil }]
$$

Local axioms: allocation

$$
\mathrm{SL} \overline{\{\operatorname{emp}\} x:=\operatorname{alloc}()\{x \mapsto}\}
$$

$$
\overline{[x \doteq x] x:=\operatorname{alloc}()[\text { ok }: x \mapsto ~}]
$$

Local axioms: dispose (1st try)

$[x \mapsto v]$ free (x) [ok : emp]

$\overline{[x=\operatorname{nil}]}$ free $(x)[\mathrm{er}: x=\operatorname{nil}]$

Unsound Frame rule

$$
\frac{[P] r[\epsilon: Q]}{\left[P^{*} R\right] r\left[\epsilon: Q^{*} R\right]}
$$

this can be fixed by using a
the only sound monotonic heap model
under approximation
(and we will recover completeness)

Solution

$P::=$ true | false | $a_{1}<a_{2}\left|a_{1}=a_{2}\right| \ldots$

Satisfaction: structural

$$
\langle s, h\rangle \vDash a_{1} \mapsto a_{2} \text { iff } \operatorname{dom}(h)=\left\{\llbracket a_{1} \rrbracket s\right\} \text { and } h\left(\llbracket a_{1} \rrbracket s\right)=\llbracket a_{2} \rrbracket s
$$

$\langle s, h\rangle \vDash$ emp \quad iff h is the empty map []
$\langle s, h\rangle \vDash P_{1} * P_{2} \quad$ iff $\exists h_{1}, h_{2} .\left\langle s, h_{1}\right\rangle \vDash P_{1}$ and $\left\langle s, h_{2}\right\rangle \vDash P_{2}$ and $h=h_{1} \bullet h_{2}$
$\langle s, h\rangle \vDash x \nrightarrow \quad$ iff $\operatorname{dom}(h)=\{s(x)\}$ and $h(s(x))=\perp$
Notably: $x \mapsto v^{*} x \nleftarrow \equiv$ false $\equiv x \nrightarrow * x \nrightarrow$

$$
y \mapsto v^{*} x \mapsto \equiv y \mapsto v^{*} x \not \leftrightarrow \wedge x \neq y
$$

Local axioms: dispose

$$
[x=\text { nil }] \text { free }(x)[\text { er }: x=\text { nil }]
$$

Example

Footprint holds in ISL

We would like to derive

$$
[y \mapsto-] x:=\operatorname{alloc}() ; \operatorname{free}(x)\left[\text { ok }: y \mapsto _\wedge x \mapsto \wedge y \neq x\right]
$$

$$
\begin{aligned}
& {[y \mapsto-* \text { emp }]} \\
& {[\mathrm{emp}]} \\
& x:=\operatorname{alloc}() ; \\
& {[x \mapsto v]} \\
& \quad \text { free }(x) \\
& {[x \mapsto]} \\
& {[\text { ok }: y \mapsto-* x \nLeftarrow \wedge y \neq x]}
\end{aligned}
$$

Additional local axioms

$$
\overline{[x \nLeftarrow][x]:=y[\mathrm{er}: x \nmid]}
$$

use after free errors

$$
\overline{[y \not \leftrightarrow]}]:=[y][\mathrm{er}: y \not r]
$$

$$
\overline{[x \not \leftrightarrow]} \mathrm{free}(x)[\mathrm{er}: x \nleftarrow]
$$

\square

$$
\overline{[y \nLeftarrow] x:=\operatorname{alloc}()[\text { ok }: x \mapsto v \wedge x=y]}
$$

Soundness and completeness

Relational semantics

$$
\begin{aligned}
& \llbracket \text { skip】ok } \triangleq\{(\sigma, \sigma)\} \\
& \llbracket b ? \rrbracket \text { ok } \triangleq\{(\sigma, \sigma) \mid \sigma=\langle s, h\rangle \wedge s \vDash b\} \\
& \text { [skip]er } \triangleq \varnothing \\
& \llbracket x:=a \rrbracket \mathrm{ok} \triangleq\{(\langle s, h\rangle,\langle s[x \mapsto \llbracket a \rrbracket s], h\rangle)\} \\
& \llbracket e r r o r() \rrbracket \mathrm{ok} \triangleq \varnothing \\
& \llbracket x:=a \rrbracket \mathrm{er} \triangleq \varnothing \\
& \llbracket \operatorname{error}() \rrbracket \mathrm{er} \triangleq\{(\sigma, \sigma)\} \\
& \llbracket x:=[y] \rrbracket \mathrm{ok} \triangleq\{(\langle s, h\rangle,\langle s[x \mapsto v], h\rangle) \mid v=h(s(y)) \in \mathbb{Z}\} \\
& \llbracket x:=[y] \rrbracket \mathrm{er} \triangleq\{(\langle s, h\rangle,\langle s, h\rangle) \mid s(y)=\operatorname{nil} \vee h(s(y))=\perp\} \\
& \llbracket[x]:=y \rrbracket \mathrm{ok} \triangleq\{(\langle s, h\rangle,\langle s, h[s(x) \mapsto s(y)]\rangle) \mid h(s(x)) \in \mathbb{Z}\} \\
& \llbracket[x]:=y \rrbracket \mathrm{er} \triangleq\{(\langle s, h\rangle,\langle s, h\rangle) \mid s(x)=\operatorname{nil} \vee h(s(x))=\perp\} \\
& \llbracket x:=\operatorname{alloc}() \rrbracket \mathrm{ok} \triangleq\{(\langle s, h\rangle,\langle s[x \mapsto n], h[n \mapsto v]\rangle) \mid v \in \mathbb{Z} \wedge(n \notin \operatorname{dom}(h) \vee h(n)=\perp)\} \\
& \llbracket x:=\operatorname{alloc}() \rrbracket \mathrm{er} \triangleq \varnothing \\
& \llbracket \text { free }(x) \rrbracket \text { ok } \triangleq\{(\langle s, h \bullet[s(x) \mapsto v]\rangle,\langle s, h \bullet[s(x) \mapsto \perp]\rangle) \mid s(x) \in \mathbb{N} \wedge v \in \mathbb{Z}\} \\
& \llbracket \mathrm{free}(x) \rrbracket \mathrm{er} \triangleq\{(\langle s, h\rangle,\langle s, h\rangle) \mid s(x)=\operatorname{nil} \vee h(s(x))=\perp\}
\end{aligned}
$$

Actual ISL rules

SkIP	AsSIGN	HaVOC
$\vdash[\mathrm{emp}]$ skip $[o k: \mathrm{emp}]$	$\vdash\left[x=x^{\prime}\right] x:=e\left[o k: x=e\left[x^{\prime} / x\right]\right]$	$\vdash\left[x=x^{\prime}\right] x:=*[o k: x=v]$

Assume
 $\vdash[\mathrm{emp}]$ assume $(B)[o k: B]$

Error

$\vdash[\mathrm{emp}]$ L: error $[\operatorname{er}(\mathrm{L}):$ emp]

$$
\begin{aligned}
& \text { SEQ1 } \\
& \frac{\vdash[p] \mathbb{C}_{1}[\operatorname{er}(\mathrm{~L}): q]}{\vdash[p] \mathbb{C}_{1} ; \mathbb{C}_{2}[\operatorname{er}(\mathrm{~L}): q]}
\end{aligned}
$$

SEQ2

$\frac{\vdash[p] \mathbb{C}_{1}[o k: r] \quad \vdash[r] \mathbb{C}_{2}[\epsilon: q]}{\vdash[p] \mathbb{C}_{1} ; \mathbb{C}_{2}[\epsilon: q]}$

Loop1
$\vdash[p] \mathbb{C}^{\star}[o k: p]$

$$
\begin{aligned}
& \operatorname{ExIST} \\
& \stackrel{\vdash[p] \mathbb{C}[\epsilon: q] \quad x \notin \mathrm{fv}(\mathbb{C})}{\vdash[\exists x . p] \mathbb{C}[\epsilon: \exists x . q]}
\end{aligned}
$$

Loop2
$\frac{\vdash[p] \mathbb{C}^{\star} ; \mathbb{C}[\epsilon: q]}{\vdash[p] \mathbb{C}^{\star}[\epsilon: q]}$
$\stackrel{\text { Cons }}{p^{\prime} \Rightarrow p} \quad \vdash\left[p^{\prime}\right] \mathbb{C}\left[\epsilon: q^{\prime}\right] \quad q \Rightarrow q^{\prime}$
$\vdash[p] \mathbb{C}[\epsilon: q]$

Subst
$\frac{\stackrel{\operatorname{Sp}}{ }+\mathbb{C}[\epsilon: q] \quad y \notin \mathrm{fv}(p, \mathbb{C}, q)}{\vdash[p[y / x]] \mathbb{C}[y / x][\epsilon: q[y / x]]}$

Disj

Local
$\vdash[p] \mathbb{C}[\epsilon: q]$
$\overline{\vdash[\exists x . p] \text { local } x \text { in } \mathbb{C}[\epsilon: \exists x . q]}$

Frame
$\frac{\vdash[p] \mathbb{C}[\epsilon: q] \quad \bmod (\mathbb{C}) \cap \operatorname{fv}(r)=\emptyset}{\vdash[p * r] \mathbb{C}[\epsilon: q * r]}$
Free
$\vdash[x \mapsto e]$ L: free $(x)[o k: x \nvdash]$
FreeEr
$\vdash[x \nvdash] \mathrm{L}: \operatorname{free}(x)[\operatorname{er}(\mathrm{L}): x \nvdash]$
LOAD
$\begin{array}{ll}\vdash\left[x=x^{\prime} * y \mapsto e\right] \mathrm{L}: x:=[y]\left[o k: x=e\left[x^{\prime} / x\right] * y \mapsto e\left[x^{\prime} / x\right]\right] & \vdash[x \mapsto e] \mathrm{L}:[x]:=y[o k: x \mapsto y]\end{array}$

LoadEr
 $\vdash[y \nvdash] \mathrm{L}: x:=[y][\operatorname{er}(\mathrm{L}): y \nvdash]$

LOADNULL
$\vdash[y=$ null $]$ L: $x:=[y][\operatorname{er}(\mathrm{L}): y=$ null $]$

$$
\begin{aligned}
& \text { StoreER } \\
& \vdash[x \nvdash] \mathrm{L}:[x]:=y[\operatorname{er}(\mathrm{~L}): x \nvdash]
\end{aligned}
$$

StoreNull
$\vdash[x=$ null $]$ L: $[x]:=y[\operatorname{er}(\mathrm{~L}): x=$ null $]$

Alloc1

$\vdash\left[x=x^{\prime}\right] x:=\operatorname{alloc}()[o k: x \mapsto-]$
Alloc2
$\vdash\left[x=x^{\prime} * y \nvdash\right] x:=\operatorname{alloc}()[o k: x=y * y \mapsto-]$
Freenull
$\vdash[x=$ null $]$ L: $\operatorname{free}(x)[\operatorname{er}(\mathrm{L}): x=$ null $]$

Store

Correctness

Th. [correctness]
If $[P] r[\epsilon: Q]$ then $Q \subseteq \llbracket r \rrbracket \epsilon P$
Proof. By induction on the derivation.

Footprint theorem

Th. [footprint]
Any valid ISL triple $\left[\sigma_{P}\right] r\left[\epsilon: \sigma_{Q}\right]$ can be derived
Proof. See CAV2020 paper for details.

Final considerations on SL

ISL = IL + SL for hug catching!

ISL address compositional bug catching
targets memory safety bugs (use-after-free)
no-false-positives theorem: all bugs are true

Questions

Question 1

Is the axiom $\left[x \mapsto{ }_{-}\right][x]:=y[$ ok $: x \mapsto y]$ sound?

$$
\frac{(x \mapsto v) \Rightarrow\left(x \mapsto{ }_{-}\right) \overline{[x \mapsto v][x]:=y[o k: x \mapsto y]}}{\left[x \mapsto{ }_{-}\right][x]:=y[\text { ok }: x \mapsto y]}
$$

Question 2

Prove that rule [*conj] is unsound $\frac{\left[P_{1}\right] r\left[Q_{1}\right]\left[P_{2}\right] r\left[Q_{2}\right]}{\left[P_{1} * P_{2}\right] r\left[Q_{1} * Q_{2}\right]}\left[{ }^{*}\right.$ conj $]$

Consider $[x=0] x:=1[x=1]$ and $[x=1] x:=1[x=1]$ By rule [*conj] we could derive [false] $x:=1[x=1]$ which is not sound!

* Exam 15

Can we derive the following ISL triple?
$[x \mapsto 1]$ free $(x) ; x:=\operatorname{alloc}()$ [ok : $x \mapsto 2]$

