

Recap: combining over and under

Verification problem

$$
\llbracket c \rrbracket P \stackrel{\ominus}{\subseteq} S p e c
$$

Spec
$\llbracket c \rrbracket P$

Over vs Under

HL

$P: \frac{\{P\} \subset\{Q\}}{\text { logically complete }}:$

IL

LCL

$P: \frac{\vdash_{A}[P] c[Q]}{A(\text { Spec })=\text { Spec }}:$| Q |
| :---: |
| .-- | logically incomplete

correctness

B

X incorrectness

correctness

What can go wrong?

local completeness requirement
local
completeness
requirement

$\vdash_{\text {Signt }}{ }^{\dagger}[p](x \leq 0 ? ; x:=x * 10)^{*}[\{-100,-10,-1,100\}] \quad\{-100,100\} \subseteq\{-100,-10,-1,100\} \subseteq \operatorname{Sig}^{+}(\{-100,100\})=\mathbb{Z}_{\neq 0}$ ${ }^{{ }^{\text {Sign }}}{ }^{+}[p](x \leq 0 ? ; x:=x * 10)^{*}[\{-100,100\}]$
local completeness requirement

local-completeness proof obligations can fail!

J.ACM 70(2)

A Correctness and Incorrectness Program Logic
ROBERTO BRUNI, University of Pisa, Italy
ROBERTO GIACOBAZZI, University of Verona, Ita
ROBERTA GORI, University of Pisa, Italy
ROBERTA GORI, Universty of Pisse, Ialy
FRANCESCO RANZATO, Univerity of Padova, Italy
Abstract interpretation is a well-known and extensively ysed method to extract over-approximate program
invariants by a sound program analysis algorithm Soundness means that invariants by a sound program analysis algorithm. Soundness means that no program errors are lost and it is,
in principle, guaranteed by construction. Completeness means that the abstract interpreter reports no false in principle, guarantee by construcion eompleteness
alarms for all possible inputs, but this is istremely rare because it neees a a very pry precise a analysis. We introduce a weaker notion of completeness, called local completeness, which requires that no false alarms are produced
only relatively to some fixed program inputs. Based on this idea, we introduce a program logic, called Local only relatively to some fixed program inputs. Based on this idea, we introduce a program logic, called Local
Completeness Logicic for an abstract domain A, for proving both the correctness and incorrectness of program

 straightorward abstraction making all program properties equivalent, then our program logic coincicies with
OHHerras incorrectess logic, whilid for any
logher abstraction, contrary to the case of incorrectness logic, out logic can also establish program correctness
CCS Concepts: - Theory of computation \rightarrow Logic and verification; Abstraction; Programming logic,
Semantics and reasoning; Program analysis; Hoare logic; Axiomatic semantics; Abstraction: Program reasoning;
Additional Key Words and Phrases. Abstract interpretation, abstract domain, program analysis, program ver-
ification, program logic, local completeness, best correct approximation incorrectness logic Afication, program logic, local completeness, best correct approximation, incorrectness logic ACM Reference format:
Roberto Bruni. Roberto Gia
Roberto Bruni, Roberto Giacobazzi, Roberta Gori, and Francesco Ranzato. 2023. A Correctress and Incorrect
ness Prosram Logic ness Program Logic. f. ACM 70, 2, Article 15 (March 2023), 45 pages.

we show how to relax local-completeness requirements for while loops and by domain refinement

While loops

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completenessi

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completenessi

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completenessi

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Fixpoints preserve completeness

if $F^{\#}$ is complete, then $\operatorname{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$

Not a necessary requirement

we can have $\mathrm{fix}\left(F^{\#}\right)=\alpha(\mathrm{fix}(F))$ when $F^{\#}$ is just locally complete on $\mathrm{fix}(F)$

Finite unrolling of while loops

$$
\begin{gathered}
\text { while } b \text { do } c \triangleq(b ? ; c)^{\star} ; \neg b ? \\
r \triangleq b ? ; c
\end{gathered}
$$

requires local completeness for b ?; c
requires local completeness for b ?; c

local
completeness for $\neg b$
$\vdash_{A}[P] r\left[R_{1}\right] \quad \vdash_{A}\left[P \vee R_{1}\right] r^{\star}[Q]$
$\vdash_{A}[P](b ? ; c)^{\star}[Q]$
requires local completeness for b ?; c
abstract fixpoint!

$\vdash_{A}[P]$ while b do $c[Q \wedge \neg b]$

Example

$$
r \triangleq x>0 ? ; x:=x-2
$$

fails!

$$
\begin{aligned}
& \operatorname{Int} \llbracket x>0 \rrbracket \rrbracket \operatorname{Int}\{-3,0,3\}=\operatorname{Int} \llbracket x>0 \rrbracket \rrbracket[-3,3]=\operatorname{Int}[1,3]=[1,3] \\
& \operatorname{Int} \llbracket x>0 \rrbracket\{-3,0,3\}=\operatorname{Int}\{3\}=[3,3]
\end{aligned}
$$

$$
\mathbb{C}_{\{-3,0,3\}}^{\text {Int }}(x>0)
$$

$$
\begin{array}{lll}
\hline \vdash_{\text {Int }}[\{-3,0,3\}] x>0 ?\left[W_{1}\right] & \vdash_{\text {Int }}\left[W_{1}\right] \ldots\left[R_{1}\right] & \vdots \\
\frac{\vdash_{\text {Int }}[\{-3,0,3\}] r\left[R_{1}\right]}{} & \vdash_{\text {Int }}\left[P \vee R_{1}\right] r^{\star}[Q] \quad \vdots \\
\vdash_{\text {Int }}[\{-3,0,3\}] r^{\star}[Q] & \vdash_{\text {Int }}[Q] x \leq 0 ?[Q \wedge x \leq 0]
\end{array}
$$

$$
\vdash_{\text {Int }}[\{-3,0,3\}] \text { while } x>0 \text { do } x:=x-2[Q \wedge x \leq 0]
$$

Locally complete invariants

local completeness
for test b not required!
$\vdash_{A}[P \wedge b] c[R] \quad \vdash_{A}[P \vee R]$ while b do $c[Q]$
$\vdash_{A}[P]$ while b do $c[Q]$
local completeness
for test b
$\mathbb{C}_{P}^{A}(b) \mathbb{C}_{P}^{A}(\neg b) \quad[P \wedge b] c[Q] \quad Q \Rightarrow A(P)$
$[P]$ while b do $c[(P \vee Q) \wedge \neg b]$

Finite unrolling of while loops

local-completeness proof obligations for guards are necessary just when the abstract fixpoint is reached!

Example

Refinement

Domain refinement

to satisfy a local completeness requirement, it can be useful to refine the domain
$\operatorname{Sign} \llbracket x \neq 0 \rrbracket \operatorname{Sign}\{0,1\}=\operatorname{Sign} \llbracket x \neq 0 \rrbracket \mathbb{Z}=\operatorname{Sign}(x \neq 0)=\mathbb{Z}$
$\operatorname{Sign} \llbracket x \neq 0 \rrbracket\{0,1\}=\operatorname{Sign}\{1\}=\mathbb{Z}_{>0}$

$\vdash_{\text {Sign }}[\{0,1\}]$ while $x \neq 0$ do $x:=x+1[\{0\}]$

Domain refinement

to satisfy a local completeness requirement, it can be useful to refine the domain
$\operatorname{Sign}^{+} \llbracket x \neq 0 \rrbracket \operatorname{Sign}^{+}\{0,1\}=\operatorname{Sign}^{+} \llbracket x \neq 0 \rrbracket \mathbb{Z}_{\geq 0}=\operatorname{Sign}^{+} \mathbb{Z}_{>0}=\mathbb{Z}_{>0}$ $\operatorname{Sign}^{+} \llbracket x \neq 0 \rrbracket\{0,1\}=\operatorname{Sign}^{+}\{1\}=\mathbb{Z}_{>0}$

succeed!

succeed!	succeed!	$\mathbb{C}_{\{1\}}^{\operatorname{Sign}^{+}}(x+1)$	abstract fixpoint!
$\mathbb{C}_{\{0,1\}}^{\operatorname{Sign}^{+}(x \neq 0)}$	$\mathbb{C}_{\{0,1\}}^{\operatorname{Sign}^{+}(x=0)}$	$\vdash_{\text {Sign }^{+}[\{1\}] x:=x+1[\{2\}]}$	$\{2\} \subseteq \operatorname{Sign}^{+}(\{0,1\})=\mathbb{Z}_{\geq 0}$

$\vdash_{\text {Sign }^{+}}[\{0,1\}]$ while $x \neq 0$ do $x:=x+1[\{0\}]$

Domain integration

suppose $\vdash_{A_{1}}[P] \mathrm{r}_{1}[R]$ and $\vdash_{A_{2}}[R] \mathrm{r}_{2}[Q]:$
can we conclude $\vdash_{A}[P] r_{1} ; r_{2}[Q]$ for some suitable A ?
$A=A_{1} \sqcap A_{2}$?
not guaranteed to work (some proof obligations may fail)

Conjunctive properties

program verification often requires the use of the conjunction of several basic predicates
concrete states $=$ stores with two variables x, y intervals abstraction for each variable abstract state $=$ an interval for each variable

$$
[0, \infty] \quad[3,8]
$$

Product domain

$$
\begin{gathered}
C \underset{\alpha_{0}}{\stackrel{\gamma_{0}}{\leftrightarrows}} A_{0} \\
C \underset{\alpha_{\times}}{\leftrightarrows} A_{0} \times A_{1} \\
\gamma_{x}\left(a_{0}, a_{1}\right)=\gamma_{0}\left(a_{0}\right) \cap \gamma_{1}\left(a_{1}\right)
\end{gathered}
$$

Problem

concrete stores $=$ stores with one variable x

Int \times EvenOdd

e.g. an abstract state ($[2,10]$, even) describes even values between 2 and 10
but also ($[1,11]$, even) represents the same concrete set $\{2,4,6,8,10\}$!

Reduced product $A_{0} \sqcap A_{1}$

$$
\begin{gathered}
C \underset{\alpha_{0}}{\stackrel{\gamma_{0}}{\leftrightarrows}} A_{0} \quad C \underset{\alpha_{1}}{\stackrel{\gamma_{1}}{\leftrightarrows}} A_{1} \\
C \underset{\alpha_{\Pi}}{\stackrel{\gamma_{\Pi}}{\leftrightarrows}}\left(A_{0} \times A_{1}\right) \equiv_{\Xi} A_{0} \sqcap A_{1} \\
\left(a_{0}, a_{1}\right) \equiv\left(a_{0}^{\prime}, a_{1}^{\prime}\right) \Leftrightarrow \gamma_{\times}\left(a_{0}, a_{1}\right)=\gamma_{\times}\left(a_{0}^{\prime}, a_{1}^{\prime}\right) \\
\gamma_{\Pi}\left(\left[a_{0}, a_{1}\right]_{\equiv}\right)=\gamma_{0}\left(a_{0}\right) \cap \gamma_{1}\left(a_{1}\right)
\end{gathered}
$$

Domain integration

suppose $\vdash_{A_{1}}[P] r_{1}[R]$ and $\vdash_{A_{2}}[R] \mathrm{r}_{2}[Q]:$
can we conclude $\vdash_{A}[P] r_{1} ; r_{2}[Q]$ for some suitable A ?

Idea: combine more abstract domains in the same derivation, different abstract domains for different portions of code!

$$
\frac{\vdash_{\mathrm{Sign}^{+}}[P] \mathrm{r}_{1}[R] \quad \vdash_{\mathrm{Int}}[R] \mathrm{r}_{2}[Q]}{\vdash_{\mathrm{Sign}}[P] \mathrm{r}_{1} ; \mathrm{r}_{2}[Q]}
$$

Refine rule

A triple $\vdash_{A}[P] r[Q]$ is valid if $Q \subseteq \llbracket r \rrbracket P \subseteq A(Q) \Rightarrow\left\langle\llbracket r \rrbracket_{A}^{\#} A(P)\right.$

Pointed refinement

Suppose we want to extend A with a new approximation $u \in C$
$A \cup\{u\}$ is not necessarily an abstract domain! must be closed under meet (called Moore closure)
$A_{u} \triangleq A \cup\{u \cap a \mid a \in A\}$
$A_{u}(c) \triangleq u \cap A(c)$ if $c \leq u$
$A_{u}(c) \triangleq A(c) \quad$ otherwise
Equivalently $A_{u} \triangleq A \sqcap I_{u}$ where $I_{u} \triangleq\{\perp, u, \top\}$

Example

Let us denote by $[x, y]_{\neq 0}$ the interval-with-a-hole $[x, y] \backslash\{0\}$
Then $\operatorname{Int}_{\neq 0} \triangleq \operatorname{Int} \cup\left\{[x, y]_{\neq 0} \mid[x, y] \in \operatorname{Int}, x<0<y\right\}$
we have, e.g.
Int $_{\neq 0}\{-10,-5,7\}=[-10,7]_{\neq 0}$
Int $_{\neq 0}\{-10,-5,0,7\}=[-10,7]$
Int $_{\neq 0}\{-10,-5\}=[-10,-5]$

Example

Let us denote by $\mathbb{Z}_{\geq 0}$ the set of non-negative integers

Then $\operatorname{Sign}_{\geq 0} \triangleq \operatorname{Sign} \cup\left\{\mathbb{Z}_{\geq 0}\right\}$
we have, e.g.
$\operatorname{Sign}_{\geq 0}\{0\}=\mathbb{Z}_{\geq 0}$
$\operatorname{Sign}_{\geq 0}\{1,7\}=\mathbb{Z}_{>0}$
$\operatorname{Sign}_{\geq 0}\{-7,0\}=\mathbb{Z}$

Example

Example

$$
\mathrm{r}_{1} \triangleq \mathrm{y}:=2 * \mathrm{y}+1 ; \mathrm{y}:=\operatorname{abs}(\mathrm{y})
$$

$$
\mathrm{r}_{2} \triangleq \mathrm{x}:=\mathrm{y} ; \operatorname{while}(\mathrm{x}>1)\{\mathrm{y}:=\mathrm{y}-1 ; \mathrm{x}:=\mathrm{x}-1\}
$$

Int is non
relational

$$
\begin{gathered}
P \triangleq(y \in[-100 ; 100]) \quad S \triangleq(y \in\{1 ; 201\}) \quad Q \triangleq(x=y=1) \\
\llbracket r_{1} ; r_{2} \rrbracket_{\operatorname{Int}}^{\#} \operatorname{Int}(P)=(x=1 \wedge 0 \leq y \leq 100)
\end{gathered}
$$

Refinement strategy

problems related to automation (ingenuity required):
when and how to apply the consequence rule relax?
when and how to apply the rule refine?
it would be nice to select automatically the most abstract domain where the correctness proof can be completed...

Abstract Interpretation Repair (AIR)

PLDI 2022

"AIR is for abstract interpretation what
CEGAR is for abstract model checking"

CEGAR in a nutshell

Model checking

A model, a (large) finite state transition system $\langle\Sigma, \rightarrow, I\rangle$
A temporal logic specification φ (e.g. AG \neg bad)
Does the model satisfy φ ?
yes
no, here is a counterexample $s_{1} \rightarrow s_{2} \rightarrow \ldots \rightarrow s_{n}$
bad

Abstract transition system

A partition $[\cdot]_{\#}$ of Σ

A partitioning abstraction A of $\wp(\Sigma)$
$A(X) \triangleq \bigcup_{x \in X}[x]_{\#}$

Existential abstract transition relation $X \rightarrow{ }^{\#}[y]_{\#} \Leftrightarrow \exists x \in X . x \rightarrow y$
$\left\langle A, \rightarrow^{\#}, A(I)\right\rangle$

Abstract model checking

An abstract model $\left\langle A, \rightarrow{ }^{\#}, A(I)\right\rangle$
A temporal logic specification φ (e.g. AG \neg bad)
Does the model satisfy φ ?
yes
no, here is a possibly spurious abstract counterexample
$B_{1} \rightarrow B_{2} \rightarrow \ldots \rightarrow B_{n}$

CEGAR

CounterExample Guided Abstraction Refinement:

 If the counterexample is spurious, refine the partition to eliminate the abstract path and repeat the analysis
S_{i} are the reachable states within B_{i}

CEGAR

CounterExample Guided Abstraction Refinement:

 If the counterexample is spurious, refine the partition to eliminate the abstract path and repeat the analysis

个
S_{i} are the reachable states within B_{i}

CEGAR

CounterExample Guided Abstraction Refinement:

 If the counterexample is spurious, refine the partition to eliminate the abstract path and repeat the analysis
S_{i} are the reachable states within B_{i}

CEGAR

CounterExample Guided Abstraction Refinement:

 If the counterexample is spurious, refine the partition to eliminate the abstract path and repeat the analysis
it is important to separate dead states from bad ones
irrelevant states can be put in any partition

CEGAR and local completeness

Let $\pi=\left\langle B_{1}, \ldots, B_{n}\right\rangle$ and abstract counterexample and let $\operatorname{post}(X) \triangleq\{t \mid \exists s \in X . s \rightarrow t\}$ be the usual successor transformer Define $\operatorname{post}_{\pi_{i}}(X) \triangleq \operatorname{post}(X) \cap B_{i+1}$ and the sequence of reachable states $S_{1} \triangleq I \cap B_{1} \neq \varnothing$ and $S_{i+1} \triangleq \operatorname{post}_{\pi_{i}}\left(S_{i}\right)=\operatorname{post}\left(S_{i}\right) \cap B_{i+1}$

Lemma.

π is not spurious iff $\mathbb{C}_{S_{i}}^{A}$ (post $\pi_{\pi_{i}}$) for all $i \in[1, n-1]$
(i.e. iff each post ${ }_{\pi_{i}}$ is locally complete in A for S_{i})

Partition refinement

To eliminate the spurious counterexample we can refine the current abstraction $A\left(S_{k}\right)=B_{k}$

most concrete refinement w.r.t. S_{k}

Partition refinement

To eliminate the spurious counterexample we can refine the current abstraction $A\left(S_{k}\right)=B_{k}$

most abstract refinement w.r.t. S_{k}

Forward repair

From CEGAR to program analysis

Consider the verification problem $F c \leq a$ for some expressible $a=A(a)$

We have seen that $F c \leq a \Leftrightarrow A(F c) \leq a$ Moreover, if $\mathbb{C}_{c}^{A}(F)$ then $F c \leq a \Leftrightarrow F^{A} A(c) \leq a$

A spurious counterexample for the abstract analysis arises when $F c \leq a$ but $F^{A} A(c) \not \leq a$ because $\neg \mathbb{C}_{c}^{A}(F)$

From CEGAR to program analysis

 Suppose $F \triangleq F_{n} \circ \ldots \circ F_{1}$, the equality $F^{A} A(c)=A(F c)$ follows as a consequence of n local completeness proof obligations $A F_{k} A\left(c_{k}\right)=A\left(F_{k} c_{k}\right)$ where $c_{1} \triangleq c$ and $c_{k+1} \triangleq F_{k} c_{k}$

From CEGAR to program analysis

 Suppose $F \triangleq F_{n} \circ \ldots \circ F_{1}$, the equality $F^{A} A(c)=A(F c)$ follows as a consequence of n local completeness proof obligations $A F_{k} A\left(c_{k}\right)=A\left(F_{k} c_{k}\right)$ where $c_{1} \triangleq c$ and $c_{k+1} \triangleq F_{k} c_{k}$

From CEGAR to program analysis

 Suppose $F \triangleq F_{n} \circ \ldots \circ F_{1}$, the equality $F^{A} A(c)=A(F c)$ follows as a consequence of n local completeness proof obligations $A F_{k} A\left(c_{k}\right)=A\left(F_{k} c_{k}\right)$ where $c_{1} \triangleq c$ and $c_{k+1} \triangleq F_{k} c_{k}$

From CEGAR to program analysis

 Suppose $F \triangleq F_{n} \circ \ldots \circ F_{1}$, the equality $F^{A} A(c)=A(F c)$ follows as a consequence of n local completeness proof obligations $A F_{k} A\left(c_{k}\right)=A\left(F_{k} c_{k}\right)$ where $c_{1} \triangleq c$ and $c_{k+1} \triangleq F_{k} c_{k}$

From CEGAR to program analysis

 Suppose $F \triangleq F_{n} \circ \ldots \circ F_{1}$, the equality $F^{A} A(c)=A(F c)$ follows as a consequence of n local completeness proof obligations $A F_{k} A\left(c_{k}\right)=A\left(F_{k} c_{k}\right)$ where $c_{1} \triangleq c$ and $c_{k+1} \triangleq F_{k} c_{k}$

BCA repair

$$
\neg \mathbb{C}_{c_{k}}^{A}\left(F_{k}\right) \boldsymbol{\otimes}
$$

Imagine $F_{k} \triangleq \llbracket e_{k} \rrbracket$ for some atomic command e_{k}

BCA repair

BCA repair

$A F_{k} A\left(c_{k}\right) \backslash A\left(F_{k} c_{k}\right)$
red states are the sources of incompleteness
we would like to introduce
a better approximation u than $A\left(c_{k}\right)$ for c_{k} such that:
$c_{k} \leq u \leq A\left(c_{k}\right)$ and $A_{u} F_{k} u=A_{u} F_{k} c_{k}$
pointed refinement

BCA repair

$A F_{k} A\left(c_{k}\right) \backslash A\left(F_{k} c_{k}\right)$
red states are the sources of incompleteness
we would like to introduce
a better approximation u than $A\left(c_{k}\right)$ for c_{k} such that:
$c_{k} \leq u \leq A\left(c_{k}\right)$ and $A_{u} F_{k} u=A_{u} F_{k} c_{k}$
pointed refinement

BCA repair

$A F_{k} A\left(c_{k}\right) \backslash A\left(F_{k} c_{k}\right)$
red states are the sources of incompleteness
we would like to introduce
a better approximation u than $A\left(c_{k}\right)$ for c_{k} such that:
$c_{k} \leq u \leq A\left(c_{k}\right)$ and $A_{u} F_{k} u=A_{u} F_{k} c_{k}$
pointed
pointed

most abstract possible refinement

BCA repair

$A F_{k} A\left(c_{k}\right) \backslash A\left(F_{k} c_{k}\right)$
red states are the sources of incompleteness
we would like to introduce
a better approximation u than $A\left(c_{k}\right)$ for c_{k} such that:
$c_{k} \leq u \leq A\left(c_{k}\right)$ and $A_{u} F_{k} u=A_{u} F_{k} c_{k}$
pointed
pointed
erroneous refinement

Pointed shell

Which refinement A_{u} when a proof obligation $\mathbb{C}_{c}^{A}(F)$ fails?
Candidates: $\left\{x \in C \mid x \leq A(c), \mathbb{C}_{c}^{A_{x}}(F)\right\}$
Most concrete solution: $u \triangleq c$
Most abstract solution: $u \in \max \left\{x \in C \mid x \leq A(c), \mathbb{C}_{c}^{A_{x}}(F)\right\}$
In the case of guards (when $\mathbb{C}_{P}^{A}(b)$ fails):
$u \triangleq(A(P \wedge b) \wedge b) \vee(A(P \wedge \neg b) \wedge \neg b)$

A forward repair strategy for LCL

Given A, P, c try to find Q such that $\vdash_{A}[P] r[Q]$
If a local completeness proof obligation fails, refine A with u_{1} and retry
If a local completeness proof obligation fails, refine $A_{u_{1}}$ with u_{2} and retry
If a local completeness proof obligation fails, refine $A_{\left\{u_{1}, u_{2}\right\}}$ with u_{3} and retry

Until $\vdash_{A_{N}}[P] r[Q]$ for some $N=\left\{u_{1}, \ldots, u_{n}\right\}$ and Q

Forward repair strategy

1 Function $\mathrm{fRepair}_{A}(N, P, r)$
out := find $_{A}(N, P, r)$;
switch out do
case Q do found $:=$ true; $/ /$ underapprox. case $\langle R, \mathrm{e}\rangle$ do $N:=\operatorname{refine}_{A}(N, R, \mathrm{e})$; // incompl. while (\neg found); return $\langle N$, out \rangle;

EK?

$$
\begin{aligned}
& u \triangleq(\operatorname{Sign}(\{0,1\} \wedge x \neq 0) \wedge x \neq 0) \vee(\operatorname{Sign}(\{0,1\} \wedge x=0) \wedge x=0) \\
& =(\operatorname{Sign}\{1\} \wedge x \neq 0) \vee(\operatorname{Sign}\{0\} \wedge x=0) \\
& =(x>0 \wedge x \neq 0) \vee(\top \wedge x=0) \\
& =(x>0 \vee x=0) \\
& =(x \geq 0)
\end{aligned}
$$

$\operatorname{Sign} \llbracket x \neq 0 \rrbracket \operatorname{Sign}\{0,1\}=\operatorname{Sign} \llbracket x \neq 0 \rrbracket \mathbb{Z}=\operatorname{Sign}(x \neq 0)=\mathbb{Z}$
$\operatorname{Sign} \llbracket x \neq 0 \rrbracket\{0,1\}=\operatorname{Sign}\{1\}=\mathbb{Z}_{>0}$

succeed!

$\vdash_{\text {Sign }}[\{0,1\}]$ while $x \neq 0$ do $x:=x+1[\{0\}]$

Example

Note that $\operatorname{Sign}_{\geq 0}=\left\{\perp, \mathbb{Z}_{>0}, \mathbb{Z}_{<0}, \mathbb{Z}_{\geq 0}, \mathbb{Z}\right\}$ is "smaller" than Sign $=\left\{\perp, \mathbb{Z}_{>0}, \mathbb{Z}_{=0}, \mathbb{Z}_{<0}, \mathbb{Z}_{\geq 0}, \mathbb{Z}_{\neq 0}, \mathbb{Z}_{\leq 0}, \mathbb{Z}\right\}$ where we carried out the proof previously

Assuming Spec $\triangleq \mathbb{Z}_{>0}$ we now know that 0 is a true positive, differently from the abstract analysis \llbracket while $x \neq 0$ do $x:=x+1 \rrbracket_{\text {Sign }_{\geq 0}}^{\#} \operatorname{Sign}_{\geq 0}\{0,1\}=\mathbb{Z}_{\geq 0}$

$$
\vdash_{\text {Sign }_{\geq 0}}[\{0,1\}] \text { while } x \neq 0 \text { do } x:=x+1[\{0\}]
$$

Questions

Question 1

What is the most abstract pointed refinement of Int to use when $\neg \mathbb{C}_{\{-7,7\}}^{\text {Int }}(x>4)$?

Int $_{u}$ where:

$$
\begin{aligned}
& u \triangleq(\operatorname{Int}(\{-7,7\} \wedge x>4) \wedge x>4) \vee(\operatorname{Int}(\{-7,7\} \wedge x \leq 4) \wedge x \leq 4) \\
& =(\operatorname{Int}\{7\} \wedge x>4) \vee(\operatorname{Int}\{-7\} \wedge x \leq 4) \\
& =([7,7] \wedge x>4) \vee([-7,-7] \wedge x \leq 4) \\
& =([7,7] \vee[-7,-7]) \\
& =\{-7,7\}
\end{aligned}
$$

Question 2

Can you find a derivation for the LCL triple $\vdash_{\text {Sign }}[x>0] x:=x+1 ; x:=x-1[x \geq 0]$?

No, $x \geq 0$ is not a valid under-approximation

* Exam 10

Can you find a derivation for the LCL triple

$$
\vdash_{\operatorname{sign}^{+}}[x>0] x:=x+1 ; x:=x-1[x>0]
$$

repairing the domain if necessary?

Special prize

Can you find a derivation for the LCL triple

$$
\vdash_{\text {Int }}\left[\exists k>0 . x=2^{k}\right]((\operatorname{even}(x)) ? ; x:=x+2)^{\star} ;(x=3) ?[\text { false }]
$$

repairing the domain if necessary?

Backward repair

PLDI 2022

"we aim to derive the most abstract
domain to decide program correctness
without raising false-alarms"

CEGAR, again

CounterExample Guided Abstraction Refinement:

 If the counterexample is spurious, refine the partition to eliminate the abstract path and repeat the analysis
it is important to separate dead states from bad ones
irrelevant states can be put in any partition

CEGAR, again

The efficacy depends on the chosen refinement

it is important to separate dead states from bad ones irrelevant states can be put in any partition

CEGAR, again

Here a slightly different spurious counterexample remains

CEGAR, again

Here a slightly different spurious counterexample remains

CEGAR, again

Here a slightly different spurious counterexample remains

CEGAR, backward

What if we start from the end of the trace?
All states in B_{n} are bad ones!

CEGAR, backward

What if we start from the end of the trace?
All states in B_{n} are bad ones!

CEGAR, backward

What if we start from the end of the trace?
All states in B_{n-1} that leads to B_{n} are bad ones!

CEGAR, backward

What if we start from the end of the trace?
All states in B_{n-1} that leads to B_{n} are bad ones! and must be separated from the others B_{1}

CEGAR, backward

What if we start from the end of the trace?

We then iterate the partitioning

CEGAR, backward

What if we start from the end of the trace?

We then iterate the partitioning

CEGAR, backward

What if we start from the end of the trace?
Until necessary

CEGAR, backward

What if we start from the end of the trace?
No more spurious counterexamples from that trace!

When to backward repair

You want to check if $\llbracket r \rrbracket P \leq$ Spec
You select an abstract domain such that $A($ Spec $)=$ Spec and run the abstract interpreter, but $\llbracket r \rrbracket_{A}^{\#} A(P) \not \subset$ Spec and cannot tell if the abstract interpretation is complete in A

Which errors are spurious? Which ones are due to P ?
The aim of backward repair is to find (the most abstract) pointed refinement A_{N} such that for all $X \subseteq A(P)$ (and thus also for P)

$$
\llbracket r \rrbracket_{A_{N}}^{\#} A_{N}(X) \leq \operatorname{Spec} \Leftrightarrow \llbracket r \rrbracket X \leq \operatorname{Spec}
$$

Aim of backward repair

Let $\mathbf{V}\langle P, r, Q\rangle \triangleq P \cap w l p(\llbracket r \rrbracket, Q)$ be the greatest valid input set (it is the largest subset $X \subseteq P$ such that $\llbracket r \rrbracket X \subseteq Q$)

Aim of backward repair

Let $\mathbf{V}\langle P, r, Q\rangle \triangleq P \cap w l p(\llbracket r \rrbracket, Q)$ be the greatest valid input set (it is the largest subset $X \subseteq P$ such that $\llbracket r \rrbracket X \subseteq Q$)

Th.

Condition (\dagger) holds iff $\llbracket r \rrbracket_{A_{N}}^{\#} A_{N}(\mathbf{V}\langle A(P), r$, Spec $\rangle) \leq$ Spec which in turn implies $\mathbf{V}\langle A(P), r$, Spec \rangle being expressible in A_{N}

Backward repair

greatest valid input

Cor. [Program (in)correctness]
If $\langle V, N\rangle=$ bRepair $_{A}(\varnothing, A(P), r, S p e c)$ then
$\llbracket r \rrbracket P \leq$ Spec $\Leftrightarrow P \leq V$
The most convenient case is when $V=A(P)$

Backward repair

```
Function \(\operatorname{bRepair}_{A}(N, \widehat{P}, r, S)\)
```

if $\left(\llbracket r \rrbracket_{A \boxplus N}^{\#} \widehat{P} \leq S\right)$ then return $\langle\widehat{P}, N\rangle$;
switch r do
case e do

$V:=\mathrm{V}\langle\widehat{P}, \mathrm{e}, S\rangle ; Q:=S \wedge \llbracket \mathrm{e} \rrbracket_{A \boxplus N}^{\#} \widehat{P} ;$
\quad return $\langle V, N \cup\{V, Q\}\rangle$.

 return \(\langle V, N \cup\{V, Q\}\rangle\);
 case $r_{0} ; r_{1}$ do // sequential
$\left\langle V_{1}, N_{1}\right\rangle:=\operatorname{bRepair}_{A}\left(N, \llbracket \mathrm{r}_{0} \rrbracket_{A \boxplus N}^{\#} \widehat{P}, \mathrm{r}_{1}, S\right) ;$
$\left\langle V_{0}, N_{0}\right\rangle:=\operatorname{bRepair}_{A}\left(N, \widehat{P}, \mathrm{r}_{0}, V_{1}\right) ;$
return $\left\langle V_{0}, N_{0} \cup N_{1}\right\rangle ;$
case $\mathrm{r}_{0} \oplus \mathrm{r}_{1}$ do // choice
$\left\langle V_{0}, N_{0}\right\rangle:=\operatorname{bRepair}_{A}\left(N, \widehat{P}, \mathrm{r}_{0}, S\right) ;$
$\left\langle V_{1}, N_{1}\right\rangle:=\operatorname{bRepair}_{A}\left(N, \widehat{P}, \mathrm{r}_{1}, S\right)$;
$Q:=S \wedge \llbracket r \rrbracket_{A \boxplus N}^{\#} \widehat{P} ;$
return $\left\langle V_{0} \wedge V_{1}, N_{0} \cup N_{1} \cup\{Q\}\right\rangle$;
case r_{0}^{*} do // Kleene star
$\widehat{R}:=\llbracket r_{0} \rrbracket_{A \boxplus N}^{\#} \widehat{P} ;$
if $(\widehat{R} \leq \widehat{P})$ then return $\operatorname{inv}_{A}\left(N, \widehat{P}, \mathrm{r}_{0}, S\right)$;
else
// unroll
$\left\langle V_{1}, N_{1}\right\rangle:=\operatorname{bRepair}_{A}\left(N, \widehat{P} \vee_{A \boxplus N} \widehat{R}, \mathrm{r}_{0}^{*}, S\right)$;
return $\left\langle\widehat{P} \wedge V_{1}, N_{1}\right\rangle$
${\text { Function } \operatorname{inv}_{A}\left(N, \widehat{P}, r, V_{1}\right) \quad / / \text { loop invariants }}^{2}$
do
$V_{0}:=\widehat{P} \wedge V_{1} ; \quad N_{0}:=N \cup\left\{V_{0}\right\}$
$\left\langle V_{1}, N_{1}\right\rangle:=\operatorname{bRepair}_{A}\left(N_{0}, V_{0}, \mathrm{r}, V_{0}\right) ;$
while $\left(V_{1} \neq V_{0}\right)$;
return $\left\langle V_{1}, N_{1}\right\rangle$;

Example

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$\mathrm{c} \triangleq \mathbf{d o}\{z:=0 ; x:=y$;
if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

\}
$\}$ while $(x \neq y)$

Example

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$\mathrm{c} \triangleq \mathbf{d o}\{z:=0 ; x:=y$;
if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

\}
$\}$ while $(x \neq y)$

Example

$$
\mathrm{c} \triangleq \boldsymbol{d o}\left\{z:=0 ; x:=y ; \int_{z=0, \mathrm{x}=\mathrm{y}} \quad \llbracket c \rrbracket^{\top} \leq(z=0) ?\right.
$$

$$
\text { if }(w \neq 0) \text { then }\{
$$

$$
x:=x+1 ; z:=1
$$

$$
\text { \} }
$$

$\}$ while $(x \neq y)$

Example

$$
\begin{gathered}
\mathrm{c} \triangleq \mathbf{d o}\left\{z:=0 ; x:=y ;{ }^{z=0, x=v} \quad \llbracket c \rrbracket \top \leq(z=0) ?\right. \\
\text { if }(w \neq 0) \text { then }\{ \\
\quad x:=x+1 ; z:=1 \\
\} \begin{array}{l}
\quad \begin{array}{l}
z=0, x=y \\
\}
\end{array} \\
\\
\text { while }(x \neq y)
\end{array}
\end{gathered}
$$

Example

$$
\begin{aligned}
& \mathrm{c} \triangleq \mathbf{d o}\{z:=0 ; x:=y \text {; } \\
& \text { if }(w \neq 0) \text { then }\{ \\
& x:=x+1 ; z:=1 \\
& \} \quad \mathrm{z}=0, \mathrm{x}=\mathrm{y} \\
& \} \text { while }(x \neq y) \\
& z=0, x=y
\end{aligned}
$$

Example

$$
\begin{gathered}
\mathrm{c} \triangleq \operatorname{do}\left\{z:=0 ; x:=y ;{ }^{z=0, \mathrm{x}=\mathrm{y}} \quad \llbracket c \rrbracket \mathrm{~T} \leq(z=0) ?\right. \\
\text { if }(w \neq 0) \text { then }\{ \\
\quad \begin{array}{l}
\quad:=x+1 ; z:=1 \\
\} \text { while }(x=0, x=y \\
z=0, x=y
\end{array}
\end{gathered}
$$

Example

$$
\mathrm{c} \triangleq \operatorname{do}\left\{z:=0 ; x:=y ; \int_{z=0, x=y} \quad \llbracket c \rrbracket \top \leq(z=0) ?\right.
$$

$$
\text { if }(w \neq 0) \text { then }\{
$$

$$
x:=x+1 ; z:=1
$$

$$
\} \quad \mathrm{z}=0, \mathrm{x}=\mathrm{y}
$$

$\}$ while $(x \neq y)$

$$
z=0, x=y
$$

Example

$$
\begin{gathered}
\mathrm{c} \triangleq \text { do }\left\{z:=0 ; x:=y ;{ }^{z=0, x=y} \quad \llbracket c \rrbracket \top \leq(z=0) ?\right. \\
\text { if }(w \neq 0) \text { then }\{ \\
x:=x+1 ; z:=1 \\
\} \text { while }(x \neq y) \\
x_{z=0, x=y}^{z=1, x y+1}
\end{gathered}
$$

Example

$$
\mathrm{c} \triangleq \mathbf{d o}\{z:=0 ; x:=y ; z=z=0, x y y=\|c\| \mathrm{T} \leq(z=0) ?
$$

$$
\text { if }(w \neq 0) \text { then }\{
$$

$$
x:=x+1 ; z:=1
$$

$$
\} \quad{ }_{z=1, x=y+1}
$$

$\}$ while $(x \neq y)$

$$
z=0, x=y
$$

Example

$$
\begin{aligned}
& \mathrm{c} \triangleq \text { do }\{z:=0 ; x:=y ; \quad \text { zones } \\
& \text { if }(w \neq 0) \text { then }\{ \\
& x:=x+1 ; z:=1 \\
& \}{ }_{z=1, x=y+1}^{x} \\
& \llbracket c \rrbracket \top \leq(z=0) ? \\
& p \triangleq(z=0) \\
& q \triangleq(x=y) \\
& \} \text { while }(x \neq y)
\end{aligned}
$$

$$
z=0, x=y
$$

Example

$\mathrm{c} \xlongequal{\hat{A}}$ do $\{\bar{z}:=0 ; x:=y ;$ if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

$$
\} \quad z=1, x y+1
$$

$\}$ while $(x \neq y)$

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$$
p \triangleq(z=0)
$$

$$
q \triangleq(x=y)
$$

$$
\llbracket c \rrbracket_{A}^{\#} \top=q \not \leq p
$$

Example

if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

$$
\} \quad z=1, x=y+1
$$

$\}$ while $(x \neq y)$

$$
z=0, x=y
$$

bRepair $_{A}(\varnothing, \top, c, p)=\langle\top,\{q \Rightarrow p\}\rangle$

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$$
\llbracket c \rrbracket_{A}^{\#} \top=q \not \leq p
$$

$$
\begin{aligned}
& p \triangleq(z=0) \\
& q \triangleq(x=y)
\end{aligned}
$$

Example

if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$$
p \triangleq(z=0)
$$

$$
\}_{z=1, x=y+1}
$$

$$
q \triangleq(x=y)
$$

$\}$ while $(x \neq y)$

$$
z=0, x=y
$$

$$
\llbracket c \|_{A}^{\#} \top=q \not \approx p
$$

bRepair $_{A}(\varnothing, \mathrm{~T}, c, p)=\langle\mathrm{T},\{q \Rightarrow p\}\rangle$
$\llbracket c \|_{A_{q \ngtr p}}^{\#} \top=p \wedge q \leq p$

Example

if $(w \neq 0)$ then $\{$

$$
x:=x+1 ; z:=1
$$

$$
\}_{z=1, x y+1}
$$

$\}$ while $(x \neq y)$

$$
z=0, x=y
$$

$\operatorname{bRepair}_{A}(\varnothing, \top, c, p)=\langle\top,\{q \Rightarrow p\}\rangle$
$\llbracket c \|_{A_{q \ngtr p}}^{\#} \top=p \wedge q \leq p$

$$
\llbracket c \rrbracket \top \leq(z=0) ?
$$

$$
\begin{aligned}
& p \triangleq(z=0) \\
& q \triangleq(x=y)
\end{aligned}
$$

$$
\llbracket c \rrbracket_{A}^{\#} \top=q \not \leq p
$$

Questions

Question 1

Which is the greatest valid input set $\mathbf{V}\langle P, b$?,$Q\rangle$? (recall that $\mathbf{V}\langle P, r, Q\rangle \triangleq P \cap w l p(\llbracket r \rrbracket, Q)$)
$\mathbf{V}\langle P, b ?, Q\rangle=P \wedge(Q \vee \neg b)$
e.g.
$\mathbf{V}\langle(x \geq 0), x \neq 0 ?,(x<5)\rangle=\{0,1,2,3,4\}$

