

Program incorrectness: pragmatic motivations

POPL 2020

PETER W. O'HEARN, Facebook and University College London, UK
Program correctness and incorrectness are two sides of the same coin. As a programmer, even if you would
like to have correctness, you might find yourself spending most of your time reasoning about incorrectness.
This includes informal reasoning that people do while looking at or thinking about their code as well as that supported by automated testing and static analysis tools. This paper describes a simple logic for program incorrectness which is, in a sense, the other side of the coin to Hoare's logic of correctness.
CCS Concepts: - Theory of computation \rightarrow Programming logic.
Additional Key Words and Phrases: Proofs, Bugs, Static Analysis
ACM Reference Format:
Peter W. O'Hearn. 2020. Incorrectness Logic. Proc. ACM Program. Lang. 4, POPL, Article 10 (January 2020), 32 pages. hitpp://doi.org

When reasoning informally about a program, people make abstract inferences about what might go wrong, as well as about what must go right. A programmer might ask will the program crash if we give it a large string?", without saying which large string. In this paper we investigate the hypothesis that reasoning about the presence of bugs can be underpinned by sound techniques
in a principled logical system, just as reasoning about correctness (absence of bugs) has been demonstrated to have sound logical principles in an extensive research literature. We also consider the relationship of the principles to automated reasoning tools for finding bugs in software.
We explore our hypothesis by defining incorrectnoss logic We explore our hypothesis by defining incorrectness logic, a formalism that is similar to Hoare's logic of program correctness [Hoare 1969], except that it is oriented to proving incorrectness rather than correctness. Hoare's theory is based on specifications of the form
[pre-condition]code $\{$ post-condition\}
upon termination when the code is executed starting from states satisfying the pre-condition (the so-called strongest post). Conversely, we use a specification form
[presumption]code[result]
which says that the post-assertion result be an under-apprinat (sabse) of the fnal states that can be reached starting from states satisfying the presumption.
The under-approximate triples were studied (with a different but equivalent definition) previously
by de Vries and Koutavas $[2011]$ in their reverse Hoare logic, which they used to specify randomized algorithms. Incorrectness logic adds post-assertions for errors as well as for normal termination, and these assertions describe erroneous states that can be reached by actual program executions. Dijkstra [1976] famously remarked that "testing can be quite effective for showing the presence of bugs, but is hopelessly inadequate for showing their absence," and he made this remark while arguing for the Author's address: Peter W. O'Hearn, Facebook and University College London, UK.

(c) (1)

© 2020 Copyright held b b
2475-142120201-AR11
2475-1421/2020/1-ART10
https://doi.org/ $10.1145 / 3371078$
"Program correctness and incorrectness are two sides of the same coin" Peter O'Hearn (2020)

Picturing incorrectness

Correctness vs incorrectness

Over-approximation: good for proving correctness

Under-approximation: bad for proving correctness

false negative

bad for bug-finding
good for bug-finding

Correctness workflow, ideally

Design principles

Low friction

do not rely on manual annotations

Act fast
able to report errors in less than 15^{\prime}

Be compositional

whole program analysis is discouraged

Occam

do not use complex techniques (unless forced)

True positive theorem!

(under certain assumptions) the analyzer reports no false positives

"do not spam the developers!"

Incorrectness Logic (IL)

Hoare's triples

O’Hearn's triples

for any input matching the precondition executing the command establishes the postcondition
any output matching the postcondition can be reached by executing the command on some input matching the precondition

As first order formulas

$\{P\} c\{Q\}$

$$
\llbracket c \rrbracket P \subseteq Q \quad \equiv \quad \forall \sigma \in P . \forall \sigma^{\prime} \in \llbracket c \rrbracket \sigma . \sigma^{\prime} \in Q
$$

any reachable output satisfies the postcondition

$$
\begin{aligned}
& {[P] c[Q]} \\
& \llbracket c \rrbracket P \supseteq Q \quad \equiv \quad \forall \sigma^{\prime} \in Q . \exists \sigma \in P . \sigma^{\prime} \in \llbracket c \rrbracket \sigma
\end{aligned}
$$

any output in the postcondition is reachable

Regular commands

Exit condition

$$
[P] r[\epsilon: Q]
$$

ϵ is the exit condition
ok: normal execution
er: erroneous execution

$$
[y=v] \mathrm{x}:=\mathrm{y}[o k: x=y=v] \quad[y=v] \operatorname{error}()[\mathrm{er}: y=v]
$$

Notation

$[P] r\left[\right.$ ok : $\left.Q_{1}\right]\left[\right.$ er : $\left.Q_{2}\right]$

stands for
$[P] r\left[\right.$ ok : $\left.Q_{1}\right]$ and $[P] r\left[\mathrm{er}: Q_{2}\right]$

Floyd's axiom for assignment

$$
\overline{[P] x}:=a\left[\text { ok }: \exists x^{\prime} \cdot P\left[x^{\prime} / x\right] \wedge x=a\left[x^{\prime} / x\right]\right][\mathrm{er}: \text { false }]
$$

$$
[y=42] \mathrm{x}:=42 \text { [ok }: x=y=42]
$$

Hoare's axiom for assignment?

$$
\overline{[Q[a / x]] x:=a[\mathrm{ok}: Q][\mathrm{er}: \text { false }]}
$$

$$
[y=42] \mathrm{x}:=42[\text { ok }: x=y]
$$

unsound!
$\sigma \triangleq[x \mapsto 3, y \mapsto 3]$ not reachable

Other atomic commands

[P] skip [ok : P][er : false]

$[P] b$? [ok : $P \wedge b][$ er : false]

$$
\overline{[P]} \operatorname{error}()[\text { ok : false }][\mathrm{er}: P]
$$

$\overline{[P] x:=\text { nondet }()[\text { ok : } \exists x . P][\text { er : false] }}$

Short circuiting of errors

$$
\begin{aligned}
& \frac{[P] r_{1}[\mathrm{ok}: R] \quad[R] r_{2}[\epsilon: Q]}{[P] r_{1} ; r_{2}[\epsilon: Q]} \quad \frac{[P] r_{1}[\mathrm{er}: Q]}{[P] r_{1} ; r_{2}[\mathrm{er}: Q]}
\end{aligned}
$$

$$
[y=v] \text { error }() ; \mathrm{x}:=\mathrm{y}[\mathrm{er}: y=v]
$$

Dropping disjuncts

$$
\frac{[P] r_{1}[\epsilon: Q]}{[P] r_{1}+r_{2}[\epsilon: Q]}
$$

$$
\frac{[P] r_{2}[\epsilon: Q]}{[P] r_{1}+r_{2}[\epsilon: Q]}
$$

sound under-approximation! scalable bug detection

$$
\begin{aligned}
& {[y=v] \operatorname{error}()+\mathrm{x}:=\mathrm{y}[\mathrm{er}: y=v]} \\
& {[y=v] \operatorname{error}()+\mathrm{x}:=\mathrm{y}[\mathrm{ok}: x=y=v]}
\end{aligned}
$$

Example

$$
[y=0] \text { if } \operatorname{even}(x) \text { then } y:=42[\text { ok }: y=42] ख
$$

is it a valid IL triple?

$$
(y=42) \triangleq \underset{\widehat{\ominus}}{\{[x \mapsto 0, y \mapsto 42],[x \mapsto 1, y \mapsto 42],[x \mapsto 2, y \mapsto 42], \ldots\}}
$$

Example

$$
[y=0] \text { if } \operatorname{even}(x) \text { then } y:=42[\text { ok }: y=42 \wedge \text { even }(x)]
$$

is it a valid IL triple?

$$
y=42 \wedge \operatorname{even}(x) \triangleq\{\underset{\ominus}{[x \mapsto} 0, y \mapsto 42],[x \mapsto 2, y \mapsto 42], \ldots\}
$$

IL vs HL

$$
\begin{gathered}
{[y=0] \text { if } \operatorname{even}(x) \text { then } y:=42[\text { ok }: y=42 \wedge \operatorname{even}(x)]} \\
\{y=0\} \text { if } \operatorname{even}(x) \text { then } y:=42\{y=42 \wedge \operatorname{even}(x)\} \\
\{y=0 \wedge \operatorname{even}(x)\} \text { if } \operatorname{even}(x) \text { then } y:=42\{y=42\} \\
{[y=0 \wedge \operatorname{even}(x)] \text { if } \operatorname{even}(x) \text { then } y:=42[\mathrm{ok}: y=42]}
\end{gathered}
$$

Bounded loop unrolling

$$
\frac{[P] r^{\star} ; r[\epsilon: Q]}{[P] r^{\star}[\epsilon: Q]}
$$

sound under-approximation! scalable bug detection

$$
\begin{aligned}
& {[x=0](x:=x+1)^{\star}[\text { ok }: x=0]} \\
& {[x=0](x:=x+1)^{\star}[\text { ok }: x=2]}
\end{aligned}
$$

Backwards variant (weak)

$$
\frac{\forall n \in \mathbb{N} .\left[P_{n}\right] r\left[\text { ok }: P_{n+1}\right]}{\left[P_{0}\right] r^{\star}\left[\text { ok }: P_{k}\right]}
$$

loop invariants are inherently over-approximations sub-variants to reason about loop under-approximation

$$
\begin{aligned}
& {[x=0](x:=x+1)^{\star}\left[\text { ok }: x=2^{42}\right] / / P_{n} \triangleq(x=n)} \\
& {[x=0](x:=x+1)^{\star} ; \text { if }\left(x=2^{42}\right) \text { then error }()\left[\text { er }: x=2^{42}\right]}
\end{aligned}
$$

Consequence rule

$$
\frac{P^{\prime} \Rightarrow P \quad\left[P^{\prime}\right] r\left[\epsilon: Q^{\prime}\right] Q \Rightarrow Q^{\prime}}{[P] r[\epsilon: Q]}
$$

shrink the post! scalable bug detection

$$
\frac{P \Rightarrow P^{\prime}\left\{P^{\prime}\right\} r\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} r\{Q\}}
$$

Some dualities

$$
\begin{aligned}
& {[P] r\left[Q_{1}\right] \wedge[P] r\left[Q_{2}\right] } \Leftrightarrow \\
&\{P\} r\left\{Q_{1}\right\} \wedge\{P\} r\left\{Q_{1} \vee Q_{2}\right] \Leftrightarrow \\
&\{P\} r\left\{Q_{1} \wedge Q_{2}\right\}
\end{aligned}
$$

Some dualities

dropping disjuncts (by conseq. rule)

$$
\frac{[P] r[Q \vee R]}{[P] r[Q]}
$$

dropping conjuncts (by conseq. rule)

$$
\frac{\{P\} r\{Q \wedge R\}}{\{P\} r\{Q\}}
$$

A duality

For correctness reasoning

You get to forget information as you go along a path, but you must remember all the paths.

For incorrectness reasoning

You must remember information as you go along a path, but you get to forget some of the paths

Principle of agreement

Th.
If $\left[P^{\prime}\right] r\left[Q^{\prime}\right] \wedge$
$P^{\prime} \Rightarrow P \wedge$
$\{P\} r\{Q\}$
then $Q^{\prime} \Rightarrow Q$

Proof.

$$
\begin{array}{ll}
Q^{\prime} \subseteq & / / \text { by } \mathrm{lL} \\
\llbracket r \rrbracket P^{\prime} \subseteq & / / P^{\prime} \Rightarrow P \\
\llbracket r \rrbracket P \subseteq & / / \text { by } \mathrm{HL}
\end{array}
$$

Q
partially correct programs cannot exhibit counterexamples

Principle of denial

Th.
 If $\left[P^{\prime}\right] r\left[Q^{\prime}\right] \wedge$ $P^{\prime} \Rightarrow P \wedge$ $\{P\} r\{Q\}$
 then $Q^{\prime} \Rightarrow Q$

Cor.

$$
\begin{aligned}
& \text { If } \quad\left[P^{\prime}\right] r\left[Q^{\prime}\right] \wedge \\
& P^{\prime} \Rightarrow P \wedge \\
& \neg\left(Q^{\prime} \Rightarrow Q\right) \\
& \text { then } \neg(\{P\} r\{Q\})
\end{aligned}
$$

any derivable counterexample witnesses program incorrectness

Examples

$$
\begin{aligned}
& \text { [true] } \\
& \text { if } x \geq 0 \text { then } \\
& \quad[x \geq 0] \\
& \text { skip } \\
& \quad[x \geq 0] \\
& \text { else } \\
& \quad[x<0] \\
& x:=-x \\
& {\left[\exists x^{\prime} \cdot x^{\prime}<0 \wedge x=-x^{\prime}\right] \equiv[x>0]} \\
& {[\text { ok }: x \geq 0]}
\end{aligned}
$$

Examples

$$
[z=11]
$$

if $\operatorname{even}(x)$ then

$$
[z=11 \wedge \operatorname{even}(x)]
$$

if $\operatorname{odd}(y)$ then

$$
\begin{gathered}
{[z=11 \wedge \operatorname{even}(x) \wedge \operatorname{odd}(y)]} \\
z:=42 \\
{[z=42 \wedge \operatorname{even}(x) \wedge \operatorname{odd}(y)]} \\
{[\text { ok }: z=42 \wedge \operatorname{even}(x) \wedge \operatorname{odd}(y)]}
\end{gathered}
$$

Finite unrolling of while loops

while b do $c \triangleq(b ? ; c)^{\star} ; \neg b$?

$$
\overline{[P] \text { while } b \text { do } c[\text { ok }: P \wedge \neg b]}
$$

$\frac{[P \wedge b] c[\text { ok }: Q]}{[P] \text { while } b \text { do } c[\text { ok }:(P \vee Q) \wedge \neg b]}$

Finite unrolling of while loops

while b do $c \triangleq(b ? ; c)^{\star} ; \neg b$?
$\frac{\overline{[P](b ? ; c)^{\star}[\text { ok }: P]} \frac{\overline{[P] \neg b ?[\text { ok }: P \wedge \neg b]}}{[P] \text { while } b \text { do } c[\text { ok }: P \wedge \neg b]}}{}$

Finite unrolling of while loops

$$
\begin{gathered}
\text { while } b \text { do } c \triangleq(b ? ; c)^{\star} ; \neg b ? \\
r \triangleq b ? ; c
\end{gathered}
$$

Examples

[true]
$n:=$ nondet();
[true]

[P $\wedge b] c$ [ok : Q]

$x:=0$;
$[P]$ while b do $c[$ ok $:(P \vee Q) \wedge \neg b]$

$$
[x=0]
$$

while $n>0$ do (

$$
[x=0 \wedge n>0]
$$

$x:=x+n$;

$$
[x=n \wedge n>0]
$$

$n:=$ nondet()

$$
[\exists n, x=n \wedge n>0] \equiv[x>0]
$$

) $[$ ok $: x \geq 0 \wedge n \leq 0]$

Validity, soundness, completeness

Validity

A IL triple $[P] r[Q]$ is valid if $Q \subseteq \llbracket r \rrbracket P$

$$
\begin{align*}
& \text { Is }[x>0] x:=10 x[x>10] \text { valid? } \\
& \text { Is }[x>0, y>0] x:=y x[x \geq 0] \text { valid? } \tag{0}\\
& \text { Is }[x>0, y>0] x:=y x[x=42, y=7] \text { valid? } \tag{0}
\end{align*}
$$

Is $[x y>0](x:=y x)^{\star}[x>0, y \neq 0]$ valid?

Relational semantics

$\llbracket r \rrbracket: \wp(\Sigma) \rightarrow \wp(\Sigma)$
$\llbracket r \rrbracket \epsilon \subseteq \Sigma \times \Sigma$
$\llbracket r \rrbracket$ ok $\subseteq \Sigma \times \Sigma$
$\llbracket r \rrbracket e r \subseteq \Sigma \times \Sigma$

Semantics: atomic commands

$$
\begin{aligned}
& \text { } \begin{array}{l}
\text { skip } \rrbracket \mathrm{ok} \triangleq\{(\sigma, \sigma) \mid \sigma \in \Sigma\} \\
\llbracket \mathrm{skip} \rrbracket \mathrm{er} \triangleq \varnothing \\
\llbracket b ? \rrbracket \mathrm{ok} \triangleq\{(\sigma, \sigma) \mid \sigma \vDash b\} \\
\llbracket b ? \rrbracket \mathrm{er} \triangleq \varnothing \\
\llbracket x:=a \rrbracket \mathrm{ok} \triangleq\{(\sigma, \sigma[x \mapsto \llbracket a \rrbracket \sigma]) \mid \sigma \in \Sigma\} \\
\llbracket x:=a \rrbracket \mathrm{er} \triangleq \varnothing
\end{array}
\end{aligned}
$$

Semantics: atomic commands

$\llbracket e r r o r() \rrbracket \mathrm{ok} \triangleq \varnothing$
$\llbracket \operatorname{error}() \rrbracket e r \triangleq\{(\sigma, \sigma) \mid \sigma \in \Sigma\}$
$\llbracket x:=\operatorname{nondet}() \rrbracket \mathrm{ok} \triangleq\{(\sigma, \sigma[x \mapsto \nu]) \mid \sigma \in \Sigma, \nu \in \mathbb{Z}\}$
$\llbracket x:=\operatorname{nondet}() \rrbracket \mathrm{er} \triangleq \varnothing$

Semantics: compositions

$$
\begin{aligned}
& S, T \subseteq \Sigma \times \Sigma \\
& T \circ S \triangleq\left\{\left(\sigma_{1}, \sigma_{2}\right) \mid \exists \sigma .\left(\sigma_{1}, \sigma\right) \in S \wedge\left(\sigma, \sigma_{2}\right) \in T\right\} \subseteq \Sigma \times \Sigma
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket r_{1} ; r_{2} \rrbracket \mathrm{ok} \triangleq \llbracket r_{2} \rrbracket \mathrm{ok} \circ \llbracket r_{1} \rrbracket \mathrm{ok} \\
& \llbracket r_{1} ; r_{2} \rrbracket \mathrm{er} \triangleq \llbracket r_{1} \rrbracket \mathrm{er} \cup\left(\llbracket r_{2} \rrbracket \mathrm{er} \circ \llbracket r_{1} \rrbracket \mathrm{ok}\right)
\end{aligned}
$$

$$
\llbracket r_{1}+r_{2} \rrbracket \epsilon \triangleq \llbracket r_{1} \rrbracket \epsilon \cup \llbracket r_{2} \rrbracket \epsilon
$$

$$
\llbracket r^{\star} \rrbracket \epsilon \triangleq \bigcup_{k \in \mathbf{N}} \llbracket r^{k} \rrbracket \epsilon \quad \text { where } r^{k} \triangleq \underbrace{r ; \cdots ; r}_{k \text { times }}
$$

Minimal set of rules

$$
\overline{[P] e[\llbracket e \| P]}[\text { atom }] \quad \frac{[P] r_{1}[R][R] r_{2}[Q]}{[P] r_{1} ; r_{2}[Q]} \text { [seq] }
$$

$$
\frac{\forall i \in\{1,2\}[P] r_{i}\left[Q_{i}\right]}{[P] r_{1}+r_{2}\left[Q_{1} \cup Q_{2}\right]} \text { [choice] } \frac{\forall n \geq 0 .\left[P_{n}\right] r\left[P_{n+1}\right]}{\left[P_{0}\right] r^{\star}\left[\exists k \cdot P_{k}\right]} \text { [iter] }
$$

$$
\frac{P^{\prime} \Rightarrow P\left[P^{\prime}\right] r\left[Q^{\prime}\right] Q \Rightarrow Q^{\prime}}{[P] r[Q]} \text { [cons] }
$$

Auxiliary rules

$$
\frac{\left[P_{1}\right] r\left[Q_{1}\right] \quad\left[P_{2}\right] r\left[Q_{2}\right]}{\left[P_{1} \vee P_{2}\right] r\left[Q_{1} \vee Q_{2}\right]}[\text { disj }]
$$

$$
\overline{[P] r^{\star}[P]} \text { [iter0] }
$$

assigned variables in r are disjoint from free variables in R

$$
\frac{[P] r^{\star} ; r[Q]}{[P] r^{\star}[Q]}[\text { unroll }]
$$

$$
[P] r[Q]
$$

$$
\overline{[P \wedge R] r[Q \wedge R]}[\text { frame }]
$$

$$
\frac{P^{\prime} \Rightarrow P\left[P^{\prime}\right] r[Q]}{[P] r[Q]}[\text { weak }]
$$

$$
[P] r\left[Q^{\prime}\right] Q \Rightarrow Q^{\prime}
$$

Correctness

Th. Any derivable IL triple is valid
Proof. By induction on the derivation tree

(Relative) Completeness

involving finitely-supported predicates

Th. Any valid IL triple can be derived.
Proof. (Assuming an oracle to decide implications.) Roughly, by structural induction on the command r. Atomic commands: [atom] + [cons] Choice and sequence: by inductive hyp. + [disj] + [cons] Kleene star: see O'Hearn's paper

Questions

Question 1

Which IL triples are valid for any r and P ?

$[P] r$ [ok : false][er : false]

$[P] r$ [ok : true]
$\boldsymbol{\otimes}$
[true] r [ok: $P]$
\otimes
$[w l p(r, P)] r[$ ok : $P]$
\otimes

Question 2

Find a derivation for the IL triple
[true] if $x \geq y$ then $z:=x$ else $z:=y[$ ok $: z=\max (x, y)]$

$$
\begin{aligned}
& \quad[\text { true }] \\
& \text { if } x \geq y \text { then } \\
& \quad[x \geq y] \\
& z:=x \\
& \quad[z=x \geq y] \equiv[x \geq y, z=\max (x, y)] \\
& \text { else } \\
& \quad[x<y] \\
& z:=y \\
& \quad[z=y>x] \equiv[y>x, z=\max (x, y)] \\
& {[\text { ok }: z=\max (x, y)]}
\end{aligned}
$$

Question 3

Show that the following rule for assignment is not sound

$$
[P] x:=a[\text { ok }: P[a / x]]
$$

Consider the instance $[x=y] x:=0[$ ok $: y=0]$ then $(x \mapsto 1, y \mapsto 0) \vDash(y=0)$ but is not a reachable state!

* Exam 3

Prove that rule [conj] is unsound

$$
\frac{\left[P_{1}\right] r\left[\epsilon: Q_{1}\right]\left[P_{2}\right] r\left[\epsilon: Q_{2}\right]}{\left[P_{1} \wedge P_{2}\right] r\left[\epsilon: Q_{1} \wedge Q_{2}\right]}[\text { conj }]
$$

* Exam 4

Is this "mixed" HL+IL inference rule valid?
$\frac{[P \wedge b] c[\text { ok }: P]}{\{P\} \text { while } b \text { do } c\{P \wedge \neg b\}}$

