

Before we start...

Please answer questions

There are the 3 possible answers to the verification problem "does my program c satisfy the specification S ?"

Oyes
Ono
O don't know
please pick one option whenever we ask questions in these classes

This is a course on (in)correctness

Inevitably, there will be errors in the slides, help us to correct them

Can you find the the mistake?

Program correctness: a long standing problem

Origins? Turing's assertions

"how can one check a routine in the sense of making sure that it is right?" Alan Turing (1949)

Checking factorial

Figure 1 (Redrawn from Turing's original)

STORAGE LOCATION	(INITIAL) $k \stackrel{(A)}{=}$	${ }_{k=5}^{(B)}$	$\stackrel{\text { C }}{k=4}$	$\begin{gathered} \text { (STOP) } \\ k=0 \end{gathered}$	${\underset{k}{(E)}}_{3}$		$k=2$
$\begin{aligned} & 27 \mathbf{s} \\ & 28 \mathbf{r} \\ & 29 \mathbf{n} \\ & 30 \mathbf{u} \\ & 31 \mathbf{v} \end{aligned}$	n	r n \square	$\begin{gathered} r \\ n \\ \underline{r} \\ \underline{r} \\ \hline \end{gathered}$	$\begin{array}{r} n \\ \underline{n} \\ \hline \end{array}$	$\begin{gathered} s \\ r \\ n \\ s \underline{r} \\ \underline{r} \end{gathered}$	$\begin{gathered} s+1 \\ r \\ n \\ (s+1)\lfloor r \\ {[r} \end{gathered}$	$\begin{gathered} s \\ r \\ n \\ (s+1)\lfloor r \\ \lfloor r \end{gathered}$
	$\begin{aligned} & \text { TO © }{ }^{\text {WITH } r^{\prime}}=1 \\ & u^{\prime}=1 \end{aligned}$	TO (C)	$\begin{aligned} & \text { TO (D) } \\ & \text { IF } r=n \\ & \text { TO © } \\ & \text { IF } r<n \end{aligned}$		TO (G)	$\begin{aligned} & \text { TO B } \\ & \text { WITH } r^{\prime}=r+1 \\ & \text { IF } s \geq r \\ & \text { TO © } \\ & \text { WITH } s^{\prime}=s+1 \\ & \text { IF } s<r \end{aligned}$	TO (F)

- a dashed letter indicates the value at the end of the process represented by the box
- an undashed letter represents the initial value of a quantity
- TEST is test for zero
- L denotes factorial
- at the end (D) $v=n$!

[^0]
General snapshots (P. Naur, 1966)

"expression of static conditions

PROOF OF ALGORITHMS BY GENERAL SNAPSHOTS

Abstract.

 proofs that an object resulting from the execution of an algorithm possesses cer tain static characteristics. It is shown by an elementary example how this possibility may be used to prove the correctness of an algorithm written in ALLsoL 6 .The stepping stone of the approach is what is called General Snapshots, i.e. expressions of static conditions existing whenever the execution of the algorithm
reaches particular points. General Snapshots are further shown to be useful for reaches particular points. General Snapshots are further shown to be useful for constructing algorithms.
Key words: Algorithm, proof, computer, programming

Introduction.

It is a deplorable consequence of the lack of influence of mathematical thinking on the way in which computer programming is currently being pursued, that the regular use of systematic proof procedures, or even the realization that such proof procedures exist, is unknown to the large a large share of the unreliability and the attendant lack of over-all effectiveness of programs as they are used to-day.
Historically this state of affairs is easily explained. Large scale com puter programming started so recently that all of its practitioners are, in fact, amateurs. At the same time the modern computers are so effec tive that they offer advantages in use even when their powers are largely wasted. The stress has been on always larger, and, allegedly, more powe ful systems, in spite of the fact that the available pr.
petence often is unable to cope with their complexities.
However, a reaction is bound to come. We cannot indefinitely con tinue to build on sand. When this is realized there will be an increased interest in the less glamorous, but more solid, basic principles. This will go in parallel with the introduction of these principles in the elementary school curricula. One subject which will then come up for attention is that of proving the correctness of algorithms. The purpose of the present but is ripe to be used in practise. The illustrations are phrased in ALGOL 60 , but the technique may be used with any programming language. Copyright © © 1966 by Peter Naur
existing whenever the execution of the algorithm reaches particular points"

```
            Greatest number, with snapshots
comment General Snapshot 1: 1 \leqq N;
r:= l;
comment General Snapshot 2: 1 \ N,r=1;
for }i:=2\mathrm{ step l until }N\mathrm{ do
    begin comment General Snapshot 3:2\leqqi\leqqN,1\leqqr\leqqi-1,
    A[r] is the greatest among the elements A[1], A[2],..., A[i-1];
    if }A[i]>A[r] then r:= i
    comment General Snapshot 4: 2\leqqi\leqqN, 1\leqqr\leqqi,A[r] is the greatest
    among the elements A[1],A[2],...,A[i];
    end;
comment General Snapshot 5: 1\leqqr\leqqN,A[r] is the greatest among the
elements A[1],A[2],..., A[N];
R:=A[r];
comment General Snapshot 6: R is the greatest value of any element,
A[1],A[2],..., A[N];
```


Floyd's interpretations (1967)

"an association of a proposition with each connection in the flow of control through a program, where the proposition is asserted to hold whenever that connection is taken"

Floyd's examples

Figure 1. Flowchart of program to compute $S=\sum_{j=1}^{n} a_{j}(n \geqq 0)$

Figure 5. Algorithm to compute quotient Q and remainder R of

Turing's proof in Floyd's notation

Hoare Logic

"the purpose of this study is to provide a logical basis for proofs of the properties of a program" C.A.R. Hoare (1969)

Hoare's example

find the quotient q and the remainder r obtained on dividing x by y

$$
\begin{aligned}
((r:=x ; q:=0) & ; \text { while } \\
& y \leqslant r \text { do }(r:=r-y ; q:=1+q))
\end{aligned}
$$

$$
\neg y \leqslant r \wedge x=r+y \times q
$$

Notes

1. The left hand column is used to number the lines, and the right hand column to justify each line, by appealing to an axiom, a lemma or a rule of inference applied to one or two previous lines, indicated in brackets. Neither of these columns is part of the formal proof. For example, line 2 is an instance of the axiom of assignment (D0); line 12 is obtained from lines 5 and 11 by application of the rule of composition (D2).
2. Lemma 1 may be proved from axioms A7 and A8
3. Lemma 2 follows directly from the theorem proved in Sec. 2.

Preliminaries

A simple imperative language

Concrete domain

Notation

$[x \mapsto 1, y \mapsto 2]$
the state where x holds $1, y$ holds 2 and any other variable holds 0

the state where x holds n and any other variable y holds $\sigma(y)$

the set of all states where x holds 1 and y holds 2

Assertion language

assertion

$$
\begin{aligned}
& P::=\text { true } \mid \text { false }\left|a_{1}<a_{2}\right| a_{1}=a_{2} \mid \ldots \\
&|\neg P| P_{1} \wedge P_{2}|\exists x . P| \ldots
\end{aligned}
$$

Boolean and classical assertions

Notation

$\sigma \vDash P$ or also $\sigma \in P$
the state σ satisfies the property P

$P \Rightarrow Q \quad$ or also $\quad P \subseteq Q \quad$ or also $\quad P \leq Q$
 any state that satisfies P satisfies Q

Collecting semantics

concrete

semantics

$$
\llbracket c \rrbracket: \wp(\Sigma) \rightarrow 母(\Sigma)
$$

$\llbracket c \rrbracket P$

is the set of all and only states reachable from some state in P after executing c $\llbracket c \rrbracket \sigma$ as a shorthand for $\llbracket c \rrbracket\{\sigma\}$
additive: $\llbracket c \rrbracket\left(P_{1} \cup P_{2}\right)=\left(\llbracket c \rrbracket P_{1}\right) \cup\left(\llbracket c \rrbracket P_{2}\right)$

Collecting semantics

$\llbracket a \rrbracket \sigma$
evaluates the arithmetic expression a in the current state σ

$$
\begin{aligned}
& \text { e.g. } \\
& \llbracket x+1 \rrbracket[x \mapsto 1, y \mapsto 2]=2
\end{aligned}
$$

Collecting semantics

$$
\llbracket b \rrbracket: \wp(\Sigma) \rightarrow \varnothing(\Sigma)
$$

$\llbracket b \rrbracket P$ (intuitively $b \wedge P$)

is the set of all and only states in P that satisfy the condition b

$$
\begin{aligned}
& \text { e.g. } \\
& \begin{array}{l}
x<y \rrbracket\{[x \mapsto 1, y \mapsto 2],[x \mapsto 2, y \mapsto 1]\}=\{[x \mapsto 1, y \mapsto 2]\} \\
\llbracket x<y \rrbracket[x \mapsto 2, y \mapsto 1]=\varnothing
\end{array}
\end{aligned}
$$

Collecting semantics: atomic commands

$\llbracket \mathrm{skip} \rrbracket P \triangleq P$

$\llbracket x:=a \rrbracket P \triangleq\{\sigma[x \mapsto \llbracket a \rrbracket \sigma] \mid \sigma \in P\}$
e.g.
$\llbracket r:=x \rrbracket[x \mapsto 5, y \mapsto 2]=\{[x \mapsto 5, y \mapsto 2, r \mapsto 5]\}$

Collecting semantics: sequence

$$
\llbracket c_{1} ; c_{2} \rrbracket P \triangleq \llbracket c_{2} \rrbracket\left(\llbracket c_{1} \rrbracket P\right)
$$

e.g.

$$
\llbracket r:=x ; q:=0 \rrbracket[x \mapsto 5, y \mapsto 2]=\{[x \mapsto 5, y \mapsto 2, r \mapsto 5]\}
$$

Collecting semantics: conditionals

【if b then c_{1} else $c_{2} \rrbracket P \triangleq \llbracket c_{1} \rrbracket(\llbracket b \rrbracket P) \cup \llbracket c_{2} \rrbracket(\llbracket \neg b \rrbracket P)$
e.g.

【if $x \geq 0$ then skip else $x:=-x \rrbracket\{[x \mapsto-1],[x \mapsto 1]\}$

$$
\begin{array}{r}
\triangleq \llbracket \operatorname{skip} \rrbracket[x \mapsto 1] \cup \llbracket x:=-x \rrbracket[x \mapsto-1] \\
\triangleq\{[x \mapsto 1]\}
\end{array}
$$

Collecting semantics: loops

Kleene's fixpoint theorem

Th.
Let $f: \mathscr{C} \rightarrow \underset{\infty}{\mathscr{C}}$ be a continuous function on a CPO with bottom.
Then fix $f=\bigcup f^{k}(\perp)$.
$k=0$
e.g.
$f \triangleq(\lambda S . P \cup \llbracket c \rrbracket \llbracket b \rrbracket S): \wp(\Sigma) \rightarrow \varnothing(\Sigma)$
$f^{0}(\varnothing)=\varnothing, \quad f^{1}(\varnothing)=P, \quad f^{2}(\varnothing)=P \cup \llbracket c \rrbracket \llbracket b \rrbracket P, \ldots$

Collecting semantics: loops

Collecting semantics: loops

\llbracket while b do $c \rrbracket P \triangleq \bigcup_{\llbracket}^{\infty} \neg b \rrbracket(\llbracket c \neg \| b b \rrbracket)^{k} P$
egg.
$w \triangleq$ while $y \leq r$ do
$r:=r-y ; \quad \llbracket w \rrbracket \sigma=\cup_{k=0}^{\infty} \llbracket y>r \rrbracket(\llbracket \ldots \rrbracket \llbracket y \leq r \rrbracket)^{k} \sigma$

$$
q:=q+1 \quad=\llbracket y>r \rrbracket \sigma \quad \cup_{k=1}^{\infty} \llbracket y>r \rrbracket(\llbracket \ldots \rrbracket \llbracket y \leq r \rrbracket)^{k} \sigma
$$

$=\llbracket y>r \rrbracket(\ldots) \sigma \cup_{k=2}^{\infty} \llbracket y>r \rrbracket(\ldots)^{k} \sigma$

$$
\begin{array}{rlrl}
\sigma \triangleq[x \mapsto 5, & =\llbracket y>r \rrbracket[x \mapsto 5, y \mapsto 2, r \mapsto 3, q \mapsto 1] \cup_{k=2}^{\infty} \llbracket y>r \rrbracket(\ldots)^{k} \sigma \\
y \mapsto 2, & & =\llbracket y>r \rrbracket(\ldots)^{2} \sigma \cup_{k=3}^{\infty} \llbracket y>r \rrbracket(\ldots)^{k} \sigma \\
r \mapsto 5] & & =\llbracket y>r \rrbracket[x \mapsto 5, y \mapsto 2, r \mapsto 1, q \mapsto 2] \cup_{k=3}^{\infty} \llbracket y>r \rrbracket(\ldots)^{k} \sigma \\
& =\{[x \mapsto 5, y \mapsto 2, r \mapsto 1, q \mapsto 2]\}
\end{array}
$$

Inference rules

```
premises
```


conclusion
if all premises hold, then the conclusion holds

Proof systems

a set of inference rules

$$
\text { lased } \frac{\operatorname{pos}(x) \operatorname{pos}(y)}{\operatorname{pos}(1)} \frac{\operatorname{pos}(x+y)}{}
$$

Proof tree

Hoare Logic (HL)

Hoare's triples

when the precondition is met, executing the command establishes the postcondition

An obvious axiom

$$
\overline{\{P\} \text { skip }\{P\}}
$$

$\{x>0\}$ skip $\{x>0\}$

Floyd's axiom for assignment

$\{$ true $\} r:=x\left\{\exists r^{\prime}\right.$. true, $\left.r=x\right\} \equiv\{r=x\}$

$$
\begin{aligned}
\{x=r+q y\} r:= & r-y\left\{\exists r^{\prime} \cdot x=r^{\prime}+q y, r=r^{\prime}-y\right\} \\
& \equiv\left\{\exists r^{\prime} \cdot x=r+y+q y, r^{\prime}=r+y\right\} \\
& \equiv\{x=r+(q+1) y\}
\end{aligned}
$$

Hoare's axiom for assignment

$\{Q[a / x]\} x:=a\{Q\}$
 syntax
 replacement

$$
\begin{aligned}
& \{\operatorname{true}\} \equiv\{x=x+0 y\} r:=x\{x=r+0 y\} \\
& \{x=r\} \equiv\{x=r+0 y\} q:=0\{x=r+q y\} \\
& \{x=r+q y\} \equiv \\
& \{x=r-y+(q+1) y\} r:=r-y\{x=r+(q+1) y\}
\end{aligned}
$$

An observation

backward oriented

$$
\overline{\{Q[a / x]\} x:=a\{Q\}}{ }^{\text {Hoseses }}
$$

Composition rule

$$
\frac{\{P\} c_{1}\{R\}\{R\} c_{2}\{Q\}}{\{P\} c_{1} ; c_{2}\{Q\}}
$$

$$
\begin{aligned}
\{x=r+q y\} r:=r-y & \{x=r+(q+1) y\} \\
& \{x=r+(q+1) y\} \\
& \{x=r+q y\} r:=r-y ; q:=q+1\{x=r+q y\}
\end{aligned}
$$

Inlining assertions

$$
\begin{aligned}
&\{x=r+q y\} r:=r-y\{x=r+(q+1) y\} \\
& \quad\{x=r+(q+1) y\} q:=q+1\{x=r+q y\} \\
&\{x=r+q y\} r:=r-y ; q:=q+1\{x=r+q y\} \\
&\{x=r+q y\} \\
& r:=r-y ; \\
&\{x=r+(q+1) y\} \\
& q:=q+1 \\
&\{x=r+q y\}
\end{aligned}
$$

While rule

$$
\{P \wedge b\} c\{P\}
$$

$\{P\}$ while b do $c\{P \wedge \neg b\}$

$$
\{x \geq 0\}
$$

while $x>0$ do

$$
\begin{aligned}
& \quad\{x \geq 0 \wedge x>0\} \equiv\{x>0\} \equiv\{x \geq 1\} \equiv\{x-1 \geq 0\} \\
& x:=x-1 \\
& \quad\{x \geq 0\} \\
& \{x \geq 0 \wedge x \leq 0\} \equiv\{x=0\}
\end{aligned}
$$

Invariants as pre-fixed points

$\{I \wedge b\} c\{I\}$ means that $\llbracket c \rrbracket(I \wedge b) \subseteq I$
i.e. that $\llbracket c \rrbracket \llbracket b \rrbracket \rrbracket \subseteq I$
i.e. that I is a pre-fixed point of $\llbracket c \rrbracket \circ \llbracket b \rrbracket$
whenever $P \subseteq I$, by definition of fix:
\llbracket while b do $c \rrbracket P \triangleq \llbracket \neg b \rrbracket \mathrm{fix}(\lambda S . P \cup \llbracket c \rrbracket \llbracket b \rrbracket S) \subseteq \llbracket \neg b \rrbracket I$

Consequence rule

$$
\frac{P \Rightarrow P^{\prime}\left\{P^{\prime}\right\} r\left\{Q^{\prime}\right\} \quad Q^{\prime} \Rightarrow Q}{\{P\} r\{Q\}}
$$

$$
\begin{aligned}
& \{x \geq 0 \wedge y>0\} \Rightarrow \\
& \{-y<0 \wedge x \geq 0 \wedge y \geq 0\} \Rightarrow \\
& \{x-y<x \wedge x+y \geq 0\} \\
& n:=x-y ; \\
& \{n<x \wedge x+y \geq 0\}
\end{aligned}
$$

Hoare's proof

$\{$ true $\} \equiv\{x=x+0 y\}$

$$
\begin{aligned}
& r:=x \\
& \{x=r+0 y\} \\
& q:=0 \text {; } \\
& \text { loop } \\
& \text { invariant } \\
& \{x=r+q y\} \\
& \text { while } y \leq r \text { do } \\
& \{x=r+q y \wedge y \leq r\} \Rightarrow\{x=(r-y)+(q+1) y\} \\
& r:=r-y \text {; } \\
& \{x=r+(q+1) y\} \\
& q:=q+1 \\
& \{x=r+q y\} \\
& \{x=r+q y \wedge y>r\}
\end{aligned}
$$

Wait a moment...

$$
\{\text { true }\} \equiv\{x=x+0 y\}
$$

$$
r:=x
$$

$$
\begin{array}{ll}
& \{x=r+0 y\} \\
q:=0 ; & \llbracket c \rrbracket[x \mapsto 5, y \mapsto-2]=\ldots=\varnothing
\end{array}
$$

$$
\{x=r+q y\}
$$

while $y \leq r$ do

$$
\begin{aligned}
& \{x=r+q y \wedge y \leq r\} \Rightarrow\{x=(r-y)+(q+1) y\} \\
& r:=r-y ; \\
& \{x=r+(q+1) y\} \\
& q:=q+1 \\
& \{x=r+q y\} \\
& \{x=r+q y \wedge y>r\}
\end{aligned}
$$

Wait a moment...

$\{$ true $\} \equiv\{x=x+0 y\}$
$r:=x$

$$
\begin{array}{ll}
\{x=r+0 y\} \\
q:=0 ; & \llbracket c \rrbracket[x \mapsto 5, y \mapsto 2, z \mapsto 0]=\ldots=\varnothing
\end{array}
$$

$$
\{x=r+q y\}
$$

while $z=0$ do

$$
\begin{aligned}
& \{x=r+q y \wedge z=0\} \Rightarrow\{x=(r-y)+(q+1) y\} \\
& r:=r-y ; \\
& \{x=r+(q+1) y\} \\
& q:=q+1 \\
& \{x=r+q y\} \\
& \{x=r+q y \wedge z \neq 0\}
\end{aligned}
$$

No guarantee of termination

$$
\{x \geq 0\}
$$

$$
\llbracket c \rrbracket[x \mapsto 5]=\ldots=\varnothing
$$

while $x>0$ do

$$
\begin{aligned}
& \quad\{x \geq 0 \wedge x>0\} \equiv\{x+1 \geq 0\} \\
& x:=x+1 \\
& \quad\{x \geq 0\} \\
& \{x \geq 0 \wedge x \leq 0\} \equiv\{x=0\}
\end{aligned}
$$

False positive

$\{x=1\}$ while $x>0$ do $x:=x+1\{x=0\}$
complete the proof below

$$
\{x=1\} \Rightarrow\{?\}
$$

while $x>0$ do

$$
\begin{aligned}
&\{? \wedge x>0\} \\
& x:=x+1 \\
&\{?\} \\
&\{? \wedge x \leq 0\} \Rightarrow\{x=0\}
\end{aligned}
$$

Partial vs total correctness

when the precondition is met, executing the command and establishes the postcondition
when the precondition is met, executing the command terminates and establishes the postcondition
total correctness $=$ partial correctness + termination

Rule for total correctness

Total correctness proof

$$
\{x \geq 0\} \text { take } t \triangleq x
$$

$$
P \Rightarrow t \geq 0
$$

while $x>0$ do

$$
\begin{aligned}
& \quad\{x \geq 0 \wedge x>0\} \equiv\{x-1 \geq 0\} \\
& x:=x-1 \\
& \quad\{x \geq 0\} \\
& \{x \geq 0 \wedge x \leq 0\} \equiv\{x=0\}
\end{aligned}
$$

$$
\begin{gathered}
\{P \wedge b \wedge t=z\} c\{t<z\} \\
\{x \geq 0 \wedge x>0 \wedge x=z\} \Rightarrow \\
\{x=z\} \Rightarrow \\
\{x<z+1\} \equiv \\
\{x-1<z\} \Rightarrow \\
x:=x-1 \\
\{x<z\}
\end{gathered}
$$

Total correctness proof

$$
\begin{aligned}
& \{x \geq 0 \wedge y>0\} \equiv\{x \geq 0 \wedge y>0 \wedge x=x+0 y\} \\
r & :=x \\
& \{x \geq 0 \wedge y>0 \wedge x=r+0 y\} \equiv\{r \geq 0 \wedge y>0 \wedge x=r+0 y\} \\
q & :=0 ; \\
& \{r \geq 0 \wedge y>0 \wedge x=r+q y\} \text { take } t \triangleq r
\end{aligned}
$$

$$
\text { while } y \leq r \text { do }
$$

$$
\begin{aligned}
& \quad\{r \geq y>0 \wedge x=r+q y\} \Rightarrow\{r-y \geq 0 \wedge y>0 \wedge x=r-y+(q+1) y\} \\
& r:=r-y \\
& \\
& \{r \geq 0 \wedge y>0 \wedge x=r+(q+1) y\} \\
& q:=q+1 \\
& \\
& \{r \geq 0 \wedge y>0 \wedge x=r+q y\} \\
& \{y>r \geq 0 \wedge x=r+q y\}
\end{aligned}
$$

Proof obligations

$$
\begin{aligned}
& P \Rightarrow t \geq 0 \\
& (r \geq 0 \wedge y>0 \wedge x=r+q y) \Rightarrow r \geq 0 \\
& \qquad\{P \wedge b \wedge t=z\} c\{t<z\} \\
& \quad\{r \geq y>0 \wedge \cdots \wedge r=z\} \Rightarrow\{r \geq 0 \wedge y>0 \wedge \cdots \wedge r-y<z\} \\
& r:=r-y ; \\
& \quad\{r \geq 0 \wedge y>0 \wedge \cdots \wedge r<z\} \\
& q:=q+1 \\
& \quad\{r \geq 0 \wedge y>0 \wedge \cdots \wedge r<z\} \Rightarrow\{r<z\}
\end{aligned}
$$

If rule

$$
\{P \wedge b\} c_{1}\{Q\} \quad\{P \wedge \neg b\} c_{2}\{Q\}
$$

\{true\}
$\{P\}$ if b then c_{1} else $c_{2}\{Q\}$
if $x \geq 0$ then

$$
\{x \geq 0\}
$$

skip

$$
\{x \geq 0\}
$$

else

$$
\begin{aligned}
& \{\neg(x \geq 0)\} \equiv\{-x>0\} \\
& x:=-x \\
& \{x>0\} \Rightarrow\{x \geq 0\} \\
& \{x \geq 0\}
\end{aligned}
$$

Finding invariants

$$
\begin{aligned}
& \{\text { true }\} \\
& k:=1 ; \\
& r:=x ; \\
& \text { while } k>0 \text { do } \\
& \text { if } r>100 \text { then } \\
& r:=r-10 ; \\
& k:=k-1 \\
& \text { else } \\
& \quad r:=r+11 ; \\
& \quad k:=k+1 \\
& \{r=f(x)\}
\end{aligned}
$$

McCarthy’s 91 function

$$
\begin{aligned}
& \text { \{true \} } \\
& k:=1 \text {; } \\
& r:=x \text {; } \\
& \text { while } k>0 \text { do } \\
& \text { if } r>100 \text { then } \\
& r:=r-10 \text {; } \\
& k:=k-1 \\
& f(x) \triangleq \begin{cases}91 & x \leq 100 \\
x-10 & \text { otherwise }\end{cases} \\
& \text { else } \\
& r:=r+11 ; \\
& k:=k+1 \\
& \{r=f(x)\}
\end{aligned}
$$

Invariant for McCarthy’s 91 function?

\{true\}

$$
r:=x
$$

while $k>0$ do
if $r>100$ then
$r:=r-10$;

$$
k:=k-1
$$

else

$$
\begin{aligned}
r & :=r+11 \\
k & :=k+1 \\
\{?\} & \Rightarrow\{r=f(x)\}
\end{aligned}
$$

$$
f(x) \triangleq \begin{cases}91 & x \leq 100 \\ x-10 & \text { otherwise }\end{cases}
$$

Invariant for McCarthy’s 91 function

 \{true\}$$
r:=x
$$

$$
\left\{k \geq 0 \wedge f^{k}(r)=f(x)\right\}
$$

while $k>0$ do
if $r>100$ then

$$
\begin{aligned}
r & :=r-10 \\
k & :=k-1
\end{aligned}
$$

$$
f(x) \triangleq \begin{cases}91 & x \leq 100 \\ x-10 & \text { otherwise }\end{cases}
$$

else

$$
\begin{aligned}
r & :=r+11 \\
k & :=k+1 \\
\{k=0 & \left.\wedge f^{k}(r)=f(x)\right\} \Rightarrow\{r=f(x)\}
\end{aligned}
$$

Variant for McCarthy’s 91 function?

```
\{true \}
\[
k:=1
\]
\[
\left\{k \geq 0 \wedge f^{k}(r)=f(x)\right\} \quad t \triangleq ?
\]
```

while $k>0$ do
if $r>100$ then

$$
\begin{aligned}
r & :=r-10 \\
k & :=k-1
\end{aligned}
$$

$$
f(x) \triangleq \begin{cases}91 & x \leq 100 \\ x-10 & \text { otherwise }\end{cases}
$$

else

$$
\begin{aligned}
r & :=r+11 \\
k & :=k+1 \\
\{k=0 & \left.\wedge f^{k}(r)=f(x)\right\} \Rightarrow\{r=f(x)\}
\end{aligned}
$$

Finding invariants (McCarthy91)

```
{true}
k:= 1;
\[
\left\{k \geq 0 \wedge f^{k}(r)=f(x)\right\} \quad t=(|101-r+10 k|, k)
\]
```

while $k>0$ do
if $r>100$ then

$$
\begin{aligned}
r & :=r-10 \\
k & :=k-1
\end{aligned}
$$

$$
f(x) \triangleq \begin{cases}91 & x \leq 100 \\ x-10 & \text { otherwise }\end{cases}
$$

else

$$
\begin{aligned}
r & :=r+11 \\
k & :=k+1 \\
\{k=0 & \left.\wedge f^{k}(r)=f(x)\right\} \Rightarrow\{r=f(x)\}
\end{aligned}
$$

Validity, soundness, completeness

Validity

A HL triple $\{P\} c\{Q\}$ is valid if $\llbracket c \rrbracket P \subseteq Q$
Is $\{x>0\} x:=10 x\{x>10\}$ valid?
*

Is $\{x>0, y>0\} x:=y x\{x \geq 0\}$ valid?
Is $\{$ false $\} c\{Q\}$ valid?
Is $\{P\} c\{$ true $\}$ valid?

Correctness

Th. Any derivable HL triple is valid
Proof. By induction on the derivation tree

Incompleteness I

Conjecture Any valid HL triple is derivable
Counterexample:
\{true $\} c$ \{false $\}$ is valid when c diverges but halting problem is not r.e. while the set of derivable HL triples is r.e.

Incompleteness II

Conjecture Any valid HL triple is derivable

Counterexample:

$\{$ true $\}$ skip $\{Q\}$ is valid when Q is a tautology but Godel's Incompleteness Theorem (1939) tells us that there is no effective proof system such that its theorems coincide with all valid arithmetic assertions

Relative completeness I

Relative completeness: suppose we can consult an oracle to check if an assertion $P \Rightarrow P^{\prime}$ is valid or not, then HL is complete

In other words, we separate concerns about programs and reasoning about them from concerns to do with arithmetic and the incompleteness of any proof system for it

Dijkstra's weakest precondition

Given a command c and a postcondition Q a weakest liberal precondition is a predicate P such that for any precondition R

$$
\{R\} c\{Q\} \text { iff } R \Rightarrow P
$$

i.e., P is the least restrictive requirement that guarantees that
Q holds after executing c (if it terminates)
Typically, it is denoted by $w l p(c, Q) \triangleq\{\sigma \in \Sigma \mid \llbracket c \rrbracket\{\sigma\} \subseteq Q\}$

Adjoints

$$
P \Rightarrow w \operatorname{lp}(c, Q)
$$

iff
$\{P\} c\{Q\}$

(Relative) Completeness

for any postcondition Q expressible in the logic and for any command c, the precondition
$w l p(c, Q)$ is also expressible in the logic
Th. If the logic language is expressive enough, then any valid HL triple can be derived.

Proof. Suppose $\{P\} c\{Q\}$ is valid (with P and Q expressible). By structural induction on c we can build an assertion R that is equivalent to $w l p(c, Q)$ and such that $\{R\} c\{Q\}$ is derivable. By applying the consequence rule we derive $\{P\} c\{Q\}$.

Weakest liberal preconditions

$w l p(\operatorname{skip}, Q) \triangleq Q$
$w \operatorname{lp}(x:=a, Q) \triangleq Q[x \mapsto a]$
$w l p\left(c_{1} ; c_{2}, Q\right) \triangleq w l p\left(c_{1}, w l p\left(c_{2}, Q\right)\right)$
$w l p\left(\right.$ if b then c_{1} else $\left.c_{2}, Q\right) \triangleq\left(b \Rightarrow w l p\left(c_{1}, Q\right)\right) \wedge\left(\neg b \Rightarrow w l p\left(c_{2}, Q\right)\right)$
$w l p($ while b do $c, Q) \triangleq$ more complicated... but possible

Adding nondeterminism

Regular commands

Encoding while commands

if b then c_{1} else $c_{2} \triangleq\left(b ? ; c_{1}\right)+\left(\neg b ? ; c_{2}\right)$
while b do c

$$
\triangleq(b ? ; c)^{\star} ; \neg b ?
$$

Minimal set of rules

$$
\frac{}{\{P\} e\{\llbracket e \rrbracket P\}}\{\text { atom }\} \quad \frac{\{P\} r_{1}\{R\}\{R\} r_{2}\{Q\}}{\{P\} r_{1} ; r_{2}\{Q\}}\{\text { seq }\}
$$

$$
\left.\frac{\forall i \in\{1,2\}\{P\} r_{i}\{Q\}}{\{P\} r_{1}+r_{2}\{Q\}}\{\text { choice }\} \quad \frac{\{P\} r\{P\}}{\{P\} r^{\star}\{P\}} \text { \{iter }\right\}
$$

$$
\frac{P \Rightarrow P^{\prime}\left\{P^{\prime}\right\} r\left\{Q^{\prime}\right\} Q^{\prime} \Rightarrow Q}{\{P\} r\{Q\}}\{\text { cons }\}
$$

Auxiliary rules

$$
\frac{\left\{P_{1}\right\} r\left\{Q_{1}\right\}\left\{P_{2}\right\} r\left\{Q_{2}\right\}}{\left\{P_{1} \vee P_{2}\right\} r\left\{Q_{1} \vee Q_{2}\right\}}\{\mathrm{disj}\}
$$

$$
\frac{\left\{P_{1}\right\} r\left\{Q_{1}\right\}\left\{P_{2}\right\} r\left\{Q_{2}\right\}}{\left\{P_{1} \wedge P_{2}\right\} r\left\{Q_{1} \wedge Q_{2}\right\}}\{\text { conj }\} \frac{\{P\} r\{Q\}}{\{P \wedge R\} r\{Q \wedge R\}}\{\text { frame }\}
$$

$$
P \Rightarrow P^{\prime} \quad\left\{P^{\prime}\right\} r\{Q\}
$$

$$
\{P\} r\{Q\}
$$

\{stren\}

$$
\frac{\{P\} r\left\{Q^{\prime}\right\} Q^{\prime} \Rightarrow Q}{\{P\} r\{Q\}}
$$

Questions

Question 1

Is $\neg b$ an obvious invariant?

$$
\frac{\{P \wedge b\} c\{P\}}{\{P\} \text { while } b \text { do } c\{P \wedge \neg b\}}
$$

$$
\frac{\{\text { false }\} c\{\neg b\}}{\{\neg b\} \text { while } b \text { do } c\{\neg b\}} \bullet
$$

Question 2

Find a derivation for the HL triple
$\{$ true $\}$ if $x \geq y$ then $z:=x$ else $z:=y\{z=\max (x, y)\}$

$$
\begin{aligned}
& \quad\{\text { true }\} \\
& \text { if } x \geq y \text { then } \\
& \quad\{x \geq y\} \\
& \quad z:=x \\
& \quad\{z=x \geq y\} \Rightarrow\{z=\max (x, y)\} \\
& \text { else } \\
& \quad\{x<y\} \\
& z:=y \\
& \quad\{z=y>x\} \Rightarrow\{z=\max (x, y)\} \\
& \{z=\max (x, y)\}
\end{aligned}
$$

* Exam 1

Prove that rule $\{$ conj\} is sound

$$
\frac{\left\{P_{1}\right\} r\left\{Q_{1}\right\}\left\{P_{2}\right\} r\left\{Q_{2}\right\}}{\left\{P_{1} \wedge P_{2}\right\} r\left\{Q_{1} \wedge Q_{2}\right\}}\{\text { conj }\}
$$

* Exam 2

Show that the following rule for assignment is not sound

$$
\{P\} x:=a\{P[a / x]\}
$$

[^0]: Figure 2 (Redrawn from Turing's original)

