
Program analysis:
from proving correctness
to proving incorrectness

Roberto Bruni, Roberta Gori
(University of Pisa)

Lecture #01
BISS 2024

March 11-15, 2024

Bugs

A software bug is an
error, flaw or fault in the
design, development, or
operation of computer
software that causes it
to produce an incorrect
or unexpected result

1947

https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Computer_software

Software Verification

Correctness

Incorrectness

the aim is to prove the absence of bugs

the aim is to prove the presence of bugs

The need for verification

Ariane 5 Rocket Explosion (1996)
Caused due to numeric overflow error

Attempt to fit 64-bit format data into 16-bit space

Cost: $100M for loss of mission

Multi-year set back to the Ariane program

Read more at:

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster/

Unfortunately
It was one of the most serious but not the only one….

Boeing 747 Max Crashes
 350 people died Toyota unintended acceleration

 4 people died

https://www.cs.tau.ac.il/~nachumd/horror.html

https://www.cs.tau.ac.il/~nachumd/horror.html

Costs of SW bugs

CISION PR Newswire (2020): SW bugs cost $ 61 Billion loss in productivity annually.

Software Fails Watch (Tricentis, 2017): SW bugs lead to $ 1.7 Trillion revenue lost.

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

https://www.tricentis.com/news/tricentis-software-fail-watch-finds-3-6-billion-people-affected-and-1-7-trillion-revenue-lost-by-software-failures-last-year/

Nissan Airbag Malfunction (2014)
1 Million Vehicles Recalled

Knight Capital Trading Glitch (2012)
$ 440 M

https://www.prnewswire.com/news-releases/study-software-failures-cost-the-enterprise-software-market-61b-annually-301066579.html

Complexity of programs
Size of Linux Kernel Avg. Size of Android Apps

always increasing!

The main question

Will our program behave as we intended?

We need to analyse all executions of the program

The semantics of a program is a description of its run-time behaviors

Checking if a software will run as intended is equivalent to

checking if the code satisfies a (semantic) property of interest

Success stories

Some general approaches to Verification

Static analysis, Algorithmic Verification
I model checking (automata-based models)
I abstract interpretation (domain-specific model, e.g.

numerical)

Deductive verification
I formal models using expressive logics
I verification = computer-assisted mathematical proof

Some general approaches to Verification

Refinement
I Formal models
I Code derived from model, correct by construction

A long time before success

Computer-assisted verification is an old idea
I Turing, 1948
I Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
I Importance of the increase of performance of computers

A first success story:
I Paris metro line 14, using Atelier B (1998, refinement

approach)

Other Famous Success Stories
I Flight control software of A380: Astree verifies absence of

run-time errors (2005, abstract interpretation)
http://www.astree.ens.fr/

I Microsoft’s hypervisor: using Microsoft’s VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

More recently: verification of PikeOS

I Certified C compiler, developed using the Coq proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
http://compcert.inria.fr/

I L4.verified micro-kernel, using tools on top of Isabelle/HOL
proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/l4.verified/

Some general approaches to Verification

Static analysis, Algorithmic Verification
I model checking (automata-based models)
I abstract interpretation (domain-specific model, e.g.

numerical)

Deductive verification
I formal models using expressive logics
I verification = computer-assisted mathematical proof

Some general approaches to Verification

Refinement
I Formal models
I Code derived from model, correct by construction

A long time before success

Computer-assisted verification is an old idea
I Turing, 1948
I Floyd-Hoare logic, 1969

Success in practice: only from the mid-1990s
I Importance of the increase of performance of computers

A first success story:
I Paris metro line 14, using Atelier B (1998, refinement

approach)

Other Famous Success Stories
I Flight control software of A380: Astree verifies absence of

run-time errors (2005, abstract interpretation)
http://www.astree.ens.fr/

I Microsoft’s hypervisor: using Microsoft’s VCC and the Z3
automated prover (2008, deductive verification)
http://research.microsoft.com/en-us/projects/vcc/

More recently: verification of PikeOS

I Certified C compiler, developed using the Coq proof
assistant (2009, correct-by-construction code generated by
a proof assistant)
http://compcert.inria.fr/

I L4.verified micro-kernel, using tools on top of Isabelle/HOL
proof assistant (2010, Haskell prototype, C code, proof
assistant)
http://www.ertos.nicta.com.au/research/l4.verified/

Forward semantics for deterministic programs

A program
𝖼

[[𝖼]]σσ
Input store Output store

[[𝖼]]σ = ⊥σ

[[𝖼]] : Σ → Σ⊥Denotational semantics

Non terminating execution

We start from input state and we want to characterise the reachable output states σ

Collecting semantics for deterministic programs
A program

𝖼
[[𝖼]]σσ

Output store

[[𝖼]]σ = ⊥σ

[[𝖼]] : Σ → Σ⊥Denotational semantics

Collecting semantics [[𝖼]] : ℘(Σ) → ℘(Σ)

[[𝖼]]P = ⋃
σ∈P

[[𝖼]]σ

P
Input stores

Ideal exact analysis

[[c]]P
∈? [[c]]P

[[c]] : ℘(Σ) → ℘(Σ)

𝒫(c) ≡ ∀P . ∀σ ∈ [[c]]P . σ(x) ≠ 0

semantic property of a program: a property about [[c]]

Undecidability in the way

Rice theorem.

Let be a non trivial semantic property of programs .

There exists no algorithm such that, for every program ,

it returns true if and only if holds true

no analysis method that is automatic, universal, exact !

𝒫(c) c
c

𝒫(c)

non trivial property:
- there exists a program such that holds true

- and there exists also some program such that is false

c 𝒫(c)
c 𝒫(c)

For some program…

x := 1;

𝒫(c) ≡ ∀P ≠ ∅ . ∃σ ∈ [[c]]P . σ(x) ≠ 0

c ≜

and for some other program…

while (n>1) {
 n = n+1;
 x := 0;
}
x := 1;

𝒫(c) ≡ ∀P ≠ ∅ . ∃σ ∈ [[c]]P . σ(x) ≠ 0

c ≜

but for Collatz’s conjecture?

while (n>1) {
 if (even(n)) { n := n/2; }
 else { n:= 3n+1; }
} % does it terminate for any value of n?
x := 1;

As of 2020, the conjecture has been checked by computer for
all starting values up to ≈ .

𝒫(c) ≡ ∀P ≠ ∅ . ∃σ ∈ [[c]]P . σ(x) ≠ 0

c ≜

268 1020

Limitations of the analysis

no analysis method that is automatic, universal, exact !

We need to give something up:

automation: machine-assisted techniques

the universality “for all programs”:  
targeting only a restricted class of programs

claim to find exact answers: introduce approximations

Over approximations

false positive

Good for proving correctness

true positive

Bad for bug-findings !

[[c]]P

[[c]]P

true negative

Under approximations

true positive
[[c]]P

Good for bug-findings !

Bad for proving correctness

[[c]]P
false negative

true negative

Comparison

Automatic Over-approximation Under-approximation

Testing Yes No Yes

Machine-assisted
Verification Yes/No Yes/No Yes/No

Bounded model
checking Yes No Yes

Abstract
Interpretation Yes Yes No

Correctness: forward approach

P

[[𝖼]]P Q⊆
?

A program
𝖼

Q
∀σ ∈ P . [[c]]σ either does not terminate

or terminates in Q

Correctness: backward approach

P

P wlp(c, Q)⊆
?

A program
𝖼

Q
wlp(c, Q) = {σ ∣ [[c]]{σ} ⊆ Q}

Dijkstra’s weakest liberal precondition

[[𝖼]]P Q⊆

Nondeterministic programs

[[𝖼]] : Σ → ℘(Σ)σ

Some programs may exhibit nondeterministic behaviour

(lack of information, approximation, programming constructs)c1 + c2

[[𝖼]]P Q⊆
all the outputs starting from either do non terminate or terminate in Qσ ∈ P

P ⊆ wlp(c, Q)

A program 𝖼

An example: non-termination analysis

σ

Given a program and an input store does ? 𝖼 σ [[𝖼]]σ = ∅

Using over-approximation: we try to prove [[𝖼]]σ ⊆ ∅
Using under-approximation: we try to prove for some [[𝖼]]σ ⊇ Q Q ≠ ∅

Non
termination

Termination

𝖼

What we will see
Forward Backward Over-approximation Under-approximation

Hoare Logic (HL) X X

Incorrectness Logic (IL) X X

Locally Complete Logic (LCL) X X X

Necessary Condition (NC) X X

Sufficient Incorrectness Logic (SIL) X X

Separation Logic (SL) X X

Incorrectness SL X X

Separation SIL X X

UNTer X X X

Questions

Question 1
Let

and let

What is ?

c ≜ (z := x) + (z := y)
P ≜ (x = y = 0)
[[c]]P

(x = y = z = 0)

Question 2
Let

and let

What is ?

c ≜ 𝗂𝖿 x < y 𝗍𝗁𝖾𝗇 x := y 𝖾𝗅𝗌𝖾 (𝗐𝗁𝗂𝗅𝖾 𝗍𝗋𝗎𝖾 𝖽𝗈 𝗌𝗄𝗂𝗉)
Q ≜ (x = y = 0)
wlp(c, Q)

(x ≥ y ∨ y = 0)

