
Well founded semantics for logic program

updates

F. Banti1, J. J. Alferes1, and A. Brogi2

1 CENTRIA, Universidade Nova de Lisboa, Portugal
2 Dipartimento di Informatica, Università di Pisa, Italy

Abstract. Over the last years various semantics have been proposed
for dealing with updates of logic programs by (other) logic programs.
Most of these semantics extend the stable models semantics of normal,
extended (with explicit negation) or generalized (with default negation
in rule heads) logic programs. In this paper we propose a well founded
semantics for logic programs updates. We motivate our proposal with
both practical and theoretical argumentations. Various theoretical results
presented here show how our proposal is related to the stable model
approach and how it extends the well founded semantics of normal and
generalized logic programs.

1 Introduction

When dealing with knowledge bases modelling knowledge that may change over
time, an important issue is that of how to automatically incorporate new (up-
dated) knowledge without falling into an inconsistency each time this new knowl-
edge is in conflict with the previous one. When knowledge is represented by logic
programs (LPs), this issue boils down to that of how to deal with LPs updates. In
this context, updates are represented by sequences of sets of logic programming
rules, also called dynamic logic programs (DLPs), the first set representing our
initial knowledge, while later ones represent new incoming information. In the
last years, several semantics had been proposed for logic programs updates [1,
2, 5, 9, 13–15, 17, 18]. Most of these semantics are extensions of the stable mod-
els semantics of extended (with explicit negation) [12] or generalized (allowing
default negation in rule heads) [16] LPs. This is a natural choice given the ap-
propriateness of stable models for knowledge representation, and the simplicity
of the definition of stable model semantics for normal LPs, which allows various
extensions in a natural way. However, it is our stance that there are application
domains for logic programs updates with requirements demanding a different
choice of basic semantics, such as the well founded semantics [11]. One of such
requirements is that of computational complexity: in applications that require
the capability of dealing with an overwhelming mass of information, it is very
important to be able to quickly process such information, even at the cost of los-
ing some inference power. In this respect, as it is well known, the computation of
stable models is NP-hard, whereas that of the well founded model is polynomial.
Another requirement not fulfilled by stable model semantics is that of being able

to answer queries about a given part of the knowledge without the need to, in
general, consult the whole knowledge base. The well founded semantics com-
plies with the property of relevance [8], making it possible to implement query
driven proof procedures that, for any given query, only need to explore a part
of the knowledge base. Moreover, in domains with a great amount of highly dis-
tributed and heterogeneous knowledge, inconsistencies are bound to appear not
only when new knowledge conflicts with old knowledge, but also within the new
(or old) knowledge alone. To deal with contradictions that appear simultane-
ously, the mechanisms of updates are of no use, and some form of paraconsistent
semantics [7] is required, i.e. a semantics where these contradictions are at least
detected, and isolated. A well founded based semantics for LPs updates seems
to be the answer for domains where the above requirements are added with the
need to update knowledge. However, as we mentioned above, most of the exist-
ing semantics are stable models based. A few attempts to define a well founded
semantics for DLPs can be found [2, 3, 13]. Unfortunately, as discussed in Sec-
tion 5.1, none of these is, in our opinion, satisfactory, be it because they lack a
declarative definition of the semantics, or because they are too skeptical.

In this paper we define the (paraconsistent) well founded semantics of DLPs.
This semantics is a generalization for sequences of programs of the well founded
semantics of normal [11] and generalized LPs [6]. Moreover it is sound wrt to the
stable models semantics for DLPs as defined in [1]. As for most of the existing
semantics for DLPs, the approach herein is also based on the causal rejection
principle [9, 14], which states, informally: an old rule is rejected if there exists
a more recent one which is supported and whose immediate conclusions are in
conflict with the ones of the older rule. We extend this principle from a 2-valued
to a 3-valued setting, and apply it to the well founded semantics.

The rest of the paper is organized as follows. Section 2 recalls some prelim-
inary notions and establishes notation. Section 3 presents the extension of the
causal rejection principle to the 3-valued case. In section 4 the well founded se-
mantics for DLPs is defined, and in section 5 some of its properties are studied
and relations with existing proposals (briefly) established. We end, in section 6,
with some concluding remarks.

2 Background: Language, concepts and notation

In this section we briefly recall the syntax of DLPs, a language introduced in
[2] for dealing with logic programs updates, and their semantics as defined in
[1]. Our choice on this semantics for introducing the background is based on the
fact that, among the existing ones, it is the more credulous and that it properly
overcomes some problems of the existing ones, as shown in [1].

To represent negative information in logic programs and their updates, DLP
uses generalized logic programs (GLPs) [16], which allow for default negation
notA not only in the premises of rules but also in their heads. A GLP defined
over a propositional language L is a (possibly infinite) set of ground rules1 of the

1 As usual, a programs with variables stands for the possibly infinite set of rules
resulting from replacing, in every possible way, the variables by elements of the
Herbrand universe.

form L0 ← L1, . . . , Ln, where each Li is a literal in L, i.e., either a propositional
atom A in L or the default negation notA of a propositional atom A in L. We
say that A is the default complement of notA and viceversa. Given a rule τ as
above, by hd(τ) we mean L0 and by B(τ) we mean {L1, . . . , Ln}. In the sequel
an interpretation is simply a set of literals of L. A literal L is true (resp. false)
in I iff L ∈ I (resp. notL ∈ I) and undefined in I iff {L, notL} ∩ I = {}. A
conjunction (or set) of literals C is true (resp. false) in I iff C ⊆ I (resp. ∃ L ∈ C

such that L is false in I). We say that I is consistent iff ∀ A ∈ L at most one of
A and notA belongs to I, otherwise we say I is paraconsistent. We say that I is
2-valued iff for each atom A ∈ L exactly one of A and notA belongs to I.

A dynamic logic program over a language L is a finite sequence P1 ⊕ . . .⊕Pn

(also denoted ⊕Pi, where the Pis are GLPs indexed by 1, . . . , n), where all the
Pis are defined over L. Intuitively such a sequence may be viewed as the result
of, starting with program P1, updating it with program P2, . . ., and updating it
with program Pn. For this reason we call the singles Pis updates. We use ρ (P)
to denote the multiset of all rules appearing in the programs P1, ..., Ps.

The refined stable model semantics for DLPs is defined in [1] by assigning to
each DLP a set of stable models (that coincides with the stable models based
semantics defined in [16] when the sequence is a single GLP). The basic idea
of the semantics is that, if a later rule τ has a true body (according to a given
interpretation), then former rules in conflict with τ should be rejected (causal
rejection principles). Moreover, any atom A for which there is no rule with true
body in any update, is considered false by default. The semantics is then defined
by a fixpoint equation that, given an interpretation I, tests whether I has exactly
the consequences obtained after removing from the multiset ρ (P) all the rules
rejected given I, and imposing all the default assumptions given I. Formally, let:

Default(⊕Pi, I) = {not A | 6 ∃ A ← body ∈ ρ (P) ∧ body ⊆ I}

RejS(⊕Pi, I) = {τ | τ ∈ Pi| ∃ η ∈ Pj i ≤ j, τ ⊲⊳ η ∧ B(η) ⊆ I}

where τ ⊲⊳ η means that τ and η are conflicting rules, i.e. the head of τ is the
default complement of the head of η.
Definition 1. Let ⊕Pi be a DLP over language L and M a two valued inter-
pretation. M is a refined stable model of ⊕Pi iff M is a fixpoint of ΓS

⊕Pi
:

ΓS
⊕Pi

(M) = least
(

ρ (P) \ RejS(⊕Pi,M) ∪ Default(⊕Pi,M)
)

where least(P) denotes the least Herbrand model of the definite program obtained
by considering each negative literal notA in P as a new atom2.

The definition of dynamic stable models of DLPs [2] is as the one above, but
where the i ≤ j in the rejection operator is replaced by i < j. I.e., if we denote
this other rejection operator by Rej(⊕Pi, I), and define Γ⊕Pi

(I) by replacing
in ΓS RejS by Rej, then the stable models of ⊕Pi are the interpretations I

such that I = Γ⊕Pi
(I). Comparisons among these two definitions, as well as

further details, properties and motivation for the definition of this language and
semantics are beyond the scope of this paper, and can be found in [1, 2].
2 Whenever clear from the context, hereafter we omit the ⊕Pi in any of the above

defined operators.

3 The notion of causal rejection for 3-valued semantics.

According to the above mentioned causal rejection principle [9, 14], a rule from
an older program in a sequence is kept (by inertia) unless it is rejected by a more
recent conflicting rule whose body is true. On the basis of this, the very basic
notion of model has to be modified when dealing with updates. In the static
case, a model of a program is an interpretation that satisfies all the rules of the
program, where a rule is satisfied if its head is true or its body is false. If we
want to adapt this idea to the updates setting taking in consideration the casual
rejection principle we should only require non rejected rules to be satisfied. Also
the concept of supported model [4] has to be revisited when dealing with updates.
In the static case, a model M of P is supported iff for every atom A ∈ M ,
there is a rule in P whose head is A and whose body is satisfied in M . If we
extend the concept of supportedness to logic programs with updates, it would
be unnatural to allow rejected rules to support a the truth of a literal.

The causal rejection principle is defined for 2-valued semantics; we want now
to extend it to a 3-valued setting, in which literals can be undefined, besides
being true or false. In the 2-valued setting, a rule is rejected iff there is a rule
in a later update whose body is true in the considered interpretation. In this
context, this is the same as saying that the body of the rejecting rule is not
false. In a 3-valued setting this is no longer the case, and the following question
arises: should we reject rules on the basis of rejecting rules whose body is true, or
on the basis of rules whose body is not false? We argue that the correct answer
is the latter. In the remainder we give both practical and theoretical reasons for
our choice, but we want now to give an intuitive justification. Suppose initially
we believe a given literal L is true. Later on we get the information that L is false
if some conditions hold, but those conditions are (for now) undefined. As usual
in updates, we prefer later information to the previous one. On the basis of such
information, can we be sure that L remains true? It seems to us we cannot. The
more recent source of information says if some conditions hold then L is false,
and such conditions may hold. We should then reject the previous information
and consider, on the basis of the most recent one, that L is undefined.

On the basis of these intuitions, we extend the definition of update model
and update supported model to the 3-valued setting.

Definition 2. Let ⊕Pi be any DLP, and M a 3-valued interpretation. M is an
update 3-valued model of ⊕Pi iff for each rule τ in any given Pi, M satisfies τ

(i.e. hd(τ) ∈ M or B(τ) 6⊆ M) or there exists a rule η in Pj , i < j such that
τ ⊲⊳ η and B(η) is not false in M . We say M is a supported 3-valued update
model of ⊕Pi iff it is an update 3-valued model and

1. for each atom A ∈ M , ∃ τ ∈ Pi with head A such that B(τ) ⊆ M and 6 ∃
η ∈ Pj , i < j such that τ ⊲⊳ η, and B(η) is not false in M .

2. for each negative literal not A, if not A ∈ M , then for each rule
A ← body ∈ ρ (P) such that body is true in M , there exists a rule η, in a
later update whose head is notA, and such that B(η) is true in M .

We illustrate, via an example, the intuitive meaning of the defined concepts.

Example 1. Sara, Cristina and Bob, are deciding what they will do on Saturday.
Sara decides she is going to a museum, Cristina wants to go shopping and Bob
decides to go fishing in case Sara goes to the museum. Later on they update
their plans: Cristina decides not to go shopping, Sara decides she will not go to
the museum if it snows and Bob decides he will also go fishing if it is a sunny
day. Moreover we know from the forecast that Saturday can be either a sunny
day or a raining day. We represent the situation with the DLP P1 ⊕P2, where:

P1 : museum(s). P2 : fish(b) ← sunny. sunny ← not rain.

shopping(c). not shopping(c). rain ← not sunny.

fish(b) ← museum(s). notmuseum(s) ← snow.

The intended meaning of P1⊕P2 is that it does not snow on Saturday, but we do
not know if it does rain or not, we know Sara goes to the museum on Saturday,
Bob goes fishing and, finally, Cristina does not go shopping. In fact, every 3-
valued update model of P1⊕P2 contains {museum(s), not shopping(c), fish(b)}.
Suppose now Bob decides that, in the end, he does not want to go fishing if it
rains, i.e our knowledge is updated with: P3 : not fish(b) ← rain. Intuitively,
after P3, we do not know whether Bob will go fishing since we do not know
whether Saturday is a rainy day. According to definition 2, there is a supported
3-valued update model of P1⊕P2⊕P3 in which shopping(c) is false, museum(s)
is true and fish(b) is undefined.

It can be checked that, according to all existing stable models based semantics
for updates of [1, 2, 5, 9, 14, 15], P1⊕P2⊕P3 has two stable models: one where rain

is true and fish(b) is false, and another where rain is false and fish(b) is true.
A notable property of the well founded model in the static case is that of being
a subset of all stable models. If one wants to preserve this property in DLPs, in
the well founded model of this example one should neither conclude fish(b) nor
notfish(b). If a rule would only be rejected in case there is a conflicting later
one with true body (rather than not false as we advocate), since the body of
not fish(b) ← rain is not true, we would not be able to reject the initial rule
fish(b) ← museum(s), and hence would conclude fish(b). Hence, to preserve
this relation to stable models based semantics, the well founded model semantics
for DLPs must rely on this notion of 3-valued rejection described above.

4 The Well founded semantics for DLPs

On the basis of the notion of causal rejection just presented, we define the Well
Founded Semantics for DLPs. Formally, our definition is made in a way similar
to the the definition of the well founded semantics for normal LPs in [10], where
the well founded model is characterized by the least alternating fixpoint of the
Gelfond-Lifschitz operator Γ (i.e. by the least fixpoint of Γ 2). Unfortunately,
if we apply literally this idea, i.e. define the well founded model as the least
alternating fixpoint of the operator used for the dynamic stable (or refined stable)
models of DLPs, the resulting semantics turns out to be too skeptical:

Example 2. It is either day or night (but not both). Moreover, if the stars are vis-
ible it is possible to make astronomical observations. This knowledge is updated

with the information that: if it is night the stars are visible; the observatory is
closed if it is not possible to make observations; and the stars are not visible:

P1 : observe ← see stars. day ← not night. night ← not day.

P2 : see stars ← night. not see stars. closed(obs) ← not observe.

The intended meaning of P1 ⊕ P2 is that currently the stars are not visible, it
is not possible to make astronomical observations and, hence, the observatory
is closed. However, it is easy to check, the least alternating fixpoint of ΓP1⊕P2

is {not see stars}, in which one is not able to conclude that the observatory
is closed. This is, in our opinion, not satisfactory: since we conclude that we
cannot see the stars, we should also conclude that we cannot make astronomical
observations and that the observatory is closed. Notably, the least alternating
fixpoint of ΓS yield even more skeptical results. In fact, this is a general result
which is an immediate consequence of Lemma 1 below.

In order to overcome this problem, we define it as the least fixpoint of the
composition of two different (antimonotonous) operators. Such operators have
to deal with the causal rejection principle described above, in which a rule is
to be rejected in case there is a later conflicting one whose body is not false.
In the well founded semantics of normal logic programs, if there exists a rule
A ← body (where A is an atom), such that body is not false in the well founded
model, then A is not false as well. Consider now the same situation in an update
setting with a rule L ← body1, where body1 is not false. In this situation we
should conclude that L is not false unless there exists a rule notL ← body2,
where body2 is true in the same or in a later program in the sequence. In fact,
note that the rule for notL is not rejected by the one for L. Since the body of
the former is true, according to the causal rejection principle notL should be
true (i.e. L should be false) unless the rule is rejected by some later rule. In any
case, L ← body1 is no longer playing any role in determining the truth value of
L. For this reason we allow rules to reject other rules in previous or in the same
update while determining the set of non-false literals of the well founded model
and, accordingly, we use ΓS

⊕Pi
, as the first operator of our composition.

For determining the set of true literals according to the causal rejection
principle, only the rules that are not rejected by conflicting rules in later updates
should be put in place. For this reason we use Γ⊕Pi

as the second operator, the
well founded model being thus defined as the least fix point of the ΓΓS .

Definition 3. The well founded model WFDy(⊕Pi) of a DLP ⊕Pi is the (set
inclusion) least fixpoint of Γ⊕Pi

ΓS
⊕Pi

.

Since both Γ and ΓS are antimonotonous (cf. [1, 14]), ΓΓS is monotonous, and
so it always has a least fixpoint. In other words, WFDy is uniquely defined for
every DLP. Moreover WFDy(⊕Pi) can be obtained by (transfinitely) iterating
ΓΓS , starting from the empty interpretation.

For the dynamic logic program P1⊕P2 of example 2, the well founded model
is {not see stars, not observe, closed(obs)}. So, in this example, WFDy yield
the desired less skeptical conclusions. In fact, in general WFDy is less skeptical
than any semantics resulting from any other combination of ΓS and Γ .

Lemma 1. Let ⊕Pi be a DLP, and let X, Y be two interpretations such that
X ⊆ Y . Then ΓS(Y) ⊆ Γ (X).

From this Lemma it follows that the least fixpoint of any other combination is
a pre-fixpoint of ΓΓS and, as such, a subset of the least fixpoint of ΓΓS .

Example 3. Let P1, P2 and P3 be the programs of example 1. As desired, the
well founded model of P1⊕P2⊕P3 is, {not snow, museum(s), not shopping(c)}.

As shown in example 1, WFDy(P1⊕P2⊕P3) is a supported 3-valued update
model. This result holds in general, whenever the well founded model does not
contain any pair of complementary literals.

Theorem 1. Let ⊕Pi be a DLP and W its well founded model. Then, if W

contains no pair of complementary literals, W is a supported 3-valued update
model of ⊕Pi.

The proviso of W not containing any pair of complementary literals is due to the
fact that, since notion of interpretation we use allows contradictory sets of liter-
als, nothing prevents the well founded model of a DLP from being contradictory.
We say that a DLP ⊕Pi is consistent (or non contradictory) iff WFDy(⊕Pi) is
consistent i.e. it does not contain any pair of complementary literals. Note that
for contradictory DLPs the very notion of model is not applicable.

5 Properties

Our motivation for defining a new semantics for logic programs updates, as
described in the Introduction, is based on a number of requirements. Hence, we
briefly examine in what term those requirements are indeed met by WFDy, and
briefly comparing with existing approaches.

One of the important requirements is that of having a semantics computable
in polynomial time. It is not difficult to check that the computation of both
Γ⊕Pi

(I) and ΓS
⊕Pi

(I) is polynomial in the size of DLP , and so:

Proposition 1. The well founded model of any finite ground dynamic logic pro-
gram ⊕Pi is computable in polynomial time on the number of rules in ⊕Pi.

Another required property is that of relevance [8], so as to guarantee the pos-
sibility of defining query driven proof procedures. Informally, in normal (single)
programs, a semantics complies with relevance if the truth value of any atom A

in a program only depends on the rules relevant for this literal (i.e. those rules
with head A, or with a head A′ such that A′ belongs to the body of (another)
relevant rule). In order to establish results regarding relevance of WFDy we
have first to define what is the relevant part of a DLP (rather than a single
program) wrt a literal (rather than atom).

Definition 4. Let ⊕Pi be any DLP in the language L and L, B, C literals in
L. We say L directly depends on B iff B occurs in the body of some rule in ⊕Pi

with head L or notL. We say L depends on B iff L directly depends on B or
there is some C such that L directly depends on C and C depends on B. We call

RelL(⊕Pi) the dynamic logic programs P
(L)
1 ⊕ . . . ⊕ P

(L)
n such that P

(L)
i is the

set of all rules of Pi with head L or notL or some B on which L depends on.

This definition simply applies the above intuition of relevance for normal pro-
gram, but now considering sequences of programs, and by stating that rules for
notA are relevant for A (and vice-versa). And WFDy complies with relevance
exactly in these terms:

Theorem 2. . Let ⊕Pi be a DLP in the language L and A any atom of L. Then
WFDy(⊕Pi) ∩ {A, notA} = WFDy(RelA⊕Pi) ∩ {A, notA}.

As noted above, WFDy can be contradictory. In these cases, inconsistent conclu-
sions for a given atom may follow, but without necessarily having a contradiction
in all atoms. However, as desired in updates, these contradictions in atoms may
only appear in case there are two conflicting simultaneous rules (i.e. in a same
program of the sequence) which are both supported, and none of them is rejected
by some later update:

Theorem 3. The well founded model W of a sequence ⊕Pi is noncontradictory
iff for all τ, η ∈ Pi such that: τ ⊲⊳ η, W |= B(τ), W |= B(η)) there exists
γ ∈ Pj , i < j such that γ ⊲⊳ τ or γ ⊲⊳ η and ΓS(W) |= B(γ).

Finally, it was our goal to find a proper generalization of the well founded se-
mantics single programs into logic programs updates. It is thus important, to
guarantee that WFDy coincides with the well founded semantics of GLPs [6]
when the considered DLP is a single program P , and with the well founded
semantics of normal programs [11] when, furthermore, that single program has
no negation in rule heads. Denoting by WFG(P) the well founded semantics of
the generalized logic program P according to [6]:

Theorem 4. Let P be a generalized program. Then WFG(P) = WFDy(P).

Since WFG(P) coincides with the well founded semantics of [11] when P is a
normal program (cf. [6]), it follows that WFDy coincides with the semantics of
[11] whenever the sequences is made of a single normal logic program.

5.1 Brief Comparisons

Among the various semantics defined for sequences of LPs [1, 2, 5, 9, 14, 15, 18],
WFDy shares a close relationship with the refined stable models semantics of [1],
resembling that between stable and well founded semantics of normal programs.

Proposition 2. Let M be any refined stable model of ⊕Pi. The well founded
model WFDy(⊕Pi) is a subset of M. Moreover, if WFDy(⊕Pi) is a 2-valued
interpretation, it coincides with the unique refined stable model of ⊕Pi.

This property does not hold if, instead of the refined semantics, we consider
any of the other semantics based on causal rejection [2, 5, 9, 14, 15]. This is so
because these semantics are sometimes overly skeptical, in the sense that admit
to many models, and thus have a smaller set of conclusions (in the intersection
of all stable models). One particular case when this happens is when a sequence
is updated with tautologies. Though, intuitively, updating our knowledge with
a tautology should have no influence on the results, this is not the case in any of
those semantics. For example, with all the cited semantics, updating the program

P1 ⊕P2 of example 2 (which, according to all of them, has a single stable model
containing not see stars) with the program P3 : see stars ← see stars leads
to two stable models: one in which see stars is true and the other in which
see stars is false. Thus, this intuitively harmless update prevents not see stars

from being concluded. This is not the case with [1], nor with WFDy, which are
both immune to tautologies. In this example, both conclude that not see stars

is true, before and after the update. For further details on this topic see [1].

Notably, all the attempts found in the literature [2, 3, 13] to define a well
founded semantics for logic programs updates are overly skeptical as well. Ac-
cording to all the cited semantics, the well founded model of P1 ⊕P2 ⊕P3 is the
empty set, hence, unlike WFDy, they are not able to conclude that not see stars

is true. Though there it cannot be detailed here, other class of programs exist,
besides the ones with tautologies, where the cited semantics bring more skeptical
results then WFDy. Moreover the definition of all these semantics is based on
a complex syntactical transformation of sequences into single programs, making
it difficult to grasp what the declarative meaning of a sequence is.

6 Concluding remarks

Guided by the needs of applications, it was our purpose in this paper to define
a semantics for DLPs fulfilling some specific requirements. Namely: a semantics
whose computation has polynomial complexity; that is able to deal with con-
tradictory programs, assigning them a non trivial meaning; that can be used to
compute answers to queries without always visiting the whole knowledge base.
With this in mind, we have defined a well founded semantics for DLPs.

The defined semantics is a generalization of the well founded semantics of
normal and generalized logic programs, and it coincides with them when the DLP
consists of a single program. It has polynomial complexity and obeys relevance.
Regarding the requirement of being able to deal with contradictions, lack of
space prevented us from further elaborating on the properties of the semantics in
these cases, and on how it can in general be used to detect contradictory literals
and literals that depend on contradictions. We have, nonetheless, provided a
complete characterization of the non contradictory cases.

We briefly compared the proposed semantic to the existent ones for DLPs
that are based on the causal rejection principle, and shown that it is a skeptical
approximation of the refined stable model semantics for DLPs, and less skeptical
than all other existing well founded based semantics for updates. Comparisons
to semantics of updates that are not based on the causal rejection principle
are outside the scope of this paper. For an analysis of these semantics, and
comparisons to the above ones see e.g. [14].

The definition of WFDy, as well as the various definitions of the well founded
semantics for normal logic programs, is based on ground programs only. An op-
erational semantics that allows query evaluation also in the non ground case al-
ready exists. Future work involves the development of implementations of WFDy

based on such operational semantic, and its usage in applications.

References

1. J. J. Alferes, F. Banti, A. Brogi, and J. A. Leite. Semantics for dynamic logic
programming: a principled based approach. In V. Lifschitz and I. Niemelä, editors,
LPNMR-7, volume 2923 of LNAI, pages 8–20. Springer, 2004.

2. J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinska, and T. C. Przymusin-
ski. Dynamic updates of non-monotonic knowledge bases. The Journal of Logic

Programming, 45(1–3):43–70, September/October 2000.
3. J. J. Alferes, L. M. Pereira, H. Przymusinska, and T. Przymusinski. LUPS: A

language for updating logic programs. Artificial Intelligence, 132(1 & 2), 2002.
4. K. R. Apt and R. N. Bol. Logic programming and negation: A survey. The Journal

of Logic Programming, 19 & 20:9–72, May 1994.
5. F. Buccafurri, W. Faber, and N. Leone. Disjunctive logic programs with inheri-

tance. In D. De Schreye, editor, ICLP’99, pages 79–93. MIT Press, 1999.
6. C. V. Damásio and L. M. Pereira. Default negation in the heads: why not? In

R. Dyckhoff, H. Herre, and P. Schroeder-Heister, editors, Int. Ws. Extensions of

Logic Programming, volume 1050 of LNAI. Springer, 1996.
7. C. V. Damásio and L. M. Pereira. A survey on paraconsistent semantics for ex-

tended logic programas. In D. M. Gabbay and Ph. Smets, editors, Handbook of

Defeasible Reasoning and Uncertainty Management Systems, volume 2, pages 241–
320. Kluwer, 1998.

8. J. Dix. A classification theory of semantics of normal logic programs II: Weak
properties. Fundamenta Mathematicae, 22(3):257–288, 1995.

9. T. Eiter, M. Fink, G. Sabbatini, and H. Tompits. On properties of semantics
based on causal rejection. Theory and Practice of Logic Programming, 2:711–767,
November 2002.

10. A. Van Gelder. The alternating fixpoint of logic programs with negation. Journal

of Computer and System Sciences, 1992.
11. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for

general logic programs. Journal of the ACM, 38(3):620–650, 1991.
12. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Warren

and Szeredi, editors, 7th ICLP, pages 579–597. MIT Press, 1990.
13. J. A. Leite. Logic program updates. Master’s thesis, Dept. de Informática, Facul-

dade de Ciências e Tecnologia, Universidade Nova de Lisboa, November 1997.
14. J. A. Leite. Evolving Knowledge Bases, volume 81 of Frontiers in Artificial Intel-

ligence and Applications. IOS Press, December 2002.
15. J. A. Leite and L. M. Pereira. Iterated logic program updates. In J. Jaffar, editor,

JICSLP-98, pages 265–278. MIT Press, 1998.
16. V. Lifschitz and T. Woo. Answer sets in general non-monotonic reasoning (prelim-

inary report). In B. Nebel, C. Rich, and W. Swartout, editors, KR-92. Morgan-
Kaufmann, 1992.

17. C. Sakama and K. Inoue. Updating extended logic programs through abduction. In
M. Gelfond, N. Leone, and G. Pfeifer, editors, LPNMR-99, volume 1730 of LNAI,
pages 147–161. Springer, 1999.

18. Y. Zhang and N. Y. Foo. Updating logic programs. In Henri Prade, editor, ECAI-

98, pages 403–407. John Wiley & Sons, 1998.

