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Abstract. The heterogeneous, dynamic, distributed, and evolving na-
ture of Web services calls for adaptation techniques to overcome vari-
ous types of mismatches that may occur among services developed by
different parties. In this paper we present a methodology for the auto-
mated generation of (service) adapters capable of solving behavioural
mismatches among BPEL processes. The adaptation process, given two
communicating BPEL processes whose interaction may lock, builds (if
possible) a BPEL process that allows the two processes to successfully in-
teroperate. A key ingredient of the adaptation methodology is the trans-
formation of BPEL processes into YAWL workflows.

1 Introduction

BPEL [2] is currently used to (manually) compose WSDL [15] services into com-
plex business applications. A main problem to achieve automated service compo-
sition is that the composite application may lock due to interaction mismatches
among the participant services. One possibility to overcome such mismatches is
a disciplined use of adapters, as services “in-the-middle” capable of mediating
the information exchanged by the involved parties.

Service adaptation may be tackled at various levels of the Web services stack
[10]. For example, signature-based adaptation [9,12] addresses issues due to syn-
tactic differences among the exchanged messages (e.g., different orderings of the
message parts), ontology-based adaptation [8,11] mediates semantic mismatches
among the exchanged messages (e.g., messages belonging to different ontology
concepts), and behaviour-based adaptation [1,3] handles the integration of ser-
vices into a lock-free aggregate due to mismatches in their communicating pro-
tocols (e.g., different orderings of message exchanges). However, Web service
adaptation is in its early stages and current approaches feature only partial
solutions to the issues of adaptation.

Our long term objective is to develop a general methodology for service
adaptation capable of suitably overcoming signature, ontology and behaviour
mismatches in view of business application integration within and across or-
ganisational boundaries. In this paper we present a methodology for the au-
tomated generation of (service) adapters capable of solving behavioural mis-
matches among BPEL processes. The adaptation process, given two communi-
cating BPEL processes whose interaction may lock, builds (if possible) a BPEL
process that allows the two processes to successfully interoperate. Three strong

� This work has been partially supported by the SMEPP project (EU-FP6-IST
0333563) and by the F.I.R.B. project TOCAI.IT.



motivations for adapting services are the need to develop adapters for service
composition, for ensuring backwards compatibility of new service versions, as
well as the need to develop adapters for each class of clients a service may have.
A key ingredient of the adaptation methodology is the use of service contracts
[6] including WSDL signatures and YAWL behaviour, where YAWL [13] is used
as intermediate (formal) language to provide a (partial) description of the ser-
vice behaviour. Immediate advantages of using such an abstract language are the
possibility of adapting services written in different service description languages,
multiple deployment of the adapter as a real-world service, as well as developing
formal analyses and transformations independently of the different languages
used by providers to describe the behaviour of their services. Moreover, inte-
gration with the YAWL-based service customisation [5] and aggregation of Web
services [4,6] becomes straightforward.

Regrettably, space limitations do not allow us to introduce BPEL and YAWL.
Detailed descriptions of the two languages are to be found in [2] and [13], re-
spectively.

2 Motivating Example
Consider the following example consisting of two interacting BPEL processes:
Command Centre (CC) and Mars Explorer (ME). The former provides a Web
service interface for the assignment of exploration tasks. The latter is a Web
service interface to the robot performing the tasks. Hereafter we present a sim-
plification of the BPEL processes (e.g., in order to express the message exchanges
we simply use service names instead of partnerLinks and portTypes). Although
fairly simple, the example illustrates various interactions among services. On
the one hand, CC communicates with its client, as well as with the ME service.
On the other hand, ME interacts with CC (viz., its client), as well as with the
Logger and Explorer services.
<process name=“CommandCentre”><sequence>

<receive op=“ExecTask” from Client var=“taskInfo” createInst=“yes”/>
<invoke op=“Login” of MarsExplorer var=“loginInfo”/>
<assign><copy> from=“/taskInfo/coords” to=“coords”></copy></assign>
<invoke op=“SetCoords” of MarsExplorer var=“coords”/>
<assign><copy> from=“/taskInfo/job” to=“jobDetails”></copy></assign>
<invoke op=“SetJob” of MarsExplorer var=“jobDetails”/>
<pick>

<onMsg op=“SubmitRep” from MarsExplorer var=“report”><sequence>
<receive op=“JobID” from MarsExplorer var=“id”/>
<invoke op=“Logout” of MarsExplorer/>
<reply op=“ExecTask” of Client var=“report”/></sequence></onMsg>

<onMsg op=“SubmitErr” from MarsExplorer var=“error”><sequence>
<invoke op=“Logout” of MarsExplorer/>
<assign><copy> from=“error” to=“report”></copy></assign>
<reply op=“ExecTask” of Client var=“report” faultName=“Task Error”/>

</sequence></onMsg></pick></sequence></process>

The CC service1 first receives the task information from its client. It then logs
in with the ME, to which it forwards the location and the job details. It waits
next either a report or an error message from the ME. In the former case, it first
receives the job id from the ME, then it closes the connection with the ME, and
finally, it forwards the report to the client. In the latter case, it first logs out
from the ME, and then it replies to the client with the error message.
1 We use “process” and “service” interchangeably to denote BPEL processes.



<process name=“MarsExplorer”><sequence>
<receive op=“Login” from CommandCentre var=“loginInfo” createInst=“yes”/>
<invoke op=“JobID” of CommandCentre var=“id”/>
<receive op=“SetJob” from CommandCentre var=“jobDetails”/>
<receive op=“SetCoords” from CommandCentre var=“coords”/>
<invoke op=“ValidateLocation” of LoggerService inVar=“coords” outVar=“rep1”/>
<invoke op=“Explore” of ExplorerService inVar=“jobDetails” outVar=“rep2”/>
<assign><copy> from=“concat(rep1,rep2)” to=“report”></copy></assign>
<invoke op=“SubmitRep” of CommandCentre var=“report”/>
<receive op=“Logout” from CommandCentre/></sequence>

<faultHandlers>
<catch faultName=“Task Error” faultVar=“error”><sequence>

<invoke op=“SubmitErr” of CommandCentre var=“error”/>
<receive op=“Logout” from CommandCentre/>

</sequence></catch></faultHandlers></process>

The ME service starts by waiting for the CC to log in, to which it sends im-
mediately the job’s id. It receives next from the CC the job description and the
location of the exploration site. In order to carry out the task, the ME first vali-
dates the coordinates (e.g., by checking previous exploration logs) and moves the
robot to the respective location by (synchronously) invoking the Logger Service
(LS), and then, it delegates the Explorer Service (ES) for the actual execution of
the job (again, through a synchronous invocation). If the latter two invocations
return successfully, the ME generates the final report, sends it to the CC, and
waits for the CC to log out. Note that, although not represented in the exam-
ple, the invocations to the LS and to the ES may return a “Task Error” fault.
(This information has to be specified in the WSDL file(s) defining the respective
operations). In that case, the ME service catches the fault, forwards to the CC
the error, and finally, it waits for the CC to close the connection.

It is easy to see that the two services, CC and ME, cannot successfully
interact because of mismatches between their behaviour. Immediately after the
login information exchange, while the CC sends the location of the exploration
site to the ME, the ME sends the job id to the CC. Furthermore, the CC first
sends the location, and then the details of the job to the ME, which expects
them in the reversed order. A further mismatch is the fact that, while the CC
expects the job id only when the exploration is successful, the ME always sends
it, and moreover, at a different moment.

The following Section 3 shows how we automatically generate BPEL adapters
to cope with such behabioural mismatches.

3 Adaptation Methodology

The adaptation methodology inputs two communicating BPEL processes, C
and S, whose interaction may lock, and it builds (if possible) a BPEL process
adapter A, which allows the two processes to successfully interoperate. The four
adaptation phases are: (1.) Service Translation. This phase is in charge of
translating the BPEL descriptions of C and S into corresponding YAWL work-
flows [7]. (2.) Adapter Generation. This phase builds the YAWL workflow of
A from the workflows of C and S. It first generates the Service Execution Trees
(SETs) of C with respect to S (SET (CS)), as well as of S with respect to C
(SET (SC)), followed by the generation of the SETs of their duals (SET (CS)
and SET (SC)). Informally, when a service X outputs a message m, a dual of



X is a service that inputs m, and vice-versa. Next, SET (A) is obtained by
suitably merging SET (CS) and SET (SC). Finally, the YAWL workflow of A
is derived from SET (A). (3.) Lock Analysis. This phase verifies whether the
YAWL-based aggregation [4,6] of C, A, and S locks. If it does, we consider that
the adaptation has failed. Otherwise, we consider that the adaptation is suc-
cessful. (4.) Adapter Deployment. If the adaptation is successful, this phase
deploys the YAWL workflow of A as a BPEL process, which can be used as a
service-in-the-middle between C and S.

3.1 Service Translation

In [7] we present a methodology for translating BPEL processes into YAWL
workflows. Its main strengths are that (1) it defines YAWL patterns for all
BPEL activities, (2) it provides a compositional approach to construct structured
patterns from suitably interconnecting other patterns, and (3) it handles events,
faults and (explicit) compensation.

On the one hand, the pattern of each BPEL basic activity (with the excep-
tion of assign and compensate) is obtained by suitably instantiating the Basic
Pattern Template (BPT). The BPT is a template of YAWL tasks, which serves
both for identifying the translated activity (through an Activity Specific Task,
or AST for short), as well as the control-logic of executing or skipping the activ-
ity. On the other hand, the pattern of each BPEL structured activity (together
with assign, compensate, and process) is obtained from the Structured Pattern
Template (SPT) template. The SPT consists of a Begin (logically marking the
initiation of the structured activity) and of an End pattern (logically marking
the termination of the structured activity), as well as a pattern template (BPT
or SPT) for each child activity. Furthermore, the Scope and Process patterns add
SPTs for handling exceptional behaviour. Each pattern inputs and outputs at
most three types of control-flow links, called green, blue, and red lines. The green
lines serve for translating the structural dependencies among BPEL activities.
The blue lines are used for translating the BPEL synchronisation links, and the
red lines are necessary for implementing the fault handling mechanism. As space
limitations do not allow us to go into further details, please see [7] for more
(in-depth) details on the BPEL2YAWL translator.

The YAWL workflows of the CC and ME services of our example can be
seen in Figure 1.2 In the workflow of ME, Begin(Process) and End(Process),
logically mark the initiation and the termination, respectively, of the BPEL pro-
cess. The process activity, a sequence leads to generating the Begin(Sequence) as
well as the End(Sequence) tasks. The first activity in the sequence is a receive,
which gives the Receive task. Furthermore, the rest of the activities are trans-
lated correspondingly. (The numbers inside some of the task labels are used for
disambiguation purposes only.) Note however the translation of the BPEL pick.
The Begin(Pick) task contains the branch selection logic (basically a deferred

2 The two workflows are represented in a slightly simplified form w.r.t. the description
given in [7] (e.g., the default faultHandlers of the process, as well as redundant green
gates are not represented, the assign is represented in a compact form, etc.).
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Fig. 1. YAWL workflows corresponding to the CC and ME BPEL processes.

choice construct [13]), and it outputs two tokens3. One leads to executing the
chosen branch, while the second leads to skipping the other branch (so as to
achieve the dead-path-elimination).

The workflow of CC is built in a similar manner. However, the compos-
ite tasks representing the invoke ValidateLocation and invoke Explore activities
output either green tokens, if the invocations succeed, or red tokens, if the in-
vocations fail (i.e., faults are being raised). In the former case, the execution of
the workflow continues normally, and the green output of End(Sequence) leads
to skipping the tasks inside the Begin(FaultHandler) → End(FaultHandler) zone
(so as to achieve the dead-path-elimination). In the latter case, the execution of
the faulty invocation is (immediately) followed by the execution of the tasks in
the fault handling zone.

3.2 Adapter Generation

The Adapter Generation phase consists of the four steps discussed hereafter.

Service Execution Trees. This step automatically generates the Service Ex-
ecution Trees (SETs) of the two services to be adapted. The SET of a BPEL
process X is a tree describing all the possible scenarios of executing the basic ac-
tivities (or activities, for short) of X . Informally, the root of the SET is given by
the activity (or activities) that can be executed first, while the leaves correspond
to activities executed last. Each intermediary node represents the execution of
one or more activities. A node consisting of more than one activity denotes a
concurrent execution of the respective activities. Given a node n, child nodes
of n contain (distinct sets of) activities that can be executed immediately after
executing the activities of n. Hence, one may think of each path in the tree as
a service execution trace. We generate the SET of a BPEL process X through
a reachability analysis [4] of its corresponding YAWL workflow obtained during
the Service Translation phase. Note that the BPEL2YAWL translator [7] allows

3 The semantics of executing YAWL workflows is quite similar to executing PNs.



us to cope – when adapting – both with synchronisation links and with the ex-
ceptional behaviour of BPEL. In order to cope with loops in the process, our
reachability analysis uses the modified reachability trees defined in [14]. Further-
more, each node of the SET can be labelled with a condition constraining its
execution. Such conditions are due to guards employed by switch activities and
synchronisation links. In [4,5] we show how to generate the logical expression
constraining the fulfilment of a service execution trace. However, in order to
ease the description of the methodology, and due to space limitations, we do not
detail this issue here. The SET one obtains for a service X contains all message
exchanges of X with other services. We call this the full-form of the SET, and
we denote it by SET (X). SET (ME) is given in Figure 2(a). For example, the
execution of the (synchronous) invoke ValidateLocation can be followed either
by the invoke Explore, or by the invoke SubmitErr. The former is due to a suc-
cessful execution of the invoke ValidateLocation, while the latter is executed in
the case of a fault being received by the invoke ValidateLocation. Furthermore,
the successful termination of the sequence activity of the BPEL process leads to
employing the dead-path-elimination inside the pattern implementing the fault-
Handler of the BPEL process [7]. This is indicated in SET (ME) by the dark
coloured invoke SubmitErr and rcv Logout nodes.

From (the full-form of) SET (X) we derive next the (compact-form of) SET
of X with respect to another service Y , with which X interacts. We denote it
by SET (XY ). Informally, from the original SET (X) we keep only message ex-
changes between X and Y . First, all message exchanges (viz., receive/reply/invoke)
of X with services other than Y , as well as all other basic activities (e.g., as-
sign), and all skipped activities are replaced by empty activities. We denote the
resulting SET as SET (X∗

Y ). For example, the invoke ValidateLocation and the
invoke Explore, which ME performs on the Logger Service and Explorer Service,
respectively, are set to empty when computing SET (MECC). (SET (ME∗

CC) is
given in Figure 2(b).) Second, each empty node in SET (X∗

Y ) (with the excep-
tion of the root) is removed from the tree, and its sub-trees (if any) are merged
with its parent nodes. We denote the resulting tree by SET (XY ). Note that the
merge process applied at a node n of SET (X∗

Y ) also removes duplicate subtrees
of n. For instance, by removing the three empty nodes of SET (ME∗

CC), we get
two identical subtrees (invoke SubmitErr → receive Logout) at the receive Set-
Coords node. The merge at receive SetCoords will then remove one duplicate.
SET (MECC) is represented in Figure 2(c). Due to space limitations, we present
only the SET (CCME) – which is built analogously – in Figure 2(d).

Dual SETs. This step generates for each service X (to be adapted), the SET
of a dual of X with respect to another service Y . Basically, when X receives
a message m from Y , a dual of X with respect to Y (denoted by SET (XY ))
acts somewhat “as Y should” and sends a message m to X , and vice-versa.
One obtains SET (XY ) from SET (XY ) by replacing asynchronous invokes with
receives (and vice-versa), and synchronous invokes with pairs receive → reply
(and vice-versa). SET (MECC) and SET (CCME) are depicted in Figure 3(a)
and (b), respectively.
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Adapter SET. The SET of an adapter A (SET (A)) mediating the interac-
tion of two services, C and S, is obtained by suitably merging SET (CS) with
SET (SC). This process consists of two steps, as follows.

During the first step, we match the activities of SET (CS) with the activ-
ities of SET (SC) with the following two rules: (1) An asynchronous invoke
Op of SET (CS) matches a receive Op of SET (SC), and vice-versa, and (2)
a synchronous invoke Op of SET (CS) matches a pair receive Op → reply Op of
SET (SC), and vice-versa. Then, we express each match as a data-flow depen-
dency (or dependency, for short), which emerges at the receive and targets the
invoke, in the case of asynchronous message exchanges, or as a pair of depen-
dencies, one emerging at the receive and targeting the invoke, and another one
emerging at the invoke and targeting the reply, in the case of synchronous mes-
sage exchanges. We call an activity that is target of at least one dependency as
constrained. Otherwise, we say that the activity is unconstrained (with respect
to the data-flow dependencies between the two SETs). For example, invoke Lo-
gin and receive JobId of SET (MECC) match receive Login and invoke JobId,
respectively, of SET (CCME). (See Figure 3(a) and (b).) Informally, a depen-
dency indicates that the adapter has to wait first a message from one of the
two services, and then (possibly at a later moment) it forwards it to the other
service. In other words, a dependency from X to Y says that the adapter has to
execute X before executing Y . Note that the interpretation in the case of multi-
ple dependencies emerging from different activities Xk and targeting an activity
Y , is that for the execution of Y it suffices to execute only one activity Xk. This
is the case for invoke Logout (1) and invoke Logout (2) of SET (MECC).

As previously mentioned, each path in SET (X) is an execution trace of X .
During the second step, we compute the merge of all possible pairs of traces (c, s),
where c =< c1, c2, . . . , cn > is a trace of SET (CS), and s =< s1, s2, . . . , sm > is
a trace of SET (SC). Such a merge can lead either to a success, or to a failure. In
the former case, the merge of c and s gives a (successful) trace a of the adapter A
(and consequently a path in SET (A)). At each step, the merge process compares
nodes ci and sj , by starting from the roots of the two traces, and it produces a
node ak. In terms of BPEL activities, one may think of the node ak as a sequence
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containing a flow. The merge algorithm basically adds activities of the two nodes
(ci and sj) either inside the flow, or inside the sequence yet following the flow.
For simplicity, we informally describe hereafter the algorithm of merging two
nodes containing each one activity only, and each being the target of at most
one dependency. (The general case of merging nodes with multiple activities
and multiple constraints is analogous.) If ci is unconstrained, then add ci to the
flow inside ak (e.g., merging receive JobId and receive SetCoords). Please note
that in the case of an unconstrained invoke activity, the merge process (of the
two traces) returns with a failure. We do so in order to avoid the generation
of (arbitrary) messages by the adapter. Otherwise, if ci is constrained by sJ

such that J < j (i.e., from the point of view of executing the trace s, activity
of sJ has already been executed), then add ci to the flow (e.g., merging invoke
SetCoords and invoke SubmitRep). Otherwise, if ci is constrained by sJ such that
J = j (i.e., activity of sJ is ready to be executed), then add ci to the sequence,
following the flow (e.g., merging invoke Login and receive Login). Otherwise, if
ci is constrained by sJ such that j < J (i.e., activity of sJ is not executable yet),
then we say that the trace c is “stalled” (e.g., assume merging invoke SetJob and
receive SetCoords). Next, the algorithm does the same for sj. For example, one
may see in Figure 3(c) the result of merging the roots of MECC , and CCME .
(The elimination of the flow is due to the fact that it contains one activity
only.) If both traces are stalled, then we have a lock between the two traces, and
hence a failure in merging the two traces. Otherwise, the algorithm continues by
comparing the node ci (if c is stalled) or ci+1 (if c is not stalled) with the node
sj (if s is stalled) or sj+1 (if s is not stalled). If the merge has added to the trace
a all nodes of one of the two traces (c/s), it simply appends at the end of a the
remaining sequence of nodes of the other trace (s/c). If all nodes of both c and
s have been added to a, then we have a success, and a represents a (successful)
trace of the adapter A.

Next, we derive SET (A) by merging all successful traces a of A. If no such
successful traces exist, then the algorithm generating the adapter fails, as the
mismatches between the two interacting processes cannot be solved. For example,



if the root of SET (CS) consists of an invoke Op1 and if the root of SET (SC)
consists of another invoke Op2, then we have a deadlock as each service is waiting
to receive a message from the other. Consider a set {a1, a2, . . . , ap} of successful
adapter traces. The merge algorithm, in this case, starts by considering SET (A)
to be a1. Then, for all nodes ak

i of the other traces ak, it checks whether ak
i

is contained in SET (A) at depth i. If so, it marks the respective position in
the tree, and it choses the next node in the sequence (i.e., ak

i+1). Otherwise, it
adds the rest of the trace ak, including the node ak

i , as a branch splitting from
the last marked node in SET (A). For our example, we get only two successful
traces of the adapter. The first one, denoted by (5) in Figure 3(d) is obtained by
merging the traces denoted by (1) and (3) of SET (MECC) and SET (CCME),
respectively, while the second one, denoted by (6) is obtained by merging traces
denoted by (2) and (4). These two adapter traces are then merged into the
adapter given in Figure 3(d).

Adapter Workflow. If the adapter has at least one successful trace, then the
adaptation process generates next the YAWL workflow of the adapter A from
SET (A) as described hereafter. Initially, it generates the Begin(Process) and the
Begin(Sequence), as well as the End(Sequence) and the End(Process) patterns
[7], which logically mark the initiation of the business process and of its activity,
as well as their termination, respectively. The former two, as well as the last two
are to be linked in a sequence. (See Figure 4.) Basically, generating the pattern
of a basic activity simply consists of instantiating the Basic Pattern Template
defined in [7] (e.g., setting the name, inputs, and outputs of its Activity Specific
Task), while generating the pattern of a structured one reduces to instantiating
its Begin and its End patterns, and the pattern of each child activity (, as well as
the patterns for handling the exceptional behaviour, if any). For each node n in
SET (A), starting with its root, the algorithm generates and adds to the workflow
the pattern(s) corresponding to the activity (activities) contained in n. If n
consists of one activity only, then the pattern of its (basic) activity is produced
and suitably linked in the workflow as output of the pattern corresponding to
the parent node of n (or to Begin(Sequence) if n is the root). For example,
the receive Login root of SET (A) leads to a Receive pattern linked as output of
Begin(Sequence). If n consists of multiple activities, then the pattern given by the
node is a Flow, which includes the patterns of each activity in the node. Next,
if n has one child node only, the adaptation process continues with its child.
Otherwise, if n has more than one successor, then we have three possibilities: (1)
If all child nodes of n contain each one receive only, and if there are no conditions
constraining their execution4 then the resulting pattern is a Pick having the
respective receives as onMessage tasks in Begin(Pick), and for each branch is
generated a Sequence pattern. The generation process continues then on each
subtree having as root a child of n (excluding the child of n already considered as
onMessage inside the Pick). (2) If all child nodes of n are constrained by (disjoint)

4 We recall that such conditions are due to the guards of switch activities and syn-
chronisation links.



Begin 
(Proc.)

Begin 
(Seq.)

invoke 
Login

receive 
Login

Begin 
(Flow)

receive 
SetCoords

receive 
JobId

End 
(Flow)

receive 
SetJob

invoke 
SetJob

invoke 
SetCoords

Begin 
(Pick)

Begin 
(Seq.)

Begin 
(Seq.)

invoke 
SubmitRep.

invoke 
SubmitErr

invoke 
JobId

receive 
Logout (2)

invoke 
Logout

receive 
Logout (1)

invoke 
LogoutEnd 

(Pick)
End 

(Seq.)
End 

(Proc.) End 
(Seq.)

End 
(Seq.)

Init
onMsg SubmitRep

Wait 4 branch 
decisiononMsg SubmitErr

Begin(Pick)

Adapter for CC and ME

Fig. 4. YAWL workflow of an adapter for CC and ME.

conditions, then a Switch pattern is produced with the respective conditions as
guards, and for each branch of the Switch, a Sequence pattern is generated. The
algorithm continues next on each branch of the subtree with the root n. (3) In all
other cases, the adaptation process aborts, as the adapter cannot be successfully
constructed due to a non-deterministic (other than pick) behaviour. For example,
if n has two unconstrained children, one invoke Op1 and one receive Op2, then
the adapter cannot “know” whether it should wait for a message, or whether
it should send a message. The YAWL adapter one obtains for our example is
presented in Figure 4.

3.3 Lock Analysis

In [4] we show how reachability graphs (or modified reachability trees) can be
employed to check the lock-freedom of aggregations of YAWL workflows (e.g., a
non-final node of the reachability graph/tree without outgoing links corresponds
to a deadlock). Hence, through this methodology one may check whether the
aggregation [4,6] of the workflows of C, A, and S locks. If all traces of the
aggregate are lock-free, then A is a full adapter for C and S. Otherwise, if
some (yet not all) of the traces of the aggregate are lock-free, then A is a partial
adapter, as there are interaction scenarios that cannot be resolved. Finally, if the
aggregate does not have lock-free traces, then we consider that the adaptation
has failed. (Although space limitations do not allow us to demonstrate it, note
that the adapter for CC and ME given in Figure 4 is a full adapter.)

3.4 Adapter Deployment

If the Lock Analysis phase has validated A as a full/partial adapter, then the
Adapter Deployment phase generates the BPEL process of the adapter A from
its YAWL workflow. The deployment process works by parsing the YAWL work-
flow with respect to the patterns defined in our BPEL2YAWL translator [7]. For
example, the Pick pattern in Figure 4 leads to the generation of a BPEL pick
with two branches guarded by onMessage SubmitRep, and onMessage SubmitErr,
where each branch activity is a sequence. Although not explicitly represented in
the figures, the YAWL patterns translating BPEL activities contain all the nec-
essary information for the inverse, YAWL2BPEL translator (e.g., partnerLink,
portType, operation, and variable attributes in the case of a receive, and so on).



The YAWL workflow of the adapter in Figure 4, leads to the following BPEL
(adapter) process:

<process name=“Adapter for CC and ME”><sequence>
<receive op=“Login” from CommandCentre var=“loginInfo”/>
<invoke op=“Login” of MarsExplorer var=“loginInfo”/>
<flow>

<receive op=“SetCoords” from CommandCentre var=“coords”/>
<receive op=“JobID” from MarsExplorer var=“id”/></flow>

<receive op=“SetJob” from CommandCentre var=“jobDetails”/>
<invoke op=“SetJob” of MarsExplorer var=“jobDetails”/>
<invoke op=“SetCoords” of MarsExplorer var=“coords”/>
<pick>

<onMsg op=“SubmitRep” from MarsExplorer var=“report”><sequence>
<invoke op=“SubmitRep” of CommandCentre var=“report”>
<invoke op=“JobID” of CommandCentre var=“id”/>
<receive op=“Logout” from CommandCentre/>
<invoke op=“Logout” of MarsExplorer/></sequence></onMsg>

<onMsg op=“SubmitErr” from MarsExplorer var=“error”><sequence>
<invoke op=“SubmitErr” of CommandCentre var=“error”>
<receive op=“Logout” from CommandCentre/>
<invoke op=“Logout” of MarsExplorer/>

</sequence></onMsg></pick></sequence></process>

4 Concluding Remarks

In this paper we have outlined a methodology for the automated generation
of (service) adapters capable of solving behavioural mismatches between BPEL
processes. Its main features are: (1) It automatically synthesises a full/partial
BPEL adapter (if possible) from two input BPEL processes, (2) it generates the
YAWL workflow of the adapter, which can be used to check properties (e.g., lock-
freedom, reachability, liveness, and so on) of the interaction with the adapted
services, as well as (3) it can be straightforward integrated with the ontology-
enriched service customisation [5] and service aggregation [4,6] approaches, as
all use service contracts with YAWL as intermediate language to represent the
service behaviour.

Web service adaptation is in its early stages and current approaches fea-
ture only partial solutions to the issues of adaptation. Iyer et al. [9] employ
XML scripts and XSL to (manually) achieve the signature-level interoperability
of SOAP services. Syu [12] describes an OWL-S based approach to deal with
only three cases of adaptation of input parameters: permutation, modification,
and combination. Hau et al. [8] provide a framework for semantic matchmaking
and service adaptation, which deals with signature mismatches, yet not with
behavioural ones. Ponnekanti and Fox [11] propose a framework for coping with
structural, value, encoding, and semantic incompatibilities among services. Yet,
their approach – as [8,9,12] – relies on black-box (viz., behaviour-less) views
of services. A methodology for generating service adapters to solve behavioural
mismatches was presented by Brogi et al. in [3], yet it assumes the availabil-
ity of an adapter specification to be manually generated. Benatallah et al. [1]
describe an approach for the generation of replaceability adapters based on mis-
match patterns. However, their approach cannot capture complex behavioural
mismatches (through pattern compositions), and the generation of the adapter
code relies on the designer (e.g., the provision of the template parameters).



It is worth noting that our adaptation methodology can be successfully em-
ployed to generate replaceability adapters, viz., adapters that wrap Web services
so that they become compliant with other services (e.g., wrapping new service
versions for backwards compatibility). Given two services, S and S∗, wrapping
S∗ so as to behave like S with respect to clients C can be achieved by comput-
ing SET (A) as the merge of SET (SC) and SET (S∗

C). Furthermore, behavioural
service customisation, viz., the generation of adapters that wrap services S∗ into
exposing to clients C a partial behaviour S, can be achieved again by computing
SET (A) as the merge of SET (SC) and SET (S∗

C).
Two main lines of future work are the development of adapters capable of

solving behavioural mismatches among several interacting BPEL processes, as
well as enhancing the adaptation methodology to cope with ontology mismatches
along the lines of [4,5].
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