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Abstract. We report work in progress about a critical analysis of the 43 workflow patterns
recently presented by the Business Process Modeling Center in [14]. We disambiguate the
natural language pattern descriptions given there, complete them by explicitly addressing
relevant features that were left open in [14], and replace the Petri net formalizations, pro-
vided there to further illustrate the patterns, by truly abstract yet rigorous models, avoiding
to introduce details that pertain only to the description framework and not to the problems
addressed by the patterns. We identify parameters which turn numerous of the analyzed
workflow patterns into instances of one main pattern, thus streamlining the pattern classifi-
cation proposed in [14].

1 Introduction

In [18], revised and extended in [14], 43 workflow pattern descriptions are formulated “to identify
comprehensive workflow functionality ... for an indepth comparison of a number of commercially
available workflow management systems” and “to systematically address workflow requirements,
from basic to complex”. The descriptions, which are used for an analysis of how and to which degree
the patterns are supported in a dozen of commercial workflow and business process systems, are
given in natural language and further illustrated by Coloured Petri Net schemes. However, the
informal descriptions are partly ambiguous or incomplete, in so far as some important questions
that seem to be semantically relevant for the investigated patterns are left open. Many of their
Petri net formalizations, presented to further specify the natural language descriptions, involve
specific solution details that appear to be dictated more by the needs of the Petri net framework
than by the problem addressed by the pattern.

In this paper we analyse the pattern descriptions presented in [18,14], trying to make the
underlying relevant questions and implicit parameters explicit and to turn them into a precise truly
abstract form, without introducing specific details that do not pertain to the investigated problem.
We use for this the ASM method, which allows one to tailor descriptions to exactly fit the level of
detailing required by the discussion of the problem at hand. In fact the accurate high-level models
we provide for the patterns are ASM ground models, in the sense defined in [2]. These ASM ground
models express the patterns directly, starting from scratch, avoiding any encoding, as required by
the authors of the YAWL language [17], which has been specifically defined to support an encoding-
free description of such patterns. We invite the reader to compare the ASM ground models with
other pattern formalizations in the literature, e.g. using UML activity diagrams [12,10] or YAWL or
Petri nets [16,11], the π-calculus [13], the process-calculus-based orchestration language Orc [9]. For
reasons of space we cannot perform a detailed comparative evaluation here. The ASM definitions
we provide are focussed on simple models that result from a direct analyis of the natural-language
pattern descriptions and can be objectively checked to faithfully reflect the intended meaning.
To easen such a ground model validation we esssentially follow the order of presentation adopted
in [14], althoug this results in some repetitions given that in op.cit. some patterns are discussed in
more than one place.

We identify some parameters, by which numerous patterns are turned into instances of one
generic pattern. This streamlines the classification proposed in [18,14], from where all the descrip-
tions quoted below are taken, turning the 43 patterns into a set of 13 basic patterns with simple
refinements. 7 of these 13 basic patterns turn out to be versions of standard programming con-
structs, namely sequentialization, iteration (cycles), termination, cancellation, choice (selection),
parallel split, interleaving.



We view the mathematically precise abstract definitions we propose here, although they are
intendedly not formalized within any particular workflow specification or logic language, as an
arguably safe basis for a further detailing of the patterns to executable versions, using the stepwise
refinement technique described in [3] that allows one to justify and document on-the-fly that the
code conforms to the specification.

This work extends the pattern description scheme outlined in [5] and adopted in [1]. The use
of ASMs allows one to express the dynamics of abstract state changes by a suitable combination
of operational and declarative language elements. This provides a high-level, both state-based
and process-oriented view of workflow patterns, where the behavioral interface is defined through
pattern actions performed by submachines that remain largely abstract, due to the intention to
leave the design space open for further refinements to concrete pattern instantiations. Most of
what we use below to model workflow patterns by ASMs is self-explanatory, given the semantically
well-founded pseudo-code character of ASMs, an extension of Finite State Machines (FSMs) by
a general notion of state. For a recent tutorial introduction into the ASM method for high-level
system design and analysis see [4], for a textbook presentation see the AsmBook [8]. Note that due
to the distributed nature of many of the patterns, we use distributed ASMs.

We make no attempt here to provide a detailed analysis of the basic concepts of activity,
thread, process, of their being active, enabled, complete etc., which are used in [14] without further
explanations. It seems to suffice for the present purpose to consider an activity or process as some
form of high-level executable program, which we represent here as ASMs. Threads are considered
as agents that execute activities. Thus an active activity, for example, is one whose executing agent
is active, etc.

2 Basic Control Flow Patterns

These patterns capture elementary aspects of process control.

2.1 Sequence Pattern

“An activity in a workflow is enabled after the completion of another activity in the same process”.
One among many ways to formalize this is to use control-state ASMs, which offer through final

and initial states a natural way to reflect the completion and the beginning of an activity. Control
state ASMs are generalized FSMs where all the instructions have the form Fsm(i , if cond then
rule, j ), standing for the following ASM rule (where rule is supposed to also be an ASM rule):

if ctl state = i and cond then
rule
ctl state := j

To display such rules we use the standard graphical notation for FSMs, as for example in Fig. 1.
If one wants to hide those initial and final control states, one can use the seq-operator defined
in [7] for composing an ASM A1 seq A2 out of component ASMs Ai (i = 1, 2).

Sequence(A1,A2) = A1 seq A2

2.2 Parallel Split

“A point in the workflow process where a single thread of control splits into multiple threads of
control which can be executed in parallel, thus allowing activities to be executed simultaneously
or in any order.”

We capture the parallel activities by a set parameter Activity . It may be declared as static
or as dynamic, thus providing for both static instantiations and for dynamic ones, whether as
known at design time or as known only at the moment of executing the parallel split. The above
description leaves also the exact nature of the underlying parallelism unspecified. It may come



as an interleaving execution or as a simultaneous synchronous or asynchronous execution. This is
captured by creating for each a ∈ Activity a new thread to execute a. We assume each application
of the function new to a set to provide a fresh element in this set (here the dynamic set of currently
runnable threads). The parameterization of the machine to execute a by t in TriggerExect(a)
expresses the possible independence of the execution mechanisms for different threads.

ParallelSplit(Activity ,Thread ,TriggerExec) =
forall a ∈ Activity let t = new(Thread) in TriggerExect(a)

Remark. The well-known Occam instruction to spawn finitely many parallel subprocesses of
a given process p matches this pattern exactly, see the OccamParSpawn-rule in [8, p.43], where
TriggerExect(a) describes the initialization of a by linking it to the triggering process p as its
parent process, copying from there the current environment, setting a to run and p to wait (for all
the spawned subprocesses to terminate).

In case one does not care about or does not want to have an explicit association of threads to
activities, one can instantiate the above general scheme as follows, leaving all the subactivities of
the pattern to be executed by one agent:

ParallelSplit(Activity ,TriggerExec) = forall a ∈ Activity TriggerExec(a)

2.3 Synchronization

“A point in the workflow process where multiple parallel subprocesses/activities converge into one
single thread of control, thus synchronizing multiple threads. It is an assumption of this pattern
that each incoming branch of a synchronizer is executed only once...”

Besides the parameters for the set Activity of multiple parallel subprocesses a and their exe-
cuting agents exec(a), there is a second parameter to express the condition for the synchronization
step to be enabled. It can be modeled by an abstract predicate SyncEnabled(a) with arguments
a ∈ Activity to guard the call of the (here not furthermore specified abstract) process into which
the elements of Activity Converge once they have all been executed. If one expects applica-
tions where Activity is a dynamic (read: run-time determined) set, it is reasonable to parameterize
Converge by Activity . This leads to the following ASM description of the pattern.

Synchronizer(Activity , exec,SyncEnabled ,Converge) =
if forall a ∈ Activity SyncEnabled(exec(a)) then Converge(Activity)

The assumption “that each incoming branch of a synchronizer is executed only once” relates
processes a ∈ Activity to their unique executing thread exec(a). It is natural to assume that
during the execution of a, SyncEnabled(exec(a)) is false. One would probably also assume that
Converge, besides choosing or creating one agent (“one single thread of control”) to continue
the workflow process, resets SyncEnabled(a) to false for each a and exec(a) to undefined , thus
resetting Synchronizer for the next synchronization step.

2.4 Exclusive Choice

“A point in the workflow process where, based on a decision or workflow control data, one of several
branches is chosen.”

In this pattern besides the parameter for the set Activity of subprocesses among which to choose
we have as second parameter a DecisionCriterion for the choice, which may take workflow control
data as arguments. The underlying assumption seems to be that each time an exclusive choice point
is reached (read: ExclChoice is executed), the DecisionCriterion yields exactly one a ∈ Activity
that fulfills it. This is expressed by the following ASM, where we use Hilbert’s ι-operator notation
ιx (P(x )) to denote the unique element satisfying a property P .



ExclChoice(Activity ,DecisionCriterion) =
let act = ιa(a ∈ Activity and DecisionCriterion(a)) in

act

It is a question of how the DecisionCriterion is declared—as static or dynamic predicate, in the
second case as monitored or controlled or shared—whether the decision for the choice is static
(design time definable) or depends on runtime data. In case the uniqueness assumption is not
guaranteed, it suffices to replace the ι-operator by Hilbert’s choice operator ε. One may ask why
instead of simply using this more liberal non-deterministic choose operator a decision criterion has
been introduced for this pattern.

2.5 Simple Merge and Thread Merge

The Simple Merge pattern is described in [18] as follows: “A point in the workflow process where
two or more alternative branches come together without synchronization. It is an assumption
of this pattern that none of the alternative branches is ever executed in parallel...”. In [14] the
description is weakend as follows, withdrawing the uniqueness condition: “The convergence of two
or more branches into a single subsequent branch. Each enablement of an incoming branch results
in the thread of control being passed to the subsequent branch.” This formulation does not exclude
multiple merge-enabled branches to proceed simultaneously.

In fact in [14] two variations are discussed, called Thread Merge with Design/Run-Time Knowl-
edge, where a merge number MergeNo appears explicitly: “At a given point in a process, a ... number
of execution threads in a single branch of the same process instance should be merged together
into a single thread of execution”, where this number can be “nominated” or “not known until
run-time”.

As in the Synchronizer pattern we see an implicit termination parameter MergeEnabled for
threads executing elements of Activity that are to be merged. We foresee the frequent case that
Proceed is parameterized by the merged activities.1

Merge(Activity , exec,MergeEnabled ,Proceed,MergeNo) =
let A = Activity ∩ {a | MergeEnabled(exec(a))} if | A |= MergeNo then Proceed(A)

Instantiating Merge by MergeNo = 1 yields SimpleMerge under the mutual-exclusion hy-
pothesis.

RelaxSimpleMerge is the variant of Merge with cardinality check | A |≥ 1 and Proceed(A)
refined to forall a ∈ A Proceed(a).2 At a later point in [18] this pattern is called Multi-Merge
and described as follows: “A point in the workflow process where two or more branches reconverge
without synchronization. If more than one branch gets activated, possibly concurrently, the activity
following the merge is started for every activation of every incoming branch.”3

To capture the two Thread Merge variants it suffices to instantiate Activity to the set of
execution threads in the considered single branch of a process and to declare MergeNo as static
respectively dynamic. It is unclear whether there is any difference between the Synchronizer
and the Merge pattern besides considering in the latter only the “execution threads in a single
branch of the same process instance”.

1 | A | denotes the cardinality of set A.
2 It comes natural to assume here that when Proceed(a) is called, MergeEnabled(exec(a)) changes to

false and exec(a) to undefined . This guarantees that each completed activity triggers “the subsequent
branch” once per activity completion. One way to realize this assumption is to require such an update
to be part of Proceed(a); another possibility would be to add it as update to go in parallel with
Proceed(a).

3 It is possible that the relaxed form of Simple Merge was intended not to allow multiple merge-enabled
branches to proceed simultaneously, in which case it either implies a further selection of one a ∈ A to
Proceed(a) as proxy for the others or a sequentialization of Proceed(a) for all a ∈ A.



The structural similary between ExclChoice and SimpleMerge (under the mutual exclusion
hypothesis) reflects that in both patterns, a unique act ivity determines how to proceed.4 The two
patterns differ mainly by the underlying assumptions on the criterion through which this unique
act ivity is determined: in the first case by a (whether static or dynamic) DecisionCriterion that
is applied to all potential elements of Activity when the pattern is executed, in the second case by
checking which activity is (executed by a thread that is) currently merge-enabled.

3 Advanced Branching and Synchronization Patterns

3.1 Multi-Choice

“A point in the workflow process where, based on a decision or workflow control data, a number
of branches are chosen.”

This pattern generalizes ExclChoice by permitting to select not exactly one alternative activ-
ity, but to “choose multiple alternatives from a given set of alternatives” that are executed together.
Formally one therefore chooses a subset A of activities satisfying the underlying ChoiceCriterion,5

all of whose members are called together for execution.

MultiChoice(Activity ,ChoiceCriterion) =
choose A ⊆ Activity ∩ ChoiceCriterion

forall act ∈ A
act

Remark. The difference between ExclChoice and MultiChoice can be viewed as the result
of two instantiations of a choice function, say select , which applied to Activity ∩ ChoiceCriterion
yields a subset of activities chosen for execution. For ExclChoice this set is further specified by
the constraint to be a singleton set.

Choice(Activity ,ChoiceCriterion) =
forall act ∈ select(Activity ∩ ChoiceCriterion)

act

3.2 Synchronizing Merge

“A point in the workflow process where multiple paths converge into one single thread. If more
than one path is taken, synchronization of the active threads needs to take place. If only one path
is taken, the alternative branches should reconverge without synchronization. It is an assumption
of this pattern that a branch that has already been activated, cannot be activated again while the
merge is still waiting for other branches to complete.”

We understand this pattern, in accordance with the revised description in [14, pg.17] that “the
thread of control is passed to the subsequent branch when each active incoming branch has been
enabled”, as a generalization of the Synchronizer pattern, restricting the to be synchronized
processes to those elements of Activity that are Active. This predicate denotes the crucial pattern
parameter “to decide when to synchronize and when to merge” and to determine the branches “the
merge is still waiting for ... to complete”. The additional requirement that once the moment to
merge did arrive, the other branches should reconverge without synchronization, can be expressed
by an additional (here not furthermore specified abstract) submachine Reconverge. In particu-
lar, as already mentioned for Synchronizer, both machines Converge and Reconverge are
reasonably viewed as parameterized by the Active resp. non active processes.
4 This difference can be viewed as the result of different instantiations of one abstract machine

Proceed(act), where Proceed(a) = a holds in case of ExclChoice.
5 The revised version of the multi-choice pattern in [14, pg.15] describes the selection as “based on the

outcome of distinct logical expressions associated with each of the branches”. This can be reflected by
the parameterization of ChoiceCriterion with the set Activity , e.g. to represent a disjunction over the
“distinct logical expressions associated with each of the (activity) branches”.



SynchronizingMerge
(Activity , exec,SyncEnabled ,Active,Converge,Reconverge) =

if SynchrEvent then
Converge(Active)
Reconverge(Activity \Active)

where SynchrEvent = forall a ∈ Activity ∩Active SyncEnabled(exec(a))

Remark. The generalization of Synchronizer by SynchronizingMerge can be turned the
other way round so that Synchronizer appears as an instance of SynchronizingMerge, namely
by stipulating the two constraints Active = Activity and Reconverge = skip.

The Acyclic Synchronizing Merge pattern presented in [14] is a variation described by the
additional requirement that “Determination of how many branches require synchronization is made
on the basis of information locally available to the merge construct. This may be communicated
directly to the merge by the preceding diverging construct or alternatively it can be determined on
the basis of local data such as the threads of control arriving at the merge”. This variation is easily
captured by refining the SynchrEvent predicate to check whether the necessary synchNumber of
to be synchronized enabled and active branches has been reached:

AcyclSynchrMerge = SynchronizingMerge where
SynchrEvent =| {a ∈ Activity | Active(a) and SyncEnabled(exec(a))} |≥ synchNumber

Another variation called General Synchronizing Merge is described in [14] by relaxing the
firing condition from “when each active incoming branch has been enabled” through the al-
ternative “or it is not possible that the branch will be enabled at any future time”. Such a
restriction is easily formulated, relaxing SyncEnabled(exec(a)) in SynchrEvent by the disjunct
“or NeverMoreEnabled(exec(a))”, but obviously to compute such a predicate “requires a (com-
putationally expensive) evaluation of possible future states for the current process instance” [14,
pg.71].

3.3 Discriminator Variants

“The discriminator is a point in a workflow process that waits for one of the incoming branches to
complete before activating the subsequent activity. From that moment on it waits for all remaining
branches to complete and “ignores” them. Once all incoming branches have been triggered, it resets
itself so that it can be triggered again...”

This description of what is called Structured Discriminator is about an alternation between two
modes, say waitingToProceed, namely until a first incoming branch completes, and reset, namely
after all remaining branches have completed. It is a clear case of a control-state ASM, see Fig. 1.
Apparently Completed ⊆ Activity is assumed.

The requirements speak about waiting “for one of the incoming branches to complete” before
Proceeding, leaving the case open where more activities may complete simultaneously. We for-
malize this latter more general case. In doing this we foresee that the way to Proceed may be
parameterized by the set of incoming branches whose activities have been the first to be simulta-
neously completed.

Discriminator(Activity ,Completed ,Proceed,Reset) =
if mode = waitingToProceed and | Activity ∩ Completed |≥ 1 then

Proceed(Activity ∩ Completed)
mode := reset

if mode = reset then Reset

The variant Structured N-out-of-M Join discussed in [14] is the very same Discriminator
machine, replacing the cardinality threshold 1 by N and letting M =| Activity |. The pattern
discussed in [14] under the name Generalized AND-Join is the same as Structured N-out-of-M
Join with additionally N = M .



Fig. 1. Discriminator control-state ASM

Reset appears in the description of the structured discriminator as a durative action of waiting
for other activities to complete. To check whether “all incoming branches have been triggered”,
one has to distinguish the activities that have not yet been detected as Completed . One option
is to include such a NotYetDetected attribute into the predicate Completed ; another option is to
treat NotYetDetected as a separate predicate, assumed to be initially the entire set Activity and
updated during each pattern round until it becomes empty. We choose the second option. In the
description below init , exit denote the initial respectively final control state; as Fig. 2 shows, here
we identify init with the reset mode, in which it is called by Discriminator, and exit with the
initial mode waitingToProceed .

StructuredDiscriminatorReset =
if mode = init then

MarkAsUnDetected(Activity)
mode := waitingForOtherActToComplete

if mode = waitingForOtherActToComplete then
if NotYetDetected 6= ∅ then let A = Activity ∩ Completed ∩NotYetDetected

if A 6= ∅ then MarkAsDetected(A)
else mode := exit

where
MarkAsDetected(A) = (forall a ∈ A NotYetDetected(a) := false)
MarkAsUnDetected(A) = (forall a ∈ A NotYetDetected(a) := true)

The variations called Cancelling Discriminator and Cancelling N-out-of-M Join are described
in [14] by the additional requirement that “Triggering the discriminator (join) also cancels the
execution of all of the other incoming branches and resets the construct”. This comes up to define
CancellingDiscriminatorReset as forall a ∈ Activity Cancel(a) (assuming for the sake of
simplicity but without loss of generality that also the completed activities are ‘cancelled’, since
their execution has terminated already).

Another variation, coming under two names Blocking Discriminator and Blocking N-out-of-M
Join, is described in [14] by the additional requirement that “Subsequent enablements of incoming
branches are blocked until the discriminator (join) has reset.” It comes up to declare Completed
as a set of queues Completed(a) of completion events for a, so that in each discriminator round
only the first element fstout to leave a queue is considered and blocks the others. Correspondingly
we refine a) the abstract completion predicate to not Empty(Completed(a)) and b) the updates of
NotYetDetected(a) in MarkAs(Un)Detected by replacing a by fstout(Completed(a)) under the
additional guard that fstout(Completed(a)) is defined. Upon exiting, i.e. in the last else branch
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Fig. 2. Structured Discriminator Reset

of StructuredDiscriminatorReset, one has to add the deletion of the completion events that
have been considered in this round:

forall a ∈ Activity Delete(fstout(Completed(a)),Completed(a))

In [14] also variations of the preceding discriminator pattern versions are presented that work
in concurrent environments. This is captured in our model by the fact that we have parameterized
it among others by Activity andCompleted , so that it can execute in an asynchronous manner
simultaneously for different instances of these parameters.

3.4 Streamlining the Pattern Classification

As a result of the preceding analysis we would streamline the classification of basic control flow
and advanced branching and synchronization patterns as follows:

Sequence ParallelSplit Merge SynchronizingMerge Choice Discriminator

SimpleMerge, RelaxSimpleMerge, MultiMerge refine Merge. The two variants ExclChoice
and MultiChoice refine Choice. Synchronizer refines SynchronizingMerge by the two
constraints Active = Activity and Reconverge = skip. The formulation using a synchronization
event invites to incorporate into the pattern classification also types of synchronization with more
sophisticated synchronization criteria than mere completion of activities. This classification is not
the only one possible. One referee suggests for example fo define Discriminator in terms of the
other schemes. Also Merge and Synchronizing Merge could be unified. It is unclear what
classification to choose best.



4 Structural Patterns

4.1 Arbitrary Cycles, Structured Loop, Recursion

For arbitrary cycles the following rather loose description is given: “A point in a workflow process
where one or more activities can be done repeatedly.”

For the elements of Activity to be repeatedly executed, it seems that a StopCriterion is needed
to express the point where the execution of one instance terminates and the next one starts.
The additional stipulation in the revised description in [14] that the cycles may “have more than
one entry or exit point” is a matter of further specifying this StopCriterion and starting points
for activities, e.g. exploiting initial and final control states of control-state ASMs. The Iterate
construct defined for ASMs in [7] yields a direct formalization of this pattern that hides the explicit
mentioning of entry and exit points.

ArbitraryCycles(Activity ,StopCriterion) =
forall a ∈ Activity Iterate(a) until StopCriterion(a)

In [14] two further ‘special constructs for structured loops’ are introduced, called Structured
Loop and Recursion. The formalization of the former comes up to the ASM constructs while
Cond do M respectively do M until Cond defined in [7], for an ASM formalization of the latter
we refer to [6] and skip further discussion of these well known programming constructs.

4.2 Termination

In [18] the following Implicit Termination pattern is described. “A given subprocess should be
terminated when there is nothing else to be done. In other words, there are no active activities in
the workflow and no other activity can be made active (and at the same time the workflow is not
in deadlock).”

The point of this patterns seems to be to make it explicit that a subprocess has to be Terminated
depending on a typically dynamic StopCriterion. This varies from case to case. It may depend upon
the subprocess structure. It may also include global features like that “there are no active activities
in the workflow and no other activity can be made active”; another example is the projection of
the run up-to-now into the future, namely by stipulating that the process should terminate “when
there are no remaining work items that are able to be done either now or at any time in the
future” [14, pg.25]. Such an abstract scheme is easily formulated as an ASM. It is harder to define
reasonable instances of such a general scheme, which have to refine the StopCriterion in terms of
(im)possible future extensions of given runs.

Termination(P ,StopCriterion,Terminate) =
if StopCriterion(P ,Activity) then Terminate(P)

In [14] the following variation called Explicit Termination is discussed. “ A given process (or
sub-process) instance should terminate when it reaches a nominated state. Typically this is denoted
by a specific end node. When this end node is reached, any remaining work in the process instances
is cancelled and the overall process instance is recorded as having completed successfully.” It is
nothing else than the instantiation of Termination by refining a) the StopCriterion to currstate =
exit , expressing that the current state has reached the end state, and b) Terminate(P) to include
Cancel(P) and marking the overall process parent(P) as CompletedSuccessfully.

5 Pattern Variations

5.1 Variations of Multiple Instances Without Synchronization

“Within the context of a single case (i.e., workflow instance) multiple instances of an activity can
be created, i.e. there is a facility to spawn off new threads of control. Each of these threads of
control is independent of other threads. Moreover, there is no need to synchronize these threads.”



The two crucial parameters of this pattern are an act ivity and the Mult itude with which new
agents a(act) for the execution of instances of act are to be run. We use again the new function to
provide the sufficiently fresh elements, here for the dynamic set of Agents empowered to Run(act).

MultInstWithoutSync(act ,Mult ,Agent) =
forall i ∈ Mult let ai = new(Agent) in Run(ai , act)

Three variations of this pattern appear in [18]. They have the same structure, but different
interpretations on the static or dynamic nature of the Mult itude parameter.

For the Multiple Instances With a Priori Design Time Knowledge pattern the set Mult is
declared to be known a priori at design time. For this pattern it is required in addition that “once
all instances are completed some other activity needs to be started.” We capture this requirement by
a successively to be executed rule to Proceed when all newly created agents have Completed their
run. Since in [14] also a variation is considered under the name Static N-out-of-M Join for Multiple
Instances, where to Proceed only N out of Mult = M activity instances need to have completed,
we make here the cardinality parameter explicit and specialize it then to N =| Agent(act) |.
The variation Static Cancelling N-out-of-M Join for Multiple Instances in [14] can be obtained
by adding a cancelling submachine, adopting the scheme explained above for the discriminator
pattern.

MultInstNMJoin(act ,Mult ,Agent ,Completed ,Proceed,N ) =
MultInstWithoutSync(act ,Mult ,Agent) seq

if | Agent(act) ∩ Completed |≥ N then Proceed

MultInstAPrioriDesignKnowl(act ,Mult ,Agent ,Completed ,Proceed) =
MultInstNMJoin(act ,Mult ,Agent ,Completed ,Proceed, | Agent(act) |)

The pattern Multiple Instances With a Priori Run Time Knowledge is the same except that
the Mult itude “of instances of a given activity for a given case varies and may depend on charac-
teristics of the case or availability of resources, but is known at some stage during runtime, before
the instances of that activity have to be created.” This can be expressed by declaring Mult for
MultInstAPrioriRunKnowl as a dynamic set.

The Multiple Instances Without a Priori Run Time Knowledge pattern is the same as Multiple
Instances With a Priori Run Time Knowledge except that for Mult itude it is declared that “the
number of instances of a given activity for a given case is not known during desing time, nor is
it known at any stage during runtime, before the instances of that activity have to be created”,
so that “at any time, whilst instances are running, it is possible for additional instances to be
initiated” [14, pg.31]. This means that as part of the execution of a Run(a, act), it is allowed
that the set Agent(act) may grow by new agents a ′ to Run(a ′, act), all of which however will be
synchronized when Completed . Analogously the pattern Dynamic N-out-of-M Join for Multiple
Instances discussed in [14] is a variation of Static N-out-of-M Join for Multiple Instances.

The Complete Multiple Instance Activity pattern in [14] is yet another variation: “... It is neces-
sary to synchronize the instances at completion before any subsequent activities can be triggered.
During the course of execution, it is possible that the activity needs to be forcibly completed such
that any remaining instances are withdrawn and the thread of control is passed to subsequent
activities.”

To reflect this additional requirement it suffices to add the following machine to the second
submachine of MultInstAPrioriDesignKnowl:

if Event(ForcedCompletion) then
forall a ∈ (Agent(act) \ Completed) do Cancel(a)
Proceed



5.2 State-Based Patterns

The patterns discussed here concern “business scenarios where an explicit notion of state is re-
quired”. We know of no other computational framework whose notion of state comes up to what
ASMs provide in terms of generality, simplicity and abstract (representation independent) charac-
ter of the underlying explicit notion of state. This is also technically reflected in the fact that the
four state-based patterns considered in [18] can be expressed by rather simple ASMs.

5.3 Deferred Choice

“A point in the workflow process where one of several branches is chosen. In contrast to the XOR-
split, the choice is not made explicitly (e.g. based on data or a decision) but several alternatives
are offered to the environment. However, in contrast to the AND-split, only one of the alternatives
is executed ... It is important to note that the choice is delayed until the processing in one of the
alternative branches is actually started, i.e. the moment of choice is as late as possible.”

All this is simply expressed by the ExclChoice ASM defined above, where the DecisionCriterion
is declared to be a monitored predicate.

5.4 Interleaved Parallel Routing

“A set of activities is executed in an arbitrary order: Each activity in the set is executed, the
order is decided at run-time, and no two activities are executed at the same moment (i.e. no two
activities are active for the same workflow at the same time).”

We illustrate some among the numerous ways to make this description rigorous, depending on
the degree of detail with which one wants to describe the interleaving scheme. A rather liberal way
is to execute the underlying activities one after another until Activity has become empty, in an
arbitrary order, left completely unspecified:

InterleavedPar(Activity) = choose act ∈ Activity
act
Delete(act ,Activity)

A more detailed scheme forsees the possibility to impose a certain scheduling algorithm for
updating the currently executed activity curract . The function schedule used for the selection
of the next not-yet-completed activity comes with a name and thus may be specified explicitly
elsewhere. For example, to capture the generalization of this pattern in [14, pg.34], where the
activities are partially ordered and the interleaving is required to respect this order, schedule can
simply be specified as choosing a minimal element among the not-yet-completed activities.

ScheduledInterleaving(Activity ,Completed , schedule) =
if Completed(curract) then curract := schedule({a ∈ Activity | not Completed(a)})

A more sophisticated interleaving scheme could permit that the execution of activities can
be suspended and resumed later. A characteristic example appears in [15, Fig.1.3] to describe
the definition of the multiple-thread Java interpreter using a single-thread Java interpreter. It
can be paraphrased for the workflow context as follows, assuming an appropriate specification of
suspending and resuming activities and using a composed abstract predicate ExecutableRunnable
that filters the currently executable and runnable activities from Activity .

InterleaveWithSuspension
(Activity ,ExecutableRunnable,Execute,Suspend,Resume) =

choose a ∈ ExecutableRunnable(Activity) if a = curract then Execute(curract)
else

Suspend(curract)
Resume(a)



The generalization from atomic activities to critical sections, proposed in [14] as separate pat-
tern Critical Section, is a straightforward refinement of the elements of Activity to denote “whole
sets of activities”. Also the variation, called Interleaved Routing, where “once all of the activities
have completed, the next activity in the process can be initiated” is simply a sequential composition
of Interleaved Parallel Routing with NxtActivity.

There is a large variety of other realistic interpretations of Interleaved Parallel Routing, yielding
pairwise different semantical effects. The informal requirement description in [18,14] does not suffice
to discriminate between such differences.

5.5 Milestone

“The enabling of an activity depends on the case being in a specified state, i.e. the activity is only
enabled if a certain milestone has been reached which did not expire yet.”

This rather loose specification is easily translated as follows:

Milestone(milestone,Reached ,Expired , act) =
if Reached(milestone) and not Expired(milestone) then act

6 Cancellation Patterns

6.1 Cancel (Multiple Instance) Activity, Cancel Case, Cancel Region

The Cancel Activity pattern is described as follows: “An enabled activity is disabled, i.e. a thread
waiting for the execution of an activity is removed.”

Using an association agent(act) of threads to activities allows one to delete the executing agent,
but not the activity, from the set Agent of currently active agents:

CancelAct(act ,Agent , exec) =
let a = exec(act) in if Enabled(a) then Delete(a,Agent)

The Cancel Case pattern is described as follows: “A case, i.e. workflow instance, is removed
completely (i.e., even if parts of the process are instantiated multiple times, all descendants are
removed).”

If we interprete ‘removing a workflow instance’ as deleting its executing agent,6 this pattern
appears to be an application of CancelAct to all the Descendants of an act ivity (which we
assume to be executed by agents), where for simplicity of exposition we assume Descendant to
include act .

CancelCase(act ,Agent , exec,Descendant) =
forall d ∈ Descendant(act) CancelAct(d ,Agent , exec)

For the Cancel Region pattern we find the following description in [14]: “The ability to disable
a set of activities in a process instance. If any of the activities are already executing, then they are
withdrawn. The activities need not be a connected subset of the overall process model.”

CancelRegion is a straightforward variation of CancelCase where Descendant(p) is defined
as the set of activities one wants to cancel in the process instance p. Whether this set includes p
itself or not is a matter of how the set is declared. The additional requirement that already executing
activities are to be withdrawn is easily satisfied by refining the predicate Enabled(a) to include
executing activities a. The question discussed in [14] whether the deletion may involve a bypass or
not is an implementation relevant issue, suggested by the Petri net representation of the pattern.

An analogous variation yields an ASM for the Cancel Multiple Instance Activity pattern, for
which we find the following description in [14]: “Within a given process instance, multiple instances
of an activity can be created. The required number of instances is known at design time. These
6 To delete the activity and not only its executing agent would imply a slight variation in the ASM below.



instances are independent of each other and run concurrently. At any time, the multiple instance
activity can be cancelled and any instances which have not completed are withdrawn. This does
not affect activity instances that have already completed.” Here it suffices to define Descendant(p)
in CancelCase as the set of multiple instances of an activity one wants to cancel and to include
‘activity instances which have not yet completed’ into the Enabled predicate of CancelAct.

7 Additional Control-Flow Patterns

In this section we analyse the remaining patterns defined in the revised version [14] of [18].

7.1 Transient Trigger, Persistent Trigger

Transient Trigger: “The ability for an activity to be triggered by a signal from another part of the
process or from the external environment. These triggers are transient in nature and are lost if not
acted on immediately by the receiving activity.”

Two variants are considered. In the so-called ‘safe’ variant, only one instance of an activity ‘can
wait on a trigger at any given time’. In the unsafe variant multiple instances of an activity ‘can
remain waiting for a trigger to be received’.7

Persistent Trigger: “ ... These triggers are persistent in form and are retained by the workflow
until they can be acted on by the receiving activity.”

Two variants are considered. In the first one ‘a trigger is buffered until control-flow passes to the
activity to which the trigger is directed’, in the second one ‘the trigger can initiate an activity (or
the beginning of a thread of execution) that is not contingent on the completion of any preceding
activities’.

We see these patterns and the proposed variants as particular instantiations of one Trigger
pattern, dealing with monitored events to trigger a process and instantiated depending on whether
at a given moment multiple processes wait for a trigger and on the time that may elapse between
the trigger event and the reaction to it. We add to this the possibility that in a distributed
environment, at a given moment multiple trigger events may yield a simultaneous reaction of
multiple ready processes. We leave the submachines for Buffering and UnBuffering abstract
and only require that as result of an execution of Buffer(a) the predicate Buffered(a) becomes
true. For notational reasons we consider monitored events as consumed by the execution of a rule.8

Trigger =
TriggerEvent
TriggerReaction

where
TriggerEvent = if Event(Trigger(a)) then Buffer(a)
TriggerReaction =

if not Empty(Buffered ∩ Ready) then
choose A ⊆ Buffered ∩ Ready forall a ∈ A do

a
UnBuffer(a)

The two variants considered for the Persistent Trigger differ from each other only by the definition
of Ready(a), meaning in the first case WaitingFor(Trigger(a)) and in the second case curract = a
(‘process has reached the point to execute a’), where curract is the activity counter pointing to
the currently to be executed activity.

For the Transient Trigger it suffices to stipulate that there is no buffering, so that Buffered
coincides with the happening of a triggering event and upon the arrival of an event, TriggerEvent
and TriggerReaction are executed simultaneously if the event concerns a Ready(a), in which
case (and only in this case) it triggers this activity.
7 Note that this safety notion is motivated by the Petri net framework.
8 This convention allows us to suppress the explicit deletion of an event from the set of active events.



TransientTrigger = Trigger where
Buffer = UnBuffer = skip
Buffered(a) = Event(Trigger(a))

The difference between the safe and unsafe version is in the assumption on how many activity
(instances) may be ready for a trigger event at a given moment in time, at most one (the safe case)
or many, in which case a singleton set A is required to be chosen in TriggerReaction.

8 Conclusion and Outlook

The rational for the choice of the 20 individually named patterns collected in [18], for their revision
and extension by 23 new ones in [14] and the reasons for the particular classification that is proposed
in those two papers remain unclear. We are not yet sure how a reasonable classification will look
like and hope that the present ASM formulation will help to provide a simple, truly abstract basis
for an accurate analysis and evaluation of relevant control-flow patterns, preventing the pattern
variety to grow without rational guideline.
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