
Modeling the Dynamics of UML State Machines

Egon Börger1, Alessandra Cavarra2, and Elvinia Riccobene2

1 Dipartimento di Informatica - Università di Pisa - C.so Italia, 40 - 50125 Pisa
boerger@di.unipi.it (currently visiting Microsoft Research, Redmond)
2 Dipartimento di Matematica e Informatica - Università di Catania -

V.le A. Doria, 6 - 95125 Catania
{cavarra, riccobene}@dmi.unict.it

Abstract. We define the dynamic semantics of UML State Machines
which integrate statecharts with the UML object model. The use of
ASMs allows us (a) to rigorously model the event driven run to com-
pletion scheme, including the sequential execution of entry/exit actions
(along the structure of state nesting) and the concurrent execution of
internal activities; (b) to formalize the object interaction, by combining
control and data flow features in a seamless way; and (c) to provide a
precise but nevertheless provably most general computational meaning
to the UML terms of atomic and durative actions/activities. We borrow
some features from the rigorous description of UML Activity Diagrams
by ASMs in [7].

1 Introduction

The Unified Modeling Language [2, 5, 20] is a standardized notation based on a
set of diagrams to describe the structure and the behavior of a software system.
In [5] it is stated that “UML is more than just a graphical language. Rather,
behind every part of its graphical notation there is a specification that provides a
textual statement of the syntax and semantics of that building block” although
the official document [4] for the UML semantics only gives an unambiguous
textual definition of the syntax for UML notations and leaves the behavioral
content of various UML constructs largely open. The necessity to develop the
UML as a precise (i.e. well defined) modeling language is widely felt [10, 9, 19]
and the pUML (precise UML) group has been created to achieve this goal [18].

In this paper we analyze one of the principal diagram types which are used
in UML for the description of dynamical system behavior, namely statechart or
state diagrams, and provide a rigorous definition of their dynamics. Many papers
on the semantics of statecharts [16, 21, 11, 17] exist in the literature, in particular
in relation to their implementation in STATEMATE [15] and RHAPSODY [14].
Nevertheless, the debate is still ongoing on what exactly should be considered as
the authoritative definition of UML State Machines which integrate statecharts
with the UML object model. One major difficulty here concerns the mechanisms
for object interaction [14, 19].

ASMs [1, 12] provide a technique to solve such specification problems and to
clarify the relevant issues. In this paper, we propose an ASM model that (a)



rigorously defines the UML event handling scheme in a way which makes all
its “semantic variation points” explicit, including the event deferring and the
event completion mechanism; (b) encapsulates the run to completion step in
two simple rules (Transition Selection and Generate Completion Events)
where the peculiarities relative to entry/exit or transition actions and sequen-
tial, concurrent or history states are dealt with in a modular way; (c) integrates
smoothly the state machine control structure with the data flow; (d) clarifies
various difficulties concerning the scheduling scheme for internal ongoing (really
concurrent) activities; (e) describes all the UML state machine features that
break the thread-of-control; (f) provides a precise computational content to the
UML terms of atomic and durative actions/activities, without loosing the in-
tended generality of these concepts (see footnote 10), and allows one to clarify
some dark but semantically relevant points in the UML documents on state
machines.

We do not take any position on which UML concepts or understandings of
them are reasonable or desirable. Through our definitions we however build a
framework for rigorous description and analysis of logically consistent interpre-
tations of the intuitions which underly UML concepts. In fact, exploiting the
abstract nature of ASMs it is easy to adapt our definitions to changing require-
ments. We hope that this will contribute to their rational reconstruction, for the
standardization, and to the comparison of different implementations. Our model
can also serve as reference model for implementing tools for code generation,
simulation and verification of UML models. This work can be viewed as a con-
tinuation of [7] where a rigorous semantics of UML activity diagrams has been
provided.

The paper is organized as follows. Section 2 introduces the basic concepts
underlying UML statechart diagrams and ASMs. The ASM model for the be-
havioral meaning of these diagrams is defined in section 3. In section 4, the
semantical equivalence between some state machine building blocks is discussed.
In section 5 we compare our model with related work and show that it satisfies
the UML meta-model requirements for state machines.

2 Basic concepts

In this section we sketch the basic concepts underlying UML state machines and
ASMs and review the notation.

2.1 UML statechart diagrams

Statechart diagrams are one of the five diagrams in the UML for modeling the
dynamic aspects of systems. Statecharts were invented by David Harel [15, 16],
the semantics and the notation of UML statecharts are substantially those of
Harel’s statecharts with adaptations to the object-oriented context [3].

Statechart diagrams focus on the event-ordered behavior of an object, a fea-
ture which is specially useful in modeling reactive systems. A statechart diagram



shows the event triggered flow of control due to transitions which lead from state
to state, i.e. it describes the possible sequences of states and actions through
which a model element can go during its lifetime as a result of reacting to dis-
crete events. A state reflects a situation in the life of an object during which this
object satisfies some condition, performs some action, or waits for some event.
According to the UML meta-model [4], states can belong to one of the following
categories: simple states, composite states (sequential, concurrent, submachine),
final, and pseudostates (initial, history, stub, junction, synch).

Transitions are viewed in UML as relationships between two states indicating
that an object in the first state will enter the second state and perform specific
actions when a specified event occurs provided that certain conditions are satis-
fied [3]. UML statecharts include internal, external and completion transitions.

The semantics of event processing in UML state machines is based on the
run to completion (rtc) assumption: events are processed one at a time and when
the machine is in a stable configuration, i.e. a new event is processed only when
all the consequences of the previous event have been exhausted. Therefore, an
event is never processed when the state machine is in some intermediate, unstable
situation.

Events may be specified by a state as being possibly deferred. They are
actually deferred if, when occurring, they do not trigger any transition. This
will last until a state is reached where they are no more deferred or where they
trigger a transition.

2.2 Abstract State Machines

ASMs are transition systems, their states are multi-sorted first-order structures,
i.e. sets with relations and functions, where for technical convenience relations
are considered as characteristic boolean-valued functions. The transition relation
is specified by rules describing the modification of the functions from one state
to the next, namely in the form of guarded updates (“rules”)

if Condition then Updates
where Updates is a set of function updates f(t1, . . . , tn) := t, which are simul-
taneously executed when Condition is true.

We use multi-agent ASMs [12, 1] to model the concurrent substates and the
internal activities which may appear in a UML statechart diagram. A multi-
agent ASM is given by a set of (sequential) agents, each executing a program
consisting of ASM rules. Their distributed runs are defined in [12].

Since ASMs offer the most general notion of state, namely structures of arbi-
trary data and operations which can be tailored to any desired level of abstrac-
tion, this allows us on the one side to reflect in a simple and coherent way the
integration of control and data structures, resulting from mapping statecharts to
the UML object model. In fact, machine transitions are described by ASM rules
where the actions become updates of data (function values for given arguments).
On the other side also the interaction between objects is naturally reflected by
the notion of state of multi-agent (distributed) ASMs.



For the constructs of sequentialization, iteration and submachine of sequen-
tial ASMs we use the definitions which have been given in [8]. They provide the
concept of “stable” state needed to guarantee that the event triggered sequen-
tial exit from and entry into nested diagrams is not interrupted by a too early
occurrence of a next event.

3 ASM model for UML statechart diagrams

In this section we model the event governed run to completion step in statechart
diagrams. We first introduce the signature of UML statecharts and then define
the execution rules.

Statechart diagrams are made up of (control) states1 and transitions, belong-
ing to the abstract sets STATE and TRANSITION.

3.1 Control State

The set STATE is partitioned into simple, composite (with substructure), and
pseudo states. Composite states are partitioned into sequential and concurrent
ones. Pseudostates are partitioned into initial and history states.
Simple states (1) are of the form state(entry,exit,do(A),defer)2, where the pa-
rameters entry/exit denote actions that have to be performed as soon as the
state is entered/exited, do(A) denotes the internal ongoing activity A that must
be executed as long as the state is active, and defer is a set of events that are
candidate to be retained in that state.
Sequential composite states (2) are of the form state(entry,exit,do(A),defer,i-
nit,final,history), where entry/exit, do(A) and defer have the same meaning as
for simple states, init denotes the initial state of the submachine state associated
to this composite state, final denotes its final state, and history its associated
history state (see below for details on initial, final and history states). Sequential
composite states contain one or more substates, exactly one of which is required
to be active when the composite state is active.
Concurrent composite states (3) are of the form state(entry,exit,do(A),defer,
concurrentComp), where entry/exit, do(A) and defer are as above, and concur-
rentComp yields the set of the concurrent (sequential) substates3 composing the
state. When a concurrent state is active, all of its subcomponents are active.

According to [4], an event that is deferred in a composite state is automat-
ically deferred in all its directly or transitively nested substates. For reasons of
1 This notion of control state, deriving from the finite state machine notion of “inter-
nal” state, is only a tiny fraction of the overall system state which is reflected by the
ASM notion of state as structure, i.e. domains (of to be instantiated objects) with
operations and relations.

2 Simple and composite states may have a name, i.e. a string denoting uniquely the
state. We omit the name parameter in the signature of such states as it is not relevant
for our model.

3 Each substate is sequential because it must enclose an initial and a final state.



simplicity, but without loss of generality, we assume that the defer set of each
state explicitly contains all the inherited events to be deferred.

(1) (2) (3)

Initial states • indicate where to start by default when the enclosing (com-
posite sequential) state is invoked. A History state, associated to a sequential
composite state say S, is a pseudostate that can be of two types: shallow history©H and deep history ©H∗. The shallow history state records, upon exiting S, only
the most recent active state directly contained in S and restores the recorded
state when the history state is invoked. The deep history state records the most
recent active hierarchical configuration of S, and restores this configuration when
the history state is invoked. To keep track of the configuration, we use a dynamic
function

memory : STATE −→ STATE∗

that is initialized to the empty sequence for each state which has never been
accessed. To guarantee the correct entering order, we handle memory as a LIFO
list. In case of shallow history state memory contains at most one state.
Final states

⊙• are special states whose activation indicates that the enclosing
state is complete.

We denote by SimpleState, SequentialState, ConcurrentState, PseudoState,
FinalState the characteristic functions of the corresponding subsets of STATE.

Any state which is enclosed within a composite state is called a substate
of that state. In particular, it is called direct substate when it is not contained
in any other state; otherwise it is referred to as a transitively nested substate.
The nesting structure of statechart diagrams is encoded by the following static
functions:

– UpState: STATE −→ STATE ∪ {undef}, such that UpState(s) = t iff s is a
direct substate of a compound state t.

– DownState: STATE ×STATE −→ BOOL, such that DownState(t, s) = true
iff s is direct substate of a compound state t.

– UpChain : STATE × STATE −→ STATE∗,
UpChain(s, t) = [S1, . . . , Sn] where n > 1 &

S1 = s & Sn = t & ∀i = 2 . . . n, UpState(Si−1) = Si

– DownChain : STATE × STATE −→ STATE∗,
DownChain(s, t) = [S1, . . . , Sn] where n > 1 &

S1 = s & Sn = t & ∀i = 1 . . . n − 1, DownState(Si, Si+1)

Upchain and DownChain yield empty sequences on each pair of not nested
states. We write Up/DownChain(s1, ŝ2) to indicate the right open sequence
Up/DownChain(s1, ŝ2) = [T1, . . . , Tn[, if it exists. Notice that Up/DownCh-
ain(s, ŝ) = [].



3.2 Transitions

The set TRANSITION is partitioned into internal and external transitions.
External transitions are of form trans(source,target,event,guard,action), where
source/target represent the source/target states of the transition, event denotes
the triggering event which may enable the transition to fire, guard is a boolean
expression that is evaluated as soon as the event occurs (if it evaluates to false
the transition does not fire), action is an action that is executed at the time the
transition fires.
Internal transitions are of the form trans(source,event,guard,action), where
all the parameters have the same meaning as for the external transitions. Inter-
nal transitions have a source state but no target state because the active state
does not change when they fire, and no exit or entry actions are executed. We
distinguish between external and internal transitions using a predicate internal
on TRANSITION.
Statechart diagrams include also completion transitions, namely transitions
with an implicit “completion event” indicating the completion of the state the
transition leaves. We can handle completion transitions as special trigger tran-
sitions, labeled by completionEvent(S), where S is the source state, and assume
that all transitions in a statechart diagram are labeled with an event. The only
transitions outgoing pseudostates are completion transitions [20].

For each type of state and transition parameter, we use a (static) function
param which applied to the related states or transitions yields the corresponding
parameter. For example entry(state) yields the entry action associated to state,
source(trans) the source state of the transition trans, etc. We often suppress
parameters notationally.

3.3 Agents

Let AGENT be the set of agents which move through the statechart diagram,
each executing what is required for its currently active state. A state becomes
active when it is entered as result of some transition, and becomes inactive if it
is exited as result of a transition. “When dealing with composite and concurrent
states, the simple term current state can be quite confusing. In a hierarchical
state machine more then one state can be active at once. If the control is on a
simple state that is contained in a composite state, then all the composite states
that either directly or transitively contain the simple state are also active” [4].
Therefore, to maintain what in UML is called the current configuration of active
states, we introduce a dynamic function

currState : AGENT → P(STATE)
whose updates follow the control flow of the given statechart diagram. The func-
tion deepest : AGENT −→ STATE yields the last (innermost) state reached by
an agent.

The agents execute UML statechart diagrams, i.e. they all use the same
program (or ASM Rule). As a consequence, in the formulation of these rules
below, we use the 0-ary function Self which is interpreted by each agent a as a.



When a new agent is created to perform a concurrent subcomputation (defined
by one of the substates in a concurrent composite state), it is linked to the parent
agent by the dynamic function

parent : AGENT → AGENT ∪ {undef}
We assume that this function yields undef for the main agent who is not part
of any concurrent flow. The active subagents of an agent a are collected in the
set SubAgent(a) = {a′ ∈AGENT | parent(a′) = a}

At the beginning of the computation, we require that there is a unique agent,
positioned on the initial state of the top state, and whose program consists of
the rules Transition Selection and Generate Completion Event described
below.

3.4 Event handling

In UML it is assumed that a state machine processes one event at a time and
finishes all the consequences of that event before processing another event [5,
20]. “An event is received when it is placed on the event queue of its target. An
event is dispatched when it is dequeued from the event queue and delivered to
the state machine for processing. At this point, it is referred as the current event.
Finally, it is consumed when event processing is complete. A consumed event is
no longer available for processing” [4].

We therefore assume that one event is processed at a time. Since the par-
ticular event enqueuing and dispatching mechanisms are deliberately not fur-
thermore specified in UML, we model them here explicitly as semantic variation
points and therefore use a monitored predicate dispatched indicating which event
is dequeued to be processed. At any moment, the only transitions that are eli-
gible to fire when an event e occurs are the ones departing from an active state
(i.e. whose source state belongs to currState) whose associated guard evaluates
to true4. This is expressed by the following condition

enabled(t, e) ≡ event(t) = e & guard(t) & source(t) ∈ currState
It is possible for more than one transition to be enabled by the same event,

but UML allows only those transitions to be fired simultaneously which occur
in concurrent substates [4]. In all the other cases, the enabled transitions are
said to be in conflict with each other. One can distinguish three types of conflict
situations: (1) an internal transition in an active state conflicts with a transition
outgoing from that state, (2) two or more transitions originating from the same
source in an active state are enabled by e, and (3) two or more transitions with
different source states but belonging to the same active state are enabled by the
occurrence of e. In UML the selection among conflicting transitions is constrained
only for case (3) by giving priority to the innermost enabled transition. We now
formalize this priority for (3), whereas in the cases (1) and (2) we reflect the
choice between different scheduling mechanisms as a semantic variation point,
namely by using abstract selection functions; see the Transition Selection rule
below.
4 If no guard is associated to a transition t, we assume guard(t) = true.



Let enabled(e) = {t ∈ TRANSITION | enabled(t, e)} be the set of all transi-
tions enabled by e. We define an equivalence relation ∼ on enabled(e) as follows:
∀ t1, t2 ∈ enabled(e), t1 ∼ t2 iff source(t1) = source(t2).
The nesting of states induces the total order relation5 ≤ on the quotient set
enabled(e)/ ∼, defined as [t1] ≤ [t2] iff source(t1) is a direct or a transitively
nested substate of source(t2).
Let FirableTrans(e) be the minimum equivalence class in enabled(e)/ ∼. It re-
flects the UML requirement that among transitions enabled by the same event
and with different source states, priority is given to an innermost one. The choice
among those innermost ones is left open as semantic variation point (see the
choose construct in the Transition Selection rule).

If a dispatched event does not trigger any transition in the current state, it
is lost unless it occurs in the deferred set of the deepest active state. This is
formalized by the following predicate deferrable on EVENT:

deferrable(e) = true ⇔ enabled(e) = ∅ & e ∈ defer(deepest)
As suggested in [20], to store deferred events we associate to each agent a

list6 of events deferQueue that is dynamically updated during the computation
(see rule Transition Selection). We can therefore define deferred(e) to mean e ∈
deferQueue.

We call a deferred event releasable when it becomes ready to be consumed,
i.e. when it can trigger a transition in the current state configuration

releasable(e) = true ⇔ deferred(e) & enabled(e) �= ∅

3.5 Statechart diagram main rules

In this subsection we define the ASM rules for the execution of statecharts, i.e.
we specify the sequences of states that an object goes through, and of the actions
it takes, in response to events which occur during its lifetime [20].

Apparently, UML leaves it unspecified how to choose between dispatched
and releasable events. We reflect this by using a selection function which, at any
moment, chooses either a dispatched event triggering a transition, or an event
that has been deferred. A dispatched event, if deferrable, has to be inserted
into the deferQueue. A releasable event, when chosen for execution, has to be
deleted from deferQueue7. This implies that when choosing an event which is

5 Observe that ≤ is total since all the source states of the transitions in enabled belong
to currState and therefore they are nested.

6 Apparently, this list is meant to be a set, leaving the exact ordering of elements open
as a semantic variation point. A similar remark applies also to other lists occurring
in the UML texts.

7 If upon execution of transition trans, a deferred event e ∈ defer(source(trans)) does
not belong to defer(target(trans)), then it must be deleted from deferQueue, as spec-
ified as part of the enterState macro below.



simultaneously dispatched and releasable, that event will be deleted from the
deferred events.8

We define in the next section the exact meaning of the state machine execu-
tion of a transition, namely by a parameterized macro stateMachineExecution.
This leads us to the following main rule for selecting the machine transition to
be executed next.

Rule Transition Selection
choose e : dispatched(e) ∨ releasable(e)

choose trans in FirableTrans(e)
stateMachineExecution(trans)

if deferrable(e) then insert(e,deferQueue)
if releasable(e) then delete(e,deferQueue)

The rule for selecting and executing a transition fires simultaneously, at each
“run to completion step”, with a rule to generate completion events.

Completion events are generated when an active state satisfies the completion
condition [4]. They trigger a transition outgoing such states. An active state is
considered completed if one of the following cases occurs: (1) it is an active
pseudostate, (2) it is a sequential composite state with active final state, (3)
the state internal activity terminates while the state is still active, or (4) it is a
concurrent composite state and all its direct substates have reached their final
state. We formalize this by the predicate

completed(S) = true ⇐⇒ PseudoState(S) or
(SequentialState(S) & final(S) ∈ currState) or
terminated(A(S)) or
(ConcurrentState(S) &

∀Si ∈ concurrentComp(S) ∀ai ∈ SubAgent(Self)
final(Si) ∈ currState(ai))

where terminated(A(S)) is a derived predicate that holds if and only if the run
of the ASM A(S), which formalizes the internal activity of S, reaches a final
state.

Each time the completion condition evaluates to true for an active state S
that is not a direct substate of a concurrent state9 a completion event is gen-
erated. This is expressed by the rule Generate Completion Event that is
executed simultaneously for each state S ∈ currState.

8 Should another interpretation be intended, we would probably change the guard
“if releasable(e)” in the Transition selection rule to e.g. “if releasable(e) & not
dispatched(e)”.

9 This restriction reflects that in UML no direct substate of a concurrent state can
generate a transition event. Such substates are required to be sequential composite
states.



Rule Generate Completion Event
do forall S ∈ currState

if completed(S) & ¬ ConcurrentState(UpState(S))
then generate(completionEvent(S))

Although the order of event dequeuing is not defined, it is explicitly required that
completion events must be dispatched before any other queued events [4]. We
reflect this requirement as a constraint on the monitored predicate dispatched.
The above two rules, which fire simultaneously at each run to completion step,
define the top level behavior of UML state machines. It remains to define in
more detail the meaning of the macros appearing in those rules.

The UML requirement that an object is not allowed to remain in a pseu-
dostate, but has to immediately move to a normal state [20], cannot be guaran-
teed by the rules themselves, but has to be imposed as an integrity constraint
on the permissible runs.

3.6 The rule macros

We define now the subrule stateMachineExecution where parameterization by
transitions allows us to modularize the definition for the different types of tran-
sitions and the involved states.

State machine execution If an internal transition is triggered, then the cor-
responding action is executed (there is no change of state and no exit or entry
actions must be performed). Otherwise, if an external transition is triggered, we
must determine the correct sequence of exit and entry actions to be executed
according to the transition source and target state. Transitions outgoing from
composite states are inherited from their substates so that a state may be ex-
ited because a transition fires that departs from some of its enclosing states. If a
transition crosses several state boundaries, several exit and entry actions may be
executed in the given order. To this purpose, we seek the innermost composite
state that encloses both the source and the target state, i.e. their least common
ancestor. Then the following actions are executed sequentially: (a) the exit ac-
tions of the source state and of any enclosing state up to, but not including,
the least common ancestor, innermost first (see macro exitState); (b) the action
on the transition; (c) the entry actions of the target state and of any enclosing
state up to, but not including, the least common ancestor, outermost first (see
macro entryState); finally (d) the “nature” of the target state is checked and the
corresponding operations are performed.

The sequentialization and iteration constructs defined for ASMs in [8] provide
the combination of black box – atomic step – view and the white box – durative
– view which is needed here to guarantee that when the two ASM rules defined
above are executed, all the updates which occur in the macros defined below
are performed before the next event is dispatched or becomes releasable. This
behavior is reflected by the parameterized macro stateMachineExecution (which
constitutes the body of the Transition Selection Rule). The macros appearing in
this rule are described below.



stateMachineExecution(trans) ≡
if internal(trans) then action(trans)
else seq

exitState(source(trans),ToS)
action(trans)
enterState(FromS,target(trans))
case target(trans)

SequentialState: enterInitialState(target(trans))
ConcurrentState: startConcurrComput(target(trans))
HistoryState: restoreConfig(target(trans))

endcase
where anc = lca(source(trans),target(trans))

ToS = directSubState(anc,UpChain(source(trans),anc))
FromS = directSubState(anc,DownChain(anc,target(trans)))

and directSubState: STATE × STATE∗ −→ STATE is defined by
directSubState(s,L) = s′ iff s′ ∈ L & UpState(s′) = s, i.e. s′ is the only direct
substate of s belonging to the list L.

It remains to define the macros for exiting and entering states, and for the
additional actions for sequential, concurrent and history states.

Exiting states If a transition that crosses the boundary of a composite state
fires, we must distinguish two cases to perform the exits from nested states in
an order which respects the hierarchical structure (see macro exitState below):

1. The agent is not inside a concurrent flow (i.e. parent(Self) = undef). If the
agent is (1) not parent of concurrent subagents or (2) it is parent of concur-
rent subagents but each subagent already performed its exit actions, then
for each state from the source state up to, but excluding, the source/target
least common ancestor state (see the stateMachineExecution rule above),
innermost first, it sequentially (a) stops the internal ongoing activities, (b)
performs the exit actions , and (c) removes those states from the agent’s
current state. Moreover, it (d) updates the history (if defined and provided
that the final state has not been reached), memorizing in it all the states it
is exiting in case of deep history, or only its direct active substate in case
of shallow history, and (e) updates deferQueue by deleting all those events
which are no more deferred (see macro sequentialExit which uses a macro
abortInternalActivity defined below). In case (2) the agent must furthermore
update its deferQueue to retain all deferred events of its own but none of
those processed by its subagents. Finally it disconnects all its deactivated
subagents (see the corresponding macro defined below).

2. The agent is inside a concurrent flow (i.e. parent(Self) �= undef). We have
to consider the two cases, whether the trigger event is relevant for all the
subagents running in parallel within the concurrent state or not. To this
purpose we check that the transition source state belongs to the active state
of both the agent and its parent (when a subagent is created, it inherits



its parent’s current state, therefore at any time the currState of the parent
agent is a subset of its subagents’ currState). In this case, each subagent
performs the same sequentialExit macro as in the first case, i.e. starting
from its deepest state up to, but excluding, its parent’s deepest state, it
sequentially (a) stops the internal ongoing activities, (b) performs the exit
actions and (c) removes those states from the agent’s current state. Moreover,
it (d) updates the history (if defined and provided that the final state has
not been reached) memorizing in it all the states it is exiting in case of deep
history, or only its direct active substate in case of shallow history, and (e)
updates deferQueue by deleting all those events which are no more deferred
(see macro sequentialExit). Finally, the agent is deactivated, meaning that
its rule is set to undef and its current state to the empty set (see macro
deactivate).
Now consider the case that the transition source state belongs to the active
state of at least one but not to all subagents of an agent. Then the event is
relevant only for this subagent, and this agent performs the sequential exit
as in case 1.

exitState(s,t) ≡ if parent(Self) = undef
then if SubAgent(Self) = ∅

then sequentialExit(s,t)
elseif noActiveSubAgents
then seq deferQueue(Self) := defer(deepest(Self)) ∩⋂

ai∈SubAgent(Self)

deferQueue(ai)

sequentialExit(s,t)
disconnectSubAgents

if parent(Self) �= undef
then if s ∈ currState(Self) &

s ∈ currState(parent(Self))
then

sequentialExit(S, S′)
deactivate(Self)

else sequentialExit(s,t)

where S = deepest(Self)
S′ = deepest(parent(Self))
noActiveSubAgents = ∀ai ∈ SubAgent(Self) :

currState(ai) = ∅

For the definition of the macro sequentialExit we use the macro abortInternalAc-
tivity which will be defined below. In defining sequentialExit we use a function
hist(s, S) whose value depends on whether S is a deep history state or not.
hist(s, S) yields UpChain(s,Ŝ) for deep history, directSubState(S,UpChain(s,S))
for shallow history.



sequentialExit(s,t) ≡ loop through S ∈ UpChain(s,t)
seq

abortInternalActivity(S)
exit(S)
currState := remove(S,currState)

endseq
if history(S) �= undef & final(S) �∈ currState
then memory(history(S)) := hist(s, S)

endloop

deactivate(a) ≡ Rule(a) := undef
currState(a) := ∅

disconnectSubAgents ≡ do forall ai ∈ SubAgent(Self)
parent(ai) = undef

Entering states A transition may have a target state nested at any depth
in a composite state. Therefore, any state enclosing the target one up to, but
excluding, the least common ancestor will be entered in sequence, outermost first.
Entering a state means that (a) the state is activated, i.e. inserted in currState,
(b) its entry action is performed, and (c) the state internal activity (if any) is
started. This is realized by the macro enterState for which we use the macro
startActivity defined below. The agent’s deferQueue is updated by deleting all
those events which are no more deferred in the target state.

enterState(s,t) ≡ loop through S ∈ DownChain(s,t)
seq

currState := insert(S,currState)
entry(S)
startActivity(S)

endseq
deferQueue := deferQueue ∩ defer(S)

endloop

Internal activities When a state is active, its internal activity (if any) is re-
quired to be executed. Apparently, internal activities are intended as concurrent
and [4] imposes no particular scheduling conditions for them. We model this by
creating a new worker agent whose job is to execute the activity of its associated
state. The worker agent is created when the state is entered and after its entry
action has been executed. It receives as program the ASM A(S) formalizing the
state activity.

startActivity(S) ≡ extend AGENT with a
Rule(a) := A(S)
worker(S) := a



Using an ASM as rigorous replacement for the intuitive notion of “internal UML
activity”, we obtain a mathematically rigorous definition without loosing gen-
erality10. In addition we make the UML notion of “ongoing” activity precise by
defining it as steps of an ASM in a multi-agent distributed ASM run.

If an activity is aborted prior to its termination as result of the firing of an
outgoing transition, then before leaving the state its associated worker agent is
deactivated since its job is terminated. This is performed by the following macro
which is used for defining sequentialExit.

abortInternalActivity(S) ≡ Rule(worker(S)) := undef
worker(S) := undef

Sequential composite states A transition drawn to the boundary of a se-
quential composite state is equivalent to a transition to its initial pseudostate
[4]. Therefore, when a composite sequential state is the target state of a trig-
gered transition, the control passes to its initial state that is inserted in currState.

enterInitialState(S) ≡ currState := insert(init(S),currState)

History states If a transition incoming to a history state within a composite
state fires, the configuration of active states stored in its memory is restored.
Therefore, each state in the history is activated, i.e. it is inserted in currState,
its entry action is performed, its activity is executed, and the state is removed
from the history. The right entering order is guaranteed by the LIFO structure
of memory.

Observe that when a state is entered for the first time or its most recently
active state prior to its exit was the final state, its history (if any) must be empty
[4]. This is guaranteed in our model since we initialize each history state memory
to the empty sequence, delete it after using it, and store nothing in it when its
enclosing state is exited by a final state.

restoreConfig(H) ≡ loop through S ∈ memory(H)
seq

currState := insert(S,currState)
entry(S)
startActivity(S)
memory(H) := delete(S,memory(H))

endseq
deferQueue := deferQueue ∩ defer(S)

endloop

Concurrent composite states If a transition incoming to a concurrent com-
posite state fires, the flow of control is split into two or more flows of control. The
currently active agent creates a new agent ai for each concurrent component Si.
All the subagents inherit their parent’s program to execute statechart diagrams,
10 That no generality is lost derives from Gurevich’s proof of the ASM thesis in [13].



its currState configuration and the parent’s list of active deferred events. As a
transition drawn to the boundary of a concurrent composite state is equivalent
to a transition to any of its concurrent components and consequently to the com-
ponent initial state, each agent ai activates the component Si and its associated
initial state.

startConcurrComput(S) ≡
let S1, . . . , Sn = concurrentComp(S)

extend AGENT with a1, . . . , an

do forall 1 ≤ i ≤ n
parent(ai) := Self
deferQueue(ai) := deferQueue(Self)
Rule(ai) := Rule(Self)
currState(ai) := insert({Si,init(Si)},currState)

The parent agent will stand idle waiting for the termination of its subagents’
computation. This is enforced by the definition of when a concurrent state is com-
pleted to trigger the completion event which may enable the transition exiting
the concurrent state. The running subagents can finish their job either because
of a completion event generated by their parent11 or by the firing of an explicit
event labeling a transition outgoing their enclosing state. In our model the sub-
states’ exit action and internal activity abortion are performed by the exitState
macro, in a synchronized fashion. Other choices are easily defined modeling our
rules appropriately. The UML documents seem not to mention this semantically
relevant issue at all.

Remark. In a concurrent compound state S′, a transition trans(e,g,a) outgo-
ing from a state S in a concurrent component and incoming to a state S′′ sibling
of S′ (see Fig. 1.a), can be viewed as split into two transitions (see Fig. 1.b): a
transition trans(e,g,Send exitEvent(S)) from S to S′, where Send exitEvent(S)
is an event generation action12, and a transition trans(exitEvent(S),true,a) from
S′ to S′′. To guarantee the expected semantics of UML statecharts, we impose,

(b)

S

exitEvent/[true]a

e/[g]Send exitEvent

S’’

S’

(a)

S’

S

S’’e/[g]a

Fig. 1.

11 In this case they all must have reached their final state.
12 According to [4] an action labeling a transition may consist in sending a signal.



as an integrity constraint on the permissible runs, that the event exitEvent(S)
must be dispatched before any other event (see the event handling mechanism
in section 3.4).

4 Semantical equivalence among building blocks

UML statecharts encompass for notational convenience some constructs which
can be defined in terms of basic constructs. Not to overload our model, we
decided to include only the basic notations and to sketch here how to replace
the remaining constructs by combinations of basic constructs.

Fork-Join pseudostates Fork and join pseudostates split and merge transi-
tions arriving at, emanating from, concurrent states. A transition to the bound-
ary of a concurrent compound state is equivalent to a transition to each of its
direct substates (and therefore to their initial states), and a transition from the
boundary of a concurrent compound state is equivalent to a transition from the
final states of each of its substates. Therefore, the fork (resp. join) semantics
can be obtained by allowing only incoming (resp. outgoing) transitions that ter-
minate on (resp. depart from) the boundary of concurrent states, and imposing
that each concurrent substate must enclose an initial and a final state.

Junction pseudostate Junction states are used only to chain together multiple
transitions – this is known as merge –, or to split an incoming transition into
multiple outgoing transitions labeled with different guard conditions – this is
known as conditional branch [4].

Submachine states UML statecharts provide also submachine states, a syn-
tactical convenience to facilitate reuse and modularity [4]. A submachine state
is only a shorthand that implies a macro-like expansion by another state ma-
chine and is semantically equivalent to a composite state. According to the UML
metamodel, a submachine state is of the form state(entry,exit,do(A),include(S′)).
One can assume that each occurrence of a submachine state is substituted by
the sequential13 composite state defined by entry, exit, do(A), S’. Moreover, we
identify transitions directly incoming to, respectively outgoing from, the subma-
chine state with transitions directly incoming to, respectively outgoing from, the
resulting sequential composite state.

Stub states A stub state is nothing else then an alias for an entry point to or an
exit point from a state s in S′ of a submachine state state(entry,exit,do(A),inclu-
de(S′)).

Additional constructs Synch states are used to synchronize the execution of
concurrent substates. Their semantics can be given by slightly modifying the
above formalization of concurrent states.
13 Submachine states are never concurrent [4].



5 Conclusion and related work

In this section we discuss some ambiguities in the official semantics of UML [4, 5,
20] which are resolved in the ASM model. We also show how UML requirements
for state machines are satisfied by our model.

The state machine execution is formalized through the macro stateMachine-
Execution (invoked by the rule Transition Selection) that reflects the scheme of
a generic control machine. These ASM statecharts generalize the Mealy ASMs
defined in [6].

Our model reflects all the characteristics of the state machines metamodel in
[4] and adds to its structural, static definition the underlying control flow seman-
tics. A subtle question regards the execution of ongoing state activities. What
does happen when an internal transition occurs? Does the activity interrupt and
then restart from the same computation point, or does it never interrupt? The
way we model internal activities guarantees the second, to our understanding
reasonable, alternative. However, our model can be easily adapted to formalize
other behaviors.

By replacing the undefined UML terms of “action” and “activity” with (possi-
bly structured, in the sense of [8]) “ASM rule”, we provide a precise mathematical
content to these terms without loosing the generality intended by the designers
of UML (see in this connection Gurevich’s proof of the ASM thesis [13]). Our
model also provides a precise meaning of the vague UML term “ongoing internal
activity”, namely as execution of an ASM in a multi-agent distributed run as
defined in [12]. The sequentialization, iteration and submachine constructs de-
fined for ASMs in [8] clarify in what sense sequences of nested exit and entry
actions can be guaranteed to be executed in one “run to completion step”, as
postulated by the UML documents, namely before the next event may trigger
the next “step”. Our model also makes some semantically relevant features14

explicit which seem not to have been considered in the official UML documents.
Several semantics for statecharts have been proposed in the literature [21].

Most of these are concerned with modeling Harel’s statecharts, whose semantics
is rather different from UML state machines (e.g. in the event handling policy).
Although our model can be adapted to grasp such differences, our intent is
to define the UML state machine semantics up to the degree of precision one
can reach without compromising the desired freedom of the so called “semantic
variation points”.

Differently from the formalization of UML state machines in [11, 19], our
model reflects the original structure of machines as described in the UML docu-
ments, without imposing any graphical transformation or flattening of diagrams.
[11] uses graph rewriting techniques to transform UML state machines into a
“normal form” machine, without considering the execution of actions and ac-
tivities. The model in [19] leaves out some state machines features, and some
are covered by means of semantical equivalences which, however, do not always
14 E.g. whether abortion of internal activities and exit actions of concurrent agents
should be synchronized or not.



respect the UML metamodel constraints (see [4], pp. 2-126). For instance, en-
try/exit actions in a state are replaced by attaching such actions respectively
to the state incoming/outgoing transitions, whereas the metamodel asserts that
the multiplicity of Action in Transition is 0..1, that is no or exactly one action
may label a transition.

In [17] the operational behavior of UML state machine constructs is described
using pseudo-code in a way which in many places includes specific implementa-
tion decisions (mostly without stating them), whereas we tried to let the intended
semantic variation points of UML stand out explicitly as such.

References

1. Abstract State Machines. http://www.eecs.umich.edu/gasm/.
2. Rational Software Corporation, Unified Modeling Language UML, version 1.3,
1999.

3. UML 1.3 Notation, 1999. (Published as part of [2]).
4. UML 1.3 Semantics, 1999. (Published as part of [2]).
5. G. Booch, J. Rumbaugh, and I. Jacobson. The Unified Modeling Language User

Guide. Addison Wesley, 1999.
6. E. Börger. High Level System Design and Analysis using Abstract State Machines.
In D. Hutter and W. Stephan and P. Traverso and M. Ullmann, editor, Current
Trends in Applied Formal Methods (FM-Trends 98), number 1641 in LNCS, pages
1–43. Springer-Verlag, 1999.

7. E. Börger, A. Cavarra, and E. Riccobene. An ASM Semantics for UML Activity
Diagrams. In T. Rus, editor, AMAST2000, volume 1816 of LNCS, pages 293–308.
Springer Verlag, May 2000.

8. E. Börger and J. Schmid. Composition and Submachine Concepts for Sequential
ASMs. In Gurevich Festschrift CSL 2000, 2000. (To appear).

9. A. S. Evans, J-M. Bruel, K. Lano R. France, and B. Rumpe. Making UML Precise.
In In OOPSLA’98 Workshop on Formalizing UML. Why and How?, October 1998.

10. R. B. France, A. S. Evans, K. C. Lano, and B. Rumpe. Developing the UML as a
formal modeling notation. Computer Standards and Interfaces: Special Issues on
Formal Development Techniques, Accepted for publication, 1998.

11. Martin Gogolla and Francesco Parisi-Presicce. State diagrams in UML: A formal
semantics using graph transformations. In Manfred Broy, Derek Coleman, Tom
S. E. Maibaum, and Bernhard Rumpe, editors, Proceedings PSMT’98 Workshop
on Precise Semantics for Modeling Techniques. Technische Universität München,
TUM-I9803, 1998.

12. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

13. Y. Gurevich. Sequential Abstract State Machines capture Sequential Algorithms.
ACM Transactions on Computational Logic, 1, 2000. (To appear).

14. D. Harel and E. Gery. Executable Object Modeling with Statecharts. Computer,
IEEE Computer Society, 30(7):31–42, 1997.

15. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Trans. Soft. Eng. method, 5(4):293–333, 1996.

16. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts. McGraw-Hill,
1998.



17. Ivan Paltor and Johan Lilius. Formalising UML state machines for model checking.
In Robert France and Bernhard Rumpe, editors, UML’99 - The Unified Modeling
Language. Beyond the Standard. Second International Conference, Fort Collins,
CO, USA, October 28-30. 1999, Proceedings, volume 1723 of LNCS. Springer, 1999.

18. The precise UML group. http://www.cs.york.ac.uk/puml/.
19. G. Reggio, E. Astesiano, C. Choppy, and H. Hussmann. Analysing UML Active

Classes and Associated State Machines – A Lightweight Formal Approach. In
FASE 2000 - Fundamental Approaches to Software Engineering. Lecture Notes in
Computer Science, 2000. (To appear).

20. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

21. M. von der Beek. A Comparison of Statechart Variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, volume 526. Lecture Notes in Computer
Science, 1994.

To appear in: International Workshop on Abstract State Machines ASM’2000
(Eds. Y.Gurevich, Philipp Kutter, Martin Odersky, Lothar Thiele). Springer
LNCS, 2000.


