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Abstract. We use the steam boiler control speci�cation problem to il-
lustrate how the evolving algebra approach to the speci�cation and the

veri�cation of complex systems can be exploited for a reliable and well

documented development of executable, but formally inspectable and
systematically modi�able code. A hierarchy of stepwise re�ned abstract

machine models is developed, the ground version of which can be checked

for whether it faithfully re
ects the informally given problem. The se-
quence of machine models yields various abstract views of the system,

making the various design decisions transparent, and leads to a C++

program. This program has been demonstrated during the Dagstuhl-
Meeting on Methods for Semantics and Speci�cation, in June 1995, to

control the Karlsruhe steam boiler simulator satisfactorily.

The abstract machines are evolving algebras and thereby have a rigorous
semantical foundation, allowing us to formalize and prove, under pre-

cisely stated assumptions, some typical sample properties of the system.

This provides insight into the structure of the system which supports
easily maintainable extensions and modi�cations of both the abstract

speci�cation and the implementation.

1 Introduction

We solve the steam boiler problem to illustrate how the evolving algebra ap-
proach to design and veri�cation of complex systems can be used for a well doc-
umented development of executable but nevertheless formally inspectable and
systematically modi�able code. We go through a hierarchy of stepwise re�ned
abstract machine models the ground version of which can be shown to faith-

fully re
ect the informally given problem. The sequence of mathematical models
provides various useful levels which re
ect each a di�erent design decision and
starting from which the solution can be easily modi�ed; it eventually leads to
a C++ program which has been demonstrated during the Dagstuhl-Meeting on
Methods for Semantics and Speci�cation, in June 1995, to control the Karlsruhe
Steam Boiler (see Chap. L. of this book) satisfactorily.



The models are evolving algebras and thereby have a rigorous semantical
foundation [12]. They are related by stepwise re�nements which re
ect the sys-
tematic use of strongest information hiding and modularization techniques of-
fered by the abstraction mechanism built into the notion of evolving algebra.
The systematic use of successive re�nements represents an important method-
ological software engineering principle, namely to avoid over-speci�cation and
to postpone premature design decisions as much as possible. The re�nements
also permit to state and prove interesting system properties at the appropriate
level of abstraction; this is how the technique of building hierarchies of step-
wise re�ned levels of abstraction has found its way into the evolving algebra
methodology (see [2, 10]) where it has been used since then extensively (see for
ex. [7, 6, 8, 15, 14, 13, 11, 9], see also [5] for an explanation why evolving alge-
bras provide the framework par excellence for the most general realization of the
re�nement idea). We investigate some typical sample properties of the system
which we formulate and prove, under precisely stated assumptions, in the ab-
stract models. This provides insight into the structure of the system and yields
useful directives for the de�nition of provably correct system components. Our
proofs are traditional (not formalized) mathematical proofs and are viewed by us
not in opposition to machine-checked proofs but as a possible guideline for con-
structing such detailed fully formalized deductions within (the implementation
of) a speci�c proof system6.

The most abstract model is a ground model in the sense of [3], i.e. the re-
sult of a formalization process of the informally given description which remains

conceptually and notationally as close as possible to the informal problem state-
ment and thereby can be inspected by the user for its adequacy. In order to
illustrate how evolving algebras o�er the greatest possible 
exibility in adapt-
ing the formalization to the peculiarities of the given application domain, our
ground model follows Abrial's text as closely as possible without committing
to any particular implementation. As a result we obtain as starting point for
the de�nition of the program a mathematical model|what usually is called a
formal requirement speci�cation|whose domains and functions directly re
ect
the basic objects and operations of the steam boiler system, avoiding any extra-
neous encoding or other formal overhead. Such a model provides a transparent
and faithful link between the customer's world - where the application problem
resides - and the system designer's and programmer's world - where the program
has to be developed.7 In particular the ground model allows one to "show" by

6 For an illustration of this point see [1, 16] which report on machine veri�cations for

some of the re�nement steps introduced for the evolving algebra based correctness

proof of a general compilation scheme of Prolog programs to WAM code in [10].
7 Obviously this \link" holds only for those system parts or properties which are
speci�ed in the ground model. Stated otherwise, a ground model should contain all

those parameters, actions and conditions which are relevant for the customer. An

example in this paper is the treatment of error handling for equipment failures; we
cannot discuss it appropriately unless we explicitly identify and describe the relevant

features, as we do here in the re�nement section 5.2. See [5] for further discussion of

this point.



pointing to the model that it really re
ects the informal description of the prob-
lem. (See [5] for a discussion of the role of these ground models for the foundation
of applications of programming to the real world.)

We develop the model re�nements up to a point where it becomes evident how
executable C++-code can be obtained by translating|almost mechanically|
the abstract machine instructions into C++-procedures. These procedures are
executed in a context of basic routines which implement the semantics of our
abstract machines. Via this translation the rules of the abstract machine models
\show" the structure of the executable C++-code (which has been connected
successfully to the Karlsruhe steam boiler simulator). In this way the successively
re�ned abstract models constitute a documentation of the executable code, in-
cluding the relevant information on the design process|each re�nement step
directly expresses some design decisions and can be used as reference point for
possible modi�cations or extensions. The projection of the abstract machine
models into the C++-program makes the C++-code inspectable by mathemat-
ical (formal) methods. We consider this possibility as a particularly challenging
research direction and hope that further developments of the method will lead
to useful techniques for the design of transparent, inspectable software.

In this paper we make no attempt to analyze or bridge the discrepancy be-
tween the few assumptions on the physical behaviour of the system which are
contained in the informal problem description and the many additional assump-
tions which have been made by Anne L�otzbeyer for the design of the Karl-
sruhe steam boiler simulator. Along our way we list those assumptions which
are needed to make the abstract models consistent. In the appendix on proofs
for system properties some more assumptions are listed without which the proofs
could not be carried through. In order to be able to link our executable C++-
code successfully to the Karlsruhe steam boiler simulator, we had to take into
account also the additional assumptions made for the design of the simulator;
we do not list those assumptions here, they concern mainly the physical model
of the steam boiler (dynamic.C). This is also the reason why we do not attempt
to prove the \correctness" of the executable code with respect to the abstract
evolving algebra models. Note however that in principle such a proof project
could be carried through, using Wallace's [17] mathematical de�nition of the
semantics of C++ as a reference model.

The sequence of successfully re�ned abstract machine models can be turned
into a systematic modular architectural design. In this paper we abstain from do-
ing this and focus our attention on the appropriateness of the formal requirement
speci�cation de�ned by the ground model and on how we can map re�nements
of this model into executable code.

As a technical consequence of the attempt to be faithful to Abrial's text we
describe only the control part and not the physical behaviour of the steam boiler
system. In particular we comply to the discrete control program view of it which
avoids to have to consider any hybrid, real-time or distributed feature. This
reduces the problem to cyclical reading of information coming from the physical
components and reacting by triggering of corresponding actions (through sending



out messages to those components). Our model is however abstract enough so
that it could be re�ned to a distributed system which works in real-time, using
the notions of distributed real-time evolving algebra runs developed in [12, 8,
14, 13].

As is to be expected from every seriously mathematical approach to system
or program development, during the formalization process we have discovered
numerous (probably deliberate) holes in the informal description which had to
be �lled in order to avoid inconsistencies or other unreasonable behaviour. Each
time this happens we make the additional assumptions explicit and also give
hints how the abstract machine model could easily be adapted to alternatives.
These are typical examples of points where the evolving algebra approach allows
us to easily formulate, in a language which is understandable to the customer,
precise questions about further decisions to be taken.

The paper is organized as follows. Section 2 reviews some basic semanti-
cal concepts of abstract machines as far as they are required here. Section 3
addresses certain global aspects concerning the overall behaviour of the steam
boiler control unit with respect to its embedding into the physical environment.
The detailed behaviour of the control program depending on the given mode of
operation is speci�ed in Sect. 4. The resulting model is then re�ned in Sect. 5 by
introducing a message passing interface, which allows us to deal also with error
handling and detection of equipment failures. Section 6 explains the encoding
of our most re�ned evolving algebra model into an executable C++-program
(see CD-ROM Annex BBDGR.D). In CD-ROM Annex BBDGR.B we exemplify
the formal veri�cation process by proving a number of selected properties of
our mathematical model. CD-ROM Annex BBDGR.C contains a Glossary sum-
marizing the formal de�nitions; some of these de�nitions represent a possible
re�nement step.

2 The Concept of Abstract Machines

An evolving algebra A with program P|consisting of a �nite number of transi-
tion rules of a form indicated below|and (a class of) initial state(s) S0 models
the operational semantics of a discrete dynamic system S by specifying its ob-
servable behaviour in terms of state transitions, where mathematical structures|
i.e. collections of domains equipped with functions and predicates de�ned on
them|serve as abstract representations for the concrete states of S. W.r.t. the

particular system class considered here (distributed control systems), a crucial
system characteristic to be captured by the mathematical model is the reac-

tive behaviour: the ongoing interaction between S and the environment E into

which S is embedded.

State transitions of A may be e�ected in two possible ways: internally,
through the rules of P , or externally, through actions in the environment E .
This o�ers a conceptual means to specify concurrency and interdependency. The
dependency of S from E is re
ected by the concept of externally alterable and of



oracle functions
8: these oracle functions refer to an abstract interface attaching

the model to an external world (e.g. the environment E). In contrast to a closed
world assumption, where every relevant detail is included into the model, the
approach taken here relies on an open system view.

A computation of S is modeled through a �nite or in�nite run � of A as a
sequence of states S0 S1 S2 : : : such that i) S0 is an initial state; and ii) the

internally controlled part of each state Si+1, for i = 1; 2; : : :, is obtained by
simultaneously �ring all those rules of P which are enabled on Si. Each rule can
be thought of as having the form ` if Cond then Updates ' where Cond is any
�rst-order expression and Updates a set of function updates

f(t1; : : : ; tn) := t :

The semantical meaning of �ring such a rule is that if in a given algebra
Cond evaluates to true, then the value of f at the argument place (t1; : : : ; tn) is
set to t. For a more precise de�nition we refer the reader to CD-ROM Annex
BBDGR.A.

In a distributed evolving algebraAmultiple autonomous agents cooperatively
model a concurrent computation of a system S in an asynchronous manner9; each
agent a executes its own single-agent program Prog(a) as speci�ed by the mod-

ule associated with a. More precisely, an agent a has a partial view View(a; S) of
a given global state S as de�ned by its subvocabulary (i.e. the function names
occurring in Prog(a)) on which it �res the rules speci�ed by Prog(a). The un-
derlying semantic model ensures that the order in which the agents of A perform
their operations is always such that no con
icts between the update sets com-
puted for distinct agents can arise. For further details we refer to [12].

The evolving algebra de�ned below models the behaviour of the steam boiler
control program from the point of view of a single agent. A complete description
of the entire control model|i.e. a distributed evolving algebra with additional
agents specifying the behaviour of the various physical units|can be obtained
as a straightforward extension of the model presented here.

3 Overall Operation of the Program

In this section we consider three global aspects concerning the embedding of
the control unit into the given physical environment, namely: (1) the timing
behaviour of the underlying message passing communication protocol; (2) the

physical units to be distinguished by the control program with respect to error
handling; (3) the detection of failures of control components.

8 An oracle function of A may only be read but not be a�ected by (the transition rules

of)A, an externally alterable function can change due to an action of the environment

(but it may also be internally updatable, i.e. due to �ring of a transition rule of A).
See [5].

9 The term `distributed', as it is used here, actually refers to the distribution of control

rather than the distribution of data.



3.1 Modeling of Timing Behaviour

[ The program follows a cycle and a priori does not terminate. This cycle
takes place each �ve seconds and consists of the following actions: reception of

messages coming from the physical units, analysis of informations which have

been received, transmission of messages to the physical units.

To simplify matters, and in �rst approximation, all messages coming from (or

going to) the physical units are supposed to be received (emitted) simultane-

ously by the program at each cycle.]

The timing behaviour of the program can be modeled by means of two nullary
dynamic functions: curr time is an oracle function used to represent a global
clock; last time is an internally updatable function used to indicate the beginning
of the current cycle.

curr time; last time : NAT

As an integrity constraint on curr time we require that the value of curr time

increases monotonically to the limit 1 (Cond I). The condition curr time �
last time = 5 triggers the start of a new cycle. Using the nullary func-
tion curr cycle : NAT as an internally updatable cycle counter, we associate

with each cycle a unique natural number. Each cycle consists of three con-
secutive phases, namely: reading, executing, and writing. The nullary function
phase represents the current phase within a given cycle:

phase : freading; executing; writingg:

Without loss of generality we assume that the above functions are initialized
as follows (Cond II): S0(curr time) = S0 (last time) = S0 (curr cycle) = 0

and S0(phase) = reading.

The reading phase triggers the reception of incoming messages (and the read-
ing of values for oracle functions). During the executing phase the program eval-
uates the incoming messages and the used oracle functions to compute the new
state and the outgoing signals. The latter are sent during the writing phase. This
timing behaviour is modeled by the following three timing rules:

T1 : if phase = reading ^ curr time � last time = 5

then ReadMessages

phase := executing

last time := curr time

curr cycle := curr cycle + 1

T2 : if phase = executing then phase := writing

T3 : if phase = writing then SendMessages

phase := reading



Global Prerequisities. In the following we will restrict our attention to those
non-�nal states Si where the phase does change|i.e. such that Si(phase) 6=
Si+1(phase); at the level of analysis suggested by the informal speci�cation they
cover all the substantial information about the system behaviour. We further
assume that the condition `phase = executing' speci�es a global precondition
extending the guards of all the rules in Sects. 4.1-4.5 and 5.2 below.

3.2 The Physical Environment

The physical environment of the steam boiler control unit consists of a number
of physical units which interact with the control program via message-passing
communication. These units are formally represented as elements of the following
domains:

PUMP = fpump-1; : : : ; pump-4g
PUMP CTRL = fpump ctrl-1; : : : ; pump ctrl-4g
UNIT = PUMP [ PUMP CTRL [ flevel measuring unit; steam measuring unitg

In addition to these physical units, the informal description identi�es two
more devices: a valve and an operator desk. However, at the given abstraction
level these devices are never explicitly addressed nor are there any failures asso-
ciated with them. Therefore they need not to be represented as objects in the
formal model.

3.3 Failure Detection

A particularly important issue in the speci�cation of the steam boiler control unit
is a precise de�nition of the system reactions to failures of control components.
The informal description distinguishes two basic classes of failures, namely: (1)
failures of individual physical units (physical unit failures); (2) failures of the
transmission system (transmission failures).

Physical Unit Failures Our ground model re
ects the detection of physical unit
failures by means of a unary predicate

Failure : UNIT! BOOL

indicating for each physical unit its status. In order to separate di�erent concerns,
the conditions depending on which a unit is considered as faulty are not consid-
ered here but will be de�ned later by further re�nement steps (see Sect. 3.3).

For the sake of conciseness and uniformity of description, we de�ne two fur-
ther failure predicates as shorthands to refer to certain failure classes:

PumpFailure � 9 p 2 PUMP : Failure(p)
PumpCtrlFailure � 9 c 2 PUMP CTRL : Failure(c)

To distinguish the case that all physical units are assumed to operate correctly
from those cases in which at least one of these units is assumed to have a failure,
we will use the predicate AllPhysicalUnitsOk with the following meaning:

AllPhysicalUnitsOk � 8x 2 UNIT : :Failure(x )



Transmission Failures The detection of a transmission failure is expressed in
the ground model by means of a nullary predicate TransmissionFailure : BOOL.
The meaning of this predicate will be de�ned through stepwise re�nements (see
Sect. 3.3 and the de�nitions in the Glossary).

4 Operation Modes of the Program

The observable behaviour of the control program depends on the current mode
of operation:

[ The program operates in di�erent modes, namely: initialization, normal,

degraded, rescue, emergency stop.]

In the ground model these operation modes are represented through a nullary
dynamic function mode taking values in the following domain:

MODE = finitialization; normal; degraded; rescue; emergency stopg

For a succinct formulation of program modes and mode updates we will use
abbreviations, such as:

InitMode � mode = initialization

EnterNormalMode � mode := normal

4.1 Global Requirements

Regardless of the mode in which the program is operating there are certain
conditions forcing the system to immediately enter the emergency stop mode:

[ STOP: When the message has been received three times in a row by the

program, the program must go into emergency stop.]

[ A transmission failure puts the program into the mode emergency stop.]

In the ground model these requirements are formalized using two predicates
ExternalStop (indicating that the message STOP has been received by the pro-

gram three times in a row) and TransmissionFailure which will be re�ned later
on.

The informal description contains another emergency stop condition which
may as well be considered as a global condition, namely:

[ If the water level is risking to reach one of the limit values M1 or M2 the

program enters the mode emergency stop.]



taking into account the following exception: as long as the system operates
in initialization mode it never \is risking to reach one of the limit values
M1 or M2"

10. To model the required behaviour, we introduce a predicate
ReachingLimitLevel with that intended interpretation. This implies in partic-
ular that (Cond III) for every state Si (i = 0; 1; : : :) of a regular run � of the
steam boiler algebra the following condition is supposed to hold:

Si j= InitMode) :ReachingLimitLevel

The informal description leaves open how the risk of reaching one of the limit
values M1 or M2 is to be estimated. We thus de�ne our model abstracting from
such details and do not further address this aspect here11. Using the predicates
introduced above, we are now able to express the speci�ed behaviour by de�ning
the following emergency stop rule:

G1 : if EmergencyStop then EnterEmergencyStopMode

where the externally alterable predicate EmergencyStop is de�ned by

EmergencyStop � ExternalStop _ReachingLimitLevel _TransmissionFailure

In order to avoid inconsistency of the model, the negation of
EmergencyStop has to appear in the guards of all rules that may cause a change
of mode other than changing it to emergency stop (see Sects. 4.3-4.6).

In addition to G1 another global rule G2 is used to specify the control of
the water level depending on the current mode of operation. Although this is
not explicitly stated in the informal description, one can reasonably argue that
the operations of adjusting the water level to a default value or of maintaining
its value within an admissible range are essentially the same for any mode 2
fnormal; degraded; rescueg:

[ The normal mode is the standard operating mode in which the program tries
to maintain the water level in the steam boiler between N1 and N2 with all

physical units operating correctly. As soon as the water level is below N1 or

above N2 the level can be adjusted by the program by switching the pumps
on or o�. The corresponding decision is taken on the basis of the information

which has been received by the physical units.]

[ The degraded mode is the mode in which the program tries to maintain a

satisfactory water level despite of the presence of failure of some physical unit.]

10 This particular interpretation re
ects only one possible choice out of several reason-

able alternatives.
11 Note that the primary purpose of the predicate ReachingLimitLevel, as it is used

here, is to identify and mark a `loose end' in the speci�cation such that its intended

meaning is still to be �xed by further re�nements.



[ The rescue mode is the mode in which the program tries to maintain a

satisfactory water level despite of the failure of the water level measuring

unit.]

In initialization mode, however, the operational behaviour is di�erent:

[ If the quantity of water in the steam boiler is above N2 the program activates

the valve of the steam boiler in order to empty it. If the quantity of water in
the steam boiler is below N1 then the program activates a pump to �ll the

steam boiler.]

Despite of the distinctions to be made, the functionality required to control the
water level can be expressed by a single rule using parameterized operations:

G2 : if WaterLevelAdjusted ^ :EmergencyStop

then RetainWaterLevel(mode)

else AdjustWaterLevel(mode)

From the information given in the informal description it is not clear whether the
predicate WaterLevelAdjusted should have di�erent interpretations in di�erent
operation modes of the control program. So far, we can precisely specify the
meaning of WaterLevelAdjusted only in initialization mode by stipulating that
(Cond IV) for every state Si (i = 0; 1; : : :) in a regular run of the steam boiler
algebra the following condition holds:

Si j= InitMode ^N1 � q � N2 )WaterLevelAdjusted

Though one could indeed imagine that WaterLevelAdjusted has a �xed mean-
ing irrespective of the current operation mode, there are also good reasons to
anticipate more complex interpretations for modes other than initialization12.
We do not address this aspect any further, but show sample re�nements for
AdjustWaterLevel(m) and RetainWaterLevel(m) in initialization mode.

In the de�nition of AdjustWaterLevel(m) it is necessary to include the con-
dition SteamBoilerWaiting which triggers the e�ective start of the steam boiler
initialization operation13 (see Sect. 4.2):

12 Taking the current state and the dynamics of the system into account as well, for

instance, would allow us to reduce the tolerance limits in the physical layout of the

system.
13 Some authors argue that the informal problem description should have divided the

initialization into two models in order to bring out explicitly the two di�erent phases

of the initialization process.



AdjustWaterLevel (m)
� if SteamBoilerWaiting

thenifWaterLevelBelowMin

then RaiseWaterLevel (m)
else ReduceWaterLevel (m)

RaiseWaterLevel (m)
� ActivateSomePumps

if m = initialization

then CloseValve

ReduceWaterLevel (m)
� if m = initialization

then StopPumps

OpenValve

else StopSomePumps

RetainWaterLevel (initialization)
� StopPumps

CloseValve

ActivateSomePumps and StopSomePumps are used as abstract actions which
leave space for non-deterministic choices. At the given abstraction level, we are
not concerned with any operational details specifying how the exact number
of pumps to be switched on or o� is calculated depending on the dynamics of
the system. The macros ActivateSomePumps and StopSomePumps are typical
examples for how we suggest to systematically use `well-de�ned holes' in the
semantic de�nition of the steam boiler control. The missing details are �lled in
by specifying the particular model of the physical behaviour of the steam boiler
which is to be used in conjunction with the control logic de�ned through our
model. In this way, the control logic on the one hand and the physical model on
the other hand can be separated explicitly and be treated independently from
each other.

For the sake of simplicity, we assume that (Cond V) the operations which
e�ectively activate or stop the pumps and open or close the valve do behave
in a robust way; i.e., they will be realized such that they do not cause any
e�ects on the state of the addressed device (a pump or the valve) whenever the
current state of that device is already identical to the requested state. In the
mathematical model this corresponds to a `robustness' property of assignment.

4.2 Initialization Mode

Among the operation modes of the program the initialization mode takes a
special role in that it deals with the inspection of the initial system state:

[ The initialization mode is the mode to start with.]

The purpose of the initialization phase is to lead the system from some given
initial state to a regular starting state ensuring that those conditions which are

vital for a secure operation of the steam boiler hold. In case that this is not
possible (due to intolerable malfunctioning of physical units or of the intercon-
necting communication system) the initialization attempt is to be aborted when
detecting an emergency stop condition.

The informal description leaves certain details unde�ned which are required
to �x the assumptions about initial states. To cope with that problem in our



formal model, we add some reasonable requirements (not explicitly stated in
the informal description) as integrity constraints on initial states; namely, we as-
sume that every admissible initial state S0 satis�es the following conditions: (1)
the valve is initially closed; (2) the pumps are initially switched o�. These re-
quirements are formalized using a nullary predicate ValveClosed and a unary
predicate SwitchedO� de�ned on pumps (Cond VI):

S0 j= ValveClosed ^ (8x 2 PUMP : SwitchedO� (x))

In order to avoid logical inconsistencies in the speci�cation, further assump-
tions about external conditions have to be made in conjunction with the in-
formally stated requirements addressing the intended dynamic behaviour of the
system. Those assumptions will be de�ned on the way.

The behaviour of the control program when operating in the initialization
mode is speci�ed by the initialization rules I1 - I3 as de�ned below.

[ The program enters a state in which it waits for the message STEAM-

BOILER WAITING to come from the physical units. As soon as this message

has been received the program checks whether the quantity of steam coming
out of the steam boiler is really zero. If the unit for detection of the level of

steam is defective|that is, when v is not equal to zero|the program enters

the emergency stop mode. ]

To indicate that the message STEAM-BOILER WAITING has been received
by the program (either in the current cycle or in any of the previous cycles), we
introduce a predicate SteamBoilerWaiting (to be re�ned at a later stage).

On the basis of the above de�nition (in conjunction with the reasonable
assumption that the heating system of the steam boiler remains inactive during
the entire initialization phase) we can now identify a concrete condition that
leads to the recognition of a steam measuring unit failure: (Cond VII) for
every state Si (i = 0; 1; : : :) in a regular run of the steam boiler algebra the
following assertion holds:

Si j= InitMode ^ (v > 0)) Failure(steam measuring unit)

v is the 0-ary function (variable) which describes the quantity of steam coming
out of the steam boiler. In a similar way all the variables of the informal problem
description are represented in our evolving algebra models.

[ If the program realizes a failure of the water level detection unit it enters the

emergency stop mode.]

I1 : if InitMode ^ SteamBoilerWaiting

^ (Failure(steam measuring unit) _ Failure(level measuring unit))
then EnterEmergencyStopMode

[ As soon as a level of water between N1 and N2 has been reached the program
can send continuously the signal PROGRAM READY to the physical units

until it receives the signal PHYSICAL UNITS READY which must necessarily

be emitted by the physical units.]



In the rule below the predicate PhysicalUnitsReady indicates whether the pro-
gram has received the signal PHYSICAL UNITS READY (either in the current
cycle or any of the previous cycles). The macro IndicateProgramReady is used as
a shorthand to refer to the operation which sends the signal PROGRAM READY

to the physical units.

I2 : if InitMode ^ SteamBoilerWaiting

^ WaterLevelAdjusted ^ :PhysicalUnitsReady
then IndicateProgramReady

Note that the control program repeats the sending of the PROGRAM READY

signal until it eventually receives the PHYSICAL UNITS READY signal, which
has the following meaning:

[ As soon as this signal has been received, the program enters either the mode
normal if all the physical units operate correctly or the mode degraded if any

physical unit is defective.]

In order to avoid a subtle error in the dynamics of the system, the system

should behave as required above only if the water level is still between N1 and
N2. Imagine that the water level becomes inadmissible (due to some mechanical
defect of the steam boiler or because of a faulty pump which cannot be switched
o�) while the program is waiting for the signal PHYSICAL UNITS READY to
be sent by the physical units. Now, the operation of adjusting the water level
may still be in progress (and the water level outside the admissible range) when
receiving the signal PHYSICAL UNITS READY. To switch to mode normal or
degraded could therefore mean to e�ectively start the steam boiler in a state in
which the water level is already outside the limiting values M1;M2.

It seems therefore reasonable to add the requirement that the system be-
haves as stated in the informal description only if the water level is adjusted and
switches to mode emergency stop otherwise (NB.). At the same time, it must
be ensured that rule I3 cannot switch to mode normal or degraded in case that
rule I1 �res (recall that more than one rule may �re simultaneously):

I3 : if InitMode ^ SteamBoilerWaiting ^ PhysicalUnitsReady

thenifWaterLevelAdjusted ^ :Failure(level measuring unit)
^ :Failure(steam measuring unit) ^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

else EnterDegradedMode

else EnterEmergencyStopMode

4.3 Normal Mode

[ As soon as the program recognizes a failure of the water level measuring unit

it goes into rescue mode.]

[ Failure of any other physical unit puts the program into degraded mode.]



N1 : if NormalMode ^ :EmergencyStop ^ :AllPhysicalUnitsOk
thenif Failure(level measuring unit)
then EnterRescueMode

else EnterDegradedMode

Note that if a failure of the water level measuring unit and a failure of the
steam measuring unit occur simultaneously it could be more e�ective to switch
to emergency stop mode immediately rather than to switch to rescue mode and
then to emergency stop (with one cycle delay). However, as this would also mean
to change the required behaviour (which might have been de�ned in this way
for other reasons), our model behaves in the prescribed way.

4.4 Degraded Mode

[ The degraded mode is the mode in which the program tries to maintain a
satisfactory water level despite the presence of failure of some physical unit.

It is assumed however that the water level measuring unit in the steam boiler

is working correctly. The functionality is the same as in the preceding case.]

[ As soon as the program sees that the water level measuring unit has a failure,

the program goes into mode rescue.]

[ Once all the units which were defective have been repaired, the program

comes back to normal mode.]

D1 : if DegradedMode ^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

elif Failure(level measuring unit)
then EnterRescueMode

4.5 Rescue Mode

[ The rescue mode is the mode in which the program tries to maintain a

satisfactory water level despite of the failure of the water level measuring unit.
The water level is then estimated by a computation which is done taking

into account the maximum dynamics of the quantity of steam coming out of

the steam boiler. For the sake of simplicity, this calculation can suppose that
exactly n litres of water, supplied by the pumps, do account for exactly the

same amount of boiler contents (no thermal expansion). This calculation can

however be done only if the unit which measures the quantity of steam is itself
working and if one can rely upon the information which comes from the units

controlling the pumps.]

[ As soon as the water measuring unit is repaired, the program returns into
mode degraded or into mode normal.]

[ The program goes into emergency stop mode if it realizes that one of the
following cases hold: the unit which measures the outcome of steam has a

failure, or the units which control the pumps have a failure, or the water level

risks to reach one of the limiting values14 .]



R1 : if RescueMode

thenif PumpCtrlFailure _ Failure(steam measuring unit)
then EnterEmergencyStopMode

elif :Failure(level measuring unit) ^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

else EnterDegradedMode

4.6 Emergency Stop Mode

[ The emergency stop mode is the mode into which the program has to go, as
we have seen already, when either the vital units have a failure or when the

water level risks to reach one of its two limit values.]

This is ensured by the individual rules which de�ne the program behaviour
depending on the respective mode of operation.

[ This mode can also be reached after detection of an erroneous transmission

between the program and the physical units. This mode can also be set directly

from outside.]

This is ensured by rule G1.

[ Once the program has reached the emergency stop mode, the physical en-

vironment is then responsible to take appropriate actions, and the program

stops.]

Notice that our rules do not care about actions which have been triggered when
switching to emergency stop mode; in particular, this also means that such ac-
tions are not canceled. The emergency stop mode represents the �nal state within
the ground model because there is no applicable rule by means of which the pro-
gram could escape from emergency stop, once it has reached this mode. This
is the reason why all our rules contain the negation of EmergencyStopMode in
their guard. As the program stops, it cannot read any new input nor produce
any further output nor update any function.

5 Message Passing Interface

The steam boiler control unit interacts with the physical environment through
a message passing interface. In order to comply to the fairly abstract view sug-
gested by the informal description, we model this message passing interface with-
out specifying any operational details of how messages are sent or received. In
particular, we do not address the exact timing behaviour|leaving open whether
the communication model is synchronous or asynchronous|nor do we uniquely

14 Remember that this third clause has been taken into account already by rule G1.



identify the physical units which are considered as sender or receiver of certain
messages.

In our mathematical model messages are represented as abstract objects
of a dynamic domain MESSAGE. The various message types speci�ed in the
informal description are introduced as elements of the domain MSGTYPE.
Since the set of physical units is �xed and a priori known, it is convenient
to encode the unit addresses directly into the message types|MSGTYPE thus
contains objects such as OPEN PUMP 1, OPEN PUMP 2, ... etc. At the
same time, we also re�ne PUMP STATE and PUMP CONTROL STATE

to PUMP OPEN and PUMP CLOSED resp. PUMP CONTROL FLOW and
PUMP CONTROL NO FLOW. Note that our de�nition of message types im-
plies that messages are uniquely identi�ed by their type among those messages
which are sent or received within the same cyle.

To represent the actual message content, for instance as required for mes-
sages of type MODE, LEVEL, or STEAM, we assume to have the domain
MSGCONT. For a straightforward formalization of messages having been
sent or received prior to the current cycle, also the number of the cycle
at which a message comes into life is attached to the message. We access
this information by the three functions type; cont ; cycle from MESSAGE to
MSGTYPE;MSGCONT;NAT respectively.

5.1 Sending and Receiving

Think of the domainMESSAGE as being partioned into two (dynamically grow-
ing) subsets IN and OUT such that IN refers to the messages which have been
received and OUT to those which have been sent by the control unit. The oper-
ation of creating a new message to be sent from the control unit to one or more
of the physical units is explicitly modeled through the following macro:

CreateMssg(Type,Cont) � extendMESSAGE with x

type(x ) := Type

cont(x ) := Cont

cycle(x ) := curr cycle

endextend

(Note that the actual send operation, as expressed by the SendMessages macro
(cf. Sect. 3.1), becomes e�ective in the subsequent writing phase of the current
cycle.) For the sake of brevity, we will use CreateMssg(Type) as a shorthand

for CreateMssg(Type,undef) when dealing with messages for which the relevant
information is just the message type.

Messages m 2 IN (m 2 OUT ) with cycle(m) = curr cycle are considered
as being received (sent) within the current cycle. Note that IN, in contrast to
OUT, is not updated by the program but by the external environment (the phys-
ical units). To check whether a message of a certain type has been transmitted
(sent or received) in the current cycle, it is convenient to use an extra predicate



transmitted : MSGTYPE! BOOL with the following meaning:

transmitted(Type)
� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle

Similarly, we will also refer to messages which have been sent or received in
the preceding or antepreceding (etc.) cycle using a special notation:

transmitted(Type)�

� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle � 1

transmitted(:::)�� is de�ned accordingly.

Although our message passing model re
ects in direct manner the view
of the informal description|a view which is not committed to any particular
implementation|, it allows us to specify the transmission of messages with the
necessary precision and detail as follows.

[ MODE(m): The program sends, at each cycle, its current mode of operation

to the physical units.]

Recall that the value of mode may be a�ected by the rules de�ned in
Sects. 4.1-4.5. It is the value of mode, possibly updated at the end of the cur-
rent cycle, that is to be sent to the physical units. A proper synchronization of
the required operations can easily be achieved by re�ning rule T2 (introduced
in Sect. 3.1) into two subrules, T2:1 and T2:2, e�ectively splitting the execut-

ing phase into two internal microphases as expressed below:

T2:1 : if phase = executing

then phase := executing'

T2:2 : if phase = executing'

then phase := writing

CreateMssg(MODE;mode)

[ STOP: When the message has been received three times in a row by the

program, the program must go into emergency stop.]

The abstract condition ExternalStop used in the de�nition of EmergencyStop in
G1 can now be re�ned as follows:

ExternalStop

� transmitted(STOP) ^ transmitted(STOP)� ^ transmitted(STOP)��

Most of the message types de�ned in the informal description are related
to error handling. The corresponding error handling protocols are speci�ed in
Sect. 5.2, while the detection of equipment failures is considered in Sect. 3.3.



5.2 Error Handling Protocols

The error handling protocols dealing with failures of physical units require the
availability of some status information about the units. We thus de�ne a unary
dynamic function status : UNIT! fregular, defective, acknowledgedg specify-
ing, for a given unit, one of three possible situations: the unit is considered as
operating correctly (regular); a failure of this unit has occurred but the corre-
sponding error message of the control program has not yet been acknowledged
(defective); the error message has been acknowledged but so far no message
has been received (acknowledged) from the unit telling that the latter has been
repaired.

The reaction of the program to unit failures as identi�ed by the predicate
Failure (see Sect. 3.3) is speci�ed by the following three error handling rules
where, for the sake of de�niteness, we assume (Cond VIII) that a failure de-
tection message will be acknowledged before the environment sends a repaired
message.15

E1 : var x ranges over UNIT

if status(x ) = regular ^ Failure(x )
then status(x ) := defective

CreateMssg (FailureDetectionMssg (x))

E2 : var x ranges over UNIT

if status(x ) = defective

thenif transmitted(FailureAcknowledgeMssg (x ))
then status(x ) := acknowledged

else CreateMssg (FailureDetectionMssg (x))

E3 : var x ranges over UNIT

if status(x ) = acknowledged ^ transmitted(RepairedMssg (x ))
then status(x ) := regular

CreateMssg (RepairedAcknowledgeMssg (x))

where FailureDetectionMssg (x), FailureAcknowledgeMssg (x), RepairedMssg (x),
and RepairedAcknowledgeMssg (x) refer to the corresponding error handling
messages depending on the device type and the device number of the partic-
ular unit.

5.3 Detection of Equipment Failures

In this section, we will de�ne the meaning of the two up to now abstract failure
predicates Failure and TransmissionFailure. The interpretation of these pred-
icates is of vital importance for the overall behaviour of the entire model.
In order to derive their meaning systematically by stepwise re�nements, we

15 Di�erent solutions are possible of course if repairing takes less time than sending an

acknowledgement of failure detection.



introduce a number of auxiliary predicates; for the de�niton of these aux-
iliary (locally de�nable) predicates we refer to the Glossary, except for the
predicate Defective(x) which is used as abbreviation for status(x ) 6= regular

^ :transmitted(RepairedMssg (x )).

[PUMP: (1) Assume that the program has sent a start or stop message to
a pump. The program detects that during the following transmission that

pump does not indicate its having e�ectively been started or stopped. (2) The

program detects that the pump changes its state spontaneously.]

for p 2 PUMP :
Failure(p), NonReactingPump(p) _

IrregularPumpAction(p) _Defective(p)

[ PUMP CONTROLLER: (1) Assume that the program has sent a start or stop

message to a pump. The program detects that during the second transmission

after the start or stop message the pump does not indicate that the water is

owing or is not 
owing; this despite of the fact that the program knows from

elsewhere that the pump is working correctly. (2) The program detects that

the unit changes its state spontaneously.]

for p 2 PUMP CTRL :
Failure(p), (NonReactingPumpCtrl(p) ^ :Failure(Pump(p)))

_ IrregularPumpCtrlEvent(p) _Defective(p)

[ WATER LEVEL MEASURING UNIT: (1) The program detects that the

unit indicates a value which is out of the valid static limits{i.e. between 0 and

C. (2) The program detects that the unit indicates a value which is incompat-

ible with the dynamics of the system.]

Failure(level measuring unit),
OutOfRangeWaterLevel _
IncompatibleWaterLevel _Defective(level measuring unit)

[ STEAM LEVEL MEASURING UNIT: (1) The program detects that the

unit indicates a value which is out of the valid static limits{i.e. between 0

and W. (2) The program detects that the unit indicates a value which is

incompatible with the dynamics of the system. ]

Failure(steam measuring unit),
OutOfRangeSteamValue _
IncompatibleSteamValue _Defective(steam measuring unit)

[ TRANSMISSION: (1) The program receives a message whose presence is
aberrant. (2) The program does not receive a message whose presence is in-

dispensable.]

TransmissionFailure,
AberrantMessage _MissingMessage

(See notes 28 and 29 of the Glossary for the de�nition of the predicates
AberrantMessage and MissingMessage.)



5.4 The Abstract Machine Program

Below we give a complete listing of the abstract machine program. Note that we
assume the condition `:EmergencyStop' to be a global precondition extending
the guards of all rules|except for the global rules G1; G2; we further assume
that the condition `phase = executing' speci�es an additional precondition for
the following rules: the global rules (G1; G2), the mode rules (I1-I3, N1; D1; R1)
and the error handling rules (E1-E3).

Timing Rules

T1 : if phase = reading

^ curr time � last time = 5

then ReadMessages

phase := executing

last time := curr time

curr cycle :=
curr cycle + 1

T2:1 : if phase = executing

then phase := executing'

T2:2 : if phase = executing'

then phase := writing

CreateMssg(MODE;mode)

T3 : if phase = writing

then SendMessages

phase := reading

Global Rules

G1 : if EmergencyStop

then EnterEmergencyStopMode

G2 : if WaterLevelAdjusted

^ :EmergencyStop

then RetainWaterLevel(mode)

else AdjustWaterLevel(mode)

Initialization Mode

I1 : if InitMode

^ SteamBoilerWaiting

^ (Failure(steam measuring unit)
_ Failure(level measuring unit))
then EnterEmergencyStopMode

I2 : if InitMode

^ SteamBoilerWaiting

^ WaterLevelAdjusted

^ :PhysicalUnitsReady
then IndicateProgramReady

I3 : if InitMode

^ SteamBoilerWaiting

^ PhysicalUnitsReady

thenifWaterLevelAdjusted

^ :Failure(level measuring unit)

^ :Failure(steam measuring unit)
^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

else EnterDegradedMode

else EnterEmergencyStopMode



Normal Mode Rule

N1 : if NormalMode

^ :EmergencyStop

^ :AllPhysicalUnitsOk
thenif Failure(level measuring unit)
then EnterRescueMode

else EnterDegradedMode

Degraded Mode Rule

D2 : if DegradedMode

^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

elif Failure(level measuring unit)
then EnterRescueMode

Rescue Mode Rule

R1 : if RescueMode

thenif PumpCtrlFailure

_ Failure(steam measuring unit)
then EnterEmergencyStopMode

elif :Failure(level measuring unit)

^ :EmergencyStop

thenif AllPhysicalUnitsOk

then EnterNormalMode

else EnterDegradedMode

Error Handling Rules

E1 : var x ranges over UNIT

if status(x ) = regular ^ Failure(x )
then status(x ) := defective

CreateMssg (FailureDetectionMssg (x))

E2 : var x ranges over UNIT

if status(x ) = defective

thenif transmitted(FailureAcknowledgeMssg (x ))
then status(x ) := acknowledged

else CreateMssg (FailureDetectionMssg (x))

E3 : var x ranges over UNIT

if status(x ) = acknowledged ^ transmitted(RepairedMssg (x ))
then status(x ) := regular

CreateMssg (RepairedAcknowledgeMssg (x))

6 Implementation

The evolving algebra speci�cation of the steam boiler control program de�ned in
the preceding sections can be implemented by a C++ program in such a way that

the abstract speci�cation represents the structure of the executable code. This
makes the code easily inspectable by formal means and provides useful interfaces
for possible modi�cations of the program. We believe that this approach to
program documentation|i.e. providing a sequence of stepwise re�ned abstract
models leading to executable code|contributes to the reliability of the produced
software.



For the implementation of the evolving algebra model for the steam boiler
control we have translated the rules, the signature (including initialization)
and the abstract de�nitions (macros) of the model into C++ code. In order
to make this work we had to program also the underlying semantics of evolv-
ing algebras (including the concurrency of the executions). For the connection
to the Karlsruhe steam boiler simulator we also had to program the physical
model. This physical model is realized through a collection of C++ functions
(see �les dynamic.H and dynamic.C) re�ning macros like AdjustWaterLevel,
OpenSomePumps, CloseSomePumps and will not be addressed any further here.

In the following we focus on the embedding of the control model into
C++, where we can identify three basic aspects, namely: i) the implemen-
tation of evolving algebra core routines (Sect. 6.1), ii) the mapping of
program rules (Sect. 6.2) and iii) the communication with the simulator
(Sect. 6.3). Section 6.4 presents some statistics on the code development. The
complete code is available at: http://www.uni-paderborn.de/fachbereich/
AG/agklbue/staff/igor/ea/dag/c++/.

6.1 Evolving Algebra Core Routines

For the implementation of evolving algebra core routines we restrict here to those
routines which are relevant for the controller speci�cation e�ectively implement-
ing a subclass of evolving algebras (whereas a complete model of executable
evolving algebras can be found in [11]). The main aspect in the translation of
evolving algebra states into C++ is the representation and handling of function
values (see eav.H). A given function value is represented by the template class
EAV<T> (evolving algebra value) in the form (val,def,time), where val is a C++

value of type T, def is a 
ag which masks the value val in case that it refers to
the distinguished element undef, and time is a time stamp indicating the phase
in which the value was assigned (resp. `0' for initially de�ned values). Time here
is measured by an integer variable ea_clock which serves as a global phase
counter.

An additional template class EA<T> extends the value representation scheme
de�ned above by introducing a history mechanism such that past values|
i.e. values that have already been updated|can be accessed (within a limited
range16) in much the same way as current values by applying the post�x op-
erator []; if f is an r-ary function name and t= t1; : : : ; tr, where the ti's are
terms, then an expression of the form f(t)[�k], k = 1; 2; : : :, refers to the pre-
ceding, antepreceding, etc. value of f(t). The interpretation of f(t) in phase
k is de�ned by the tuple v in the history of f(t) (provided it exists) such that
v = (x; y; z), z < k and there is no v0 = (x0; y0; z0) in the history of f(t) with
z0 < k and z < z0. Through the use of circular bu�ers the history mechanism is
e�ciently implemented such that the history length is a free parameter and can
be chosen independently for each individual function.

16 For the steam boiler control we need at most three values: the present value, the

preceding value and the antepreceding value.



By combining the value representation scheme with the history mechanism
the order in which the updates are computed within a given phase becomes
irrelevant as implied by of the following two facts: i) all function values which
are updated within the current phase get the same time stamp, viz. the value
of ea_clock; ii) none of these updates can become e�ective prior to the next
phase17. This in fact means that at the C++ level the parallel execution model
of evolving algebra rules is transformed into a sequential execution model which
is equivalent w.r.t. the resulting observable behaviour.

Encoding of Initial States. Each function used in our evolving algebra model
must explicitly be declared as an instance of the template class EA<T>; for each
function the desired history length must be speci�ed if more than two values
need to be stored18. The resulting collection of function declarations de�nes the
vocabulary (or signature) of our evolving algebra model (see vocab.H); a proper
initialization of these functions is de�ned in the �le vocab.C. The only excep-
tions are the water level and steam value prediction functions, level_comp_min,
level_comp_max resp. steam_comp_min, steam_comp_max, for which the very
�rst messages LEVEL(x) and STEAM(y) sent by the simulation environment are
taken as initial values.

Static universes are realized as C++ enumerations as exempli�ed by the en-
coding of the universe UNIT:

enum UNIT {

LEVEL = 0, STEAM,

PUMP_1, PUMP_2, PUMP_3, PUMP_4,

PUMP_CTRL_1, PUMP_CTRL_2, PUMP_CTRL_3, PUMP_CTRL_4,

UNIT_last

};

where U_last is a �ctive generic serving as an end marker.

6.2 Mapping of Program Rules

In order to bridge syntactical di�erences between C++ and evolving algebras, the
�le def.H de�nes a number of C++ macros. The basic idea is illustrated by the
following scheme:

IF a THEN b ELSE c ENDIF stands for: if ( a ) { b } else { c } .

As an example of the resulting mapping of our evolving algebra rules (see
rules.ea19) consider the encoding of the error handling rule E1:

17 Note that read operations in case of updated values do always refer to the values of

the preceding phase (as explained above).
18 The default history length of two is the minimum length required for the sequential-

ization of the execution model.
19 Note that each rule in rules.ea is decorated by an additional FIRE(R)macro which

is used for tracing purposes only.



E1 : var x ranges over UNIT

if status(x ) = regular ^Failure(x )
then status(x ) := defective

SendMssg FailureDetectionMssg (x))

// Rule E1:

VAR_RANGES_OVER( x, UNIT )

IF status(x) == regular AND Failure(x)

THEN

status(x) = defective;

CreateMssg(FailureDetectionMssg(x));

ENDIF

ENDVAR

Here the macro VAR_RANGES_OVER(x,U) stands for traversing the universe U, i.e.
a C++{loop statement starting at the �rst and ending with the last element of U.
The evolving algebra execution model is realized as an in�nite loop (see main.C)
within which the included rules (#include "rules.ea") are executed and the
phase counter ea_clock is incremented.

Macros. Macros used in the speci�cation are either realized as C++ macros (see
macros.H), in case of simple macros, or as C++ functions (see macros.C), in case
of complex macros. Some macros which concern the physical model are further
re�ned to re
ect the implementation. As an example of the encoding of macros
consider the following:

NoFlowIndication(pump ctrl-i)

� transmitted(OPEN PUMP i)�� ^
:transmitted(CLOSE PUMP i)� ^
transmitted(PUMP CONTROL i NO FLOW)

#define NoFlowIndication( i ) \

( transmitted__( open_PUMP_1 + i) AND \

NOT transmitted_ (close_PUMP_1 + i) AND \

transmitted(PUMP_CTRL_1_no_flow + i) )

6.3 Communication with the Simulator

Communication between the control program and the Karlsruhe simulator is

based on message passing through pipes. On top of this communication model,
which o�ers the usual low-level communication primitives, a more abstract com-
munication model is realized (see comm.H, comm.C); this abstract model directly
re
ects the view of the formal speci�cation. The dynamic universe MESSAGE is
implicitly modeled through an array message of boolean instances of the class
EA<BOOL>: EA<BOOL> message[ MSGTYPE_last ]; (where the array repre-
sents the function message : MSGTYPE ! BOOL). The creation of a message
x is expressed by the following macro:



#define CreateMssg(x) message[x] = true .

With each entry of the array message we associate a current value and history.
The history length is limited, i.e. old messages may be discarded; however it is
long enough to ensure a proper functioning of the program. At the C++ level
the SendMessages operation initiated by rule T1 (see Sect. 3.1) has the follow-
ing meaning: the program checks the presence of messages for each individual
message type (as indicated by the array message) and sends for each logically
present message a physical message (a string representation) to the simulator.
Similarly, the ReadMessages operation indicates the presence of messages sent
by the simulator by updating the corresponding entries of message. Finally,
ResetInports and ResetOutports delete all present input/output messages by
resetting the entries of message to false.

6.4 Statistics and Experiments

The �rst implementation, the one which was presented at the Dagstuhl work-
shop, took about two weeks of work for one person. After the workshop a new
version which also re
ects improvements in the speci�cation was produced within
a week. The size of the resulting program is 1720 lines of source code (about 38
KB) and 93 KB executable (compiled with SUN's 4:1 C++ compiler on a SUN
workstation with Solaris 2:5).

The major cause for the problems we encountered during the tests of the
�rst version of our program was the lack of a rigorous description of the physical
model and of the communication and timing behavior which have been used for
running the Karlsruhe simulator. This incompleteness of the informal problem
description is also the reason why certain errors can not be detected without
additional explicit design decisions; an example is the simultaneous breakdown
of pumps and pump controllers and similar cases which have been analyzed
furthermore in some other contributions to this work. On the basis of a formal-
ization of the physical model for the steam boiler, it would be possible to provide
a correctness proof for the translation of evolving algebra rules into C++ code
using the precise semantic model for C++ in [17]|but such an endeavor is out of
the scope of this case study.

7 Evaluation and Comparison

1. We provide a formal speci�cation of the control program as an abstract ma-
chine which is very close to the informal description and therefore can easily be
compared to it for checking its appropriateness from the application point of
view. This speci�cation is then re�ned to more detailed abstract machines and
eventually translated into executable C++ code. Our abstract machine models
incorporate an architectural design. Some characteristic examples of properties
possessed by the abstract models are formulated and proved mathematically.



2. In the last re�nement step we translate our abstract machine speci�-
cation into an executable C++ program. It is available at http://www.uni-
paderborn.de/fachbereich/AG/agklbue/sta�/igor/ea/dag/c++/ and on the CD
included in this volume. This program was linked successfully to the Karlsruhe
steam boiler simulator. Several experiments were done with the control program
and the steam boiler simulator. The control program was tested (and its second
and �nal version passed) with the provided example scenarios. Our tests led
to various changes in the design of the Karlsruhe simulator; they showed the
incompleteness of the informal description and the need for a complete formal-
ization of the physical model (which we provide in our solution not as part of
the abstract speci�cation but only through the C++ program, which re
ects
the decisions made for the physical system behaviour for the implementation of
the Karlsruhe simulator). Such a complete description allows one to detect e.g.
a simultaneous breakdown of pumps and pump controllers.

3. The speci�cation of the static parts of our abstract machines is similar
to and complemented by what one �nds in the contributions using algebraic
speci�cation or state based temporal logics, see BCPR, GDK, CW1, LM. Our
notion of abstract machines (i.e. evolving algebras) is similar in spirit to the
corresponding notion underlying Abrial's method B. In our abstract models we
deliberately did not make any assumptions on the physical behaviour of the sys-
tem (in order to remain faithful to Abrial's original problem description), so that
all the solutions which focus on a detailed description and mathematical analysis
of the physical behaviour complement our work. Due to the lack of a su�ciently
complete informal description of the physical system behaviour we did not push
our mathematical analysis of system properties which is complemented by all
the solutions in this book which focus on a more detailed analysis and proofs of
system properties.

4. For the speci�cation of the control program approximately three weeks
were used for its �rst version and another two weeks for polishing it. Implemen-
tation time for the C++ program was two weeks for its �rst version, and one
week for the second (and �nal) version.

An "average programmer" (who is supposed to have some basic knowledge of
traditional mathematical reasoning) can learn to use evolving algebras in about
half a week of training. We believe that the ease with which an experienced
programmer can learn the use of evolving algebras is a distinguishing feature of
the suggested approach to systematic formally supported programming.

5. Our experience with abstract machine models shows that an average pro-
grammer can understand the given speci�cation without any previous knowledge
of evolving algebras; it su�ces to read the rules as abstract pseudo-code. A more
detailed understanding of the proofs of system properties, in particular where
details of the underlying precise semantics of evolving algebras are needed, may

require one or two days of familiarizing oneself with the used language of tran-
sition systems.

Acknowledgement We thank two anonymous referees for their valuable crit-
icism.
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A Semantic Foundation of Evolving Algebras

For the convenience of the reader (but with no claim of completeness) we recall
here the syntax and semantics of single-agent evolving algebras20 as far as they
are relevant for the de�nition of our steam boiler algebra. For an exhaustive
de�nition we refer to [12].

A.1 Algebras as States

Algebras are structures without relations, i.e. domains coming with functions
de�ned on them; we deal with relations through their characteristic (boolean-
valued) functions. Terms are de�ned over a given vocabulary (or signature) � as
in �rst-order logic and interpreted on a nonempty class X. A vocabulary �

consists of a �nite collection of function names, each of a �xed arity; function
names may further be characterized by marking them as relation names or static
names. Every vocabulary � includes an a priori given set of so-called basic logic

names: the equality sign, the nullary function names true; false; undef , a special
universe RESERVE, and the names of the usual boolean operations. Except for
RESERVE, basic logic names are static names; true; false and the equality sign
are relation names. By de�nition, all functions are total functions on X.

Algebras, as de�ned above, constitute state primitives on top of
which multi-sorted structures with partial operations are speci�ed as follows:
i) unary relations are viewed as universes, i.e. a unary relation name U in � is
interpreted as the set fx 2 X : U (x)g; ii) the union of all universes other than
RESERVE and RESERVE partition X; iii) with an r-ary function name f in
� we associate a partial function such that dom(f) = f�x 2 Xr : f(�x) 6= undef g.

A.2 Syntax of Transition Rules

The productions below de�ne the structure of transition rules inductively, where
the various syntactical categories are denoted in the following way: f (function
names), v (variables), t (terms),G (guards),R (rules), U (unary relation names,
viz. universes).

The core of evolving algebra rules form the so-called basic transition rules,
namely: the update instruction, the block constructor and the conditional con-

structor ; in this subset of evolving algebras all terms are ground (i.e. do not
contain variables):

R ::= f(t1; : : : ; tr) : = t

R ::= R1 : : : Rk

R ::= if G0 then R0 elseif G1 then R1 : : : elseif Gk then Rk endif21

If the last guard Gk in a conditional constructor is true, the alternate form
\else Rk" is also allowed in place of the last elseif clause.

20 The material presented here is essentially taken from [11].
21 For layout reasons we often abbreviate elseif as elif.



Basic transition rules are then extended by additional constructs introducing
variables22, namely: the import constructor and the declaration constructor . In
the so extended evolving algebras terms may contain variables; this also means
that guards of conditional constructs may contain quanti�ers with variables rang-
ing over �nite domains.

R ::= import v R0 endimport

R ::= var v ranges over U R0 endvar

Instead of the import primitive it is often more convenient to use macros like
the extend macro: extend U with x R stands for import x U (x) : = true R.

Programs. A program is a rule without free variables; a basic program is a basic
rule without free variables. (However, it is often convenient to consider a program
P of the form P = R1 : : :Rn as a collection of rules fR1; : : : ; Rng).

A.3 Semantics of Transition Rules

With an evolving algebra A, where A is given through its vocabulary � , its
program P , and a nonempty class of initial states S0, we associate a class of
states (containing S0) such that each state de�nes an interpretation of � in X.
To specify the semantics of P , i.e. to give a precise meaning of �ring a transition
rule on a given state S 2 A, we introduce a few auxiliary de�nitions.

A location of a state S 2 A is a pair loc = (f; x), where f is a non-static
function name in � and x denotes a sequence of elements of X; the length of
x is the arity of f .

An update of S is a pair � = (loc; val), where val 2 X is the new value to
be associated with the location loc of S. To �re � = ((f; x); val) at S means to
transform S into a state S0 such that fS0(x) = val and all other locations loc0 of
S, loc0 6= loc, are not a�ected.

An update set � over S is a set of updates of S. � is consistent if it does not
contain any two updates �; �0 such that � = (loc; x) and �0 = (loc; y) and x 6= y.
Otherwise, � is inconsistent. To �re a consistent update set � at S means to
�re all its members at S, i.e. to produce a new state S0 such that

fS0(x) =

�
y if ((f; x); y) 2 �

fS(x) otherwise.

To �re an inconsistent update set means to do nothing (i.e. to produce a state
S0 such that S0 = S).

22 In addition to the constructs considered here [12] de�nes a choose constructor for

specifying non-deterministic choices.



Semantics of Basic Transition Rules. The e�ect of applying a ground rule
23

R on an appropriate state S is de�ned by means of an update set Updates(R;S):
to �re R at S �re Updates(R;S). The update set Updates(R;S) is inductively
de�ned on the structure of R:

{ if R � f(t1; : : : ; tn) : = t then Updates(R;S) = f (loc; S(t)) g, where loc =
(f; (S(t1); : : : ; S(tn)));

{ if R � R1 : : : Rk then Updates(R;S) =
Sk

i=1Updates(Ri; S);

{ if R � if G0 then R0 elif G1 then R1 : : :elif Gk then Rk endif then
Updates(R;S) is de�ned as

�
Updates(Ri; S) if 9i 8j : j < i) S(Gj ) = false^ S(Gi) = true;

; otherwise.

Semantics of Non-Ground Rules. In addition to basic transition rules, we now
consider rules containing variables, namely: import rules, which produce fresh
elements, and var rules, which allow a simple form of synchronous parallelism.
We restrict to those rules which do not have both bound and free occurrences
of the same variables and in which each bound variable is declared at most once
(so-called perspicuous rules)24.

For a (possibly non-ground) transition rule R, the e�ect of applying R on
S is de�ned by an update set of the form Updates(R;S; �; �), where � is an
environment which binds the free variables of R, and � is a so-called global choice
function which determines the variable bindings for import rules. For basic
transition rules the meaning of Updates(R;S; �; �) is obtained by substituting
in the de�nitions above each occurrence of Updates(R;S) by Updates(R;S; �; �)
and each occurrence of S(t) by S�(t); for the other rules, it is de�ned below
(to simplify the explanation, we �rst de�ne the semantics of import rules for
programs containing no var rules, and then we generalize the de�nitions to allow
arbitrary combinations of rules).

Import Rules. For programs P containing import rules, in a given state S,
consider an injective global choice function � : Boundimport(P ) ! RESERVES

which maps all variables bound by import constructors in P to di�erent el-
ements of the universe RESERVE. Then, for import rules, the update set
Updates(R;S; �; �) will be de�ned as follows:

{ if R � import v R0 endimport then

Updates(R;S; �; �) =
f ((RESERVE; (�(v))); false) g [ Updates(R0; S; �[v 7! �(v)]; �);

23 In a ground rule all terms are ground.
24 Note that rules can always be transformed into this form by renaming the variables

appropriately (as explained in [12]).



Note that, due to the special properties of the universe RESERVE (which
is essentially a set without structure|see [12] for details), the choice of � is
irrelevant: in fact, in the presence of import rules the computed states are unique
up to isomorphism.

Var Rules and Their Interactions. The update set Updates(R;S; �; �) for decla-
ration constructs (var rules) is de�ned as follows:

{ if R � var v ranges over U R0 endvar then

Updates(R;S; �; �) =
S

x2US
Updates(R0; S; �[v 7! x]; �):

Essentially, the e�ect of a var rule is to execute simultaneously an instance of
the subrule R0 for each element of U . When import rules occur inside the scope
of var rules, they are expected to import an element for each rule instance: this
can be re
ected by extending the domain of the global choice function to

f (v; x1; : : : ; xn(v)) j v 2 Boundimport(P ); xi 2U
v;i
S g

where Uv;1; : : : ; Uv;n(v) are the ranges of variables uv;1; : : : ; uv;n(v) declared by
the n(v) var constructs enclosing the import which binds v. Additionally, in
the de�nitions of Updates(R;S; �; �) for import �(v) must be substituted by
�(v; �(uv;1); : : : ; �(uv;n(v))), so that, for each rule instance, the appropriate values
are bound to the variable v.

B Proofs of System Properties

In this appendix we give mathematical proofs for some simple but typical prop-
erties one would like to guarantee for the system behaviour. The purpose of
these proofs is to illustrate that the choice of the abstraction level may be of
great help to make simple proofs for interesting properties of complex systems
possible. For a more extensive and more involved use of this strategy of building
evolving algebra models which are appropriate for transparent proofs of com-
plex properties see for ex. [10, 7, 6, 15, 14, 13]. Such traditional (not formalized)
mathematical proofs provide insight into the structure of the system. We see
them not in competition with machine checked (interactive or fully automated)
proofs, but as useful guidelines for constructing such detailed formalized proofs
where necessary. An illustration of this is the correctness proof for a general
compilation scheme of Prolog programs to WAM code in [10] parts of which
have been machine checked using the KIV and ISABELLE systems [1, 16].

Proposition B.1 The valve is activated only in initialization mode and is closed

in every other non emergency stop operation mode.

Proof. The valve is initially closed (Cond.VI) and can be actived only by ap-
plying G2 and only if the current operation mode is initialization25.

25 Every operation on the valve { OpenValve and CloseValve { in the macros

RaiseWaterLevel , ReduceWaterLevel and RetainWaterLevel is guarded by the con-

dition mode = initialization.



To prove the second part of the proposition it is enough to show that when the
system changes its mode from initialization to normal or degraded, then either
the valve is already closed or it will be simultaneously closed (and by the �rst
part of the proposition will not be opened in these modes).

According to our transition rules, mode changes from initialization to
normal or degraded only by I3 and this can happen only ifWaterLevelAdjusted is
true. The RetainWaterLevel(initialization) of G2 will simultaneously �re,
whereby the valve will be closed if it has been open.

Proposition B.2 The valve must be closed before opening any pump.

Proof. The valve is initially closed (Cond.VI) and by Prop. B.1 can be open
only in initialization mode. Pumps can be opened only by applying G2 to raise
the level of water.

IfG2 is applied in initializationmode and the valve is open, then the claim fol-
lows from the simultaneous execution of ActivateSomePumps and CloseValve in
RaiseWaterLevel(initialization).

Proposition B.3 (Consistency of mode updates) In every state the sys-

tem is in exactly one operation mode.

Proof. The function mode is initially set to initialization. Its value can change
only by the execution of G1; I1; I3; N1; D1; R1, each of which update mode to
one and only one new value. Thus it su�ces to prove the mutual exclusion of
the guards of those rules which set mode to di�erent values.

G1 sets mode to emergency stop, as do I1, the most external else part of I3
and the �rst then part ofR1. By its guard EmergencyStop, G1 cannot be applied
simultaneously with any of the remaining rules N1; D1, the �rst thenif part of
I3 and the elif part of R1.

The rules I1; N1; D1; R1 are disjoint by their mode guards; the same holds
for I3; N1; D1; R1. I1 and the �rst thenif part of I3 are disjoint by the guards
Failure(steam measuring unit) and Failure(level measuring unit).

Proposition B.4 The operation mode of the system can and does change only

according to one of the following transformations:

{ from initialization to normal or degraded or emergency stop;
{ from normal to degraded or rescue or emergency stop;
{ from degraded to normal or rescue or emergency stop;
{ from rescue to normal or degraded or emergency stop.

Thus, the system never comes back to inizialization mode.

Proof. Mode transformations are and can be performed only by the following
rule applications:

{ from initialization to normal (I3) or degraded (I3) or emergency stop (G1,
I1, I3);



{ from normal to degraded (N1) or rescue (N1) or emergency stop (G1);
{ from degraded to normal (D1) or rescue (D1) or emergency stop (G1);
{ from rescue to normal (R1) or degraded (R1) or emergency stop (G1, R1).

Proposition B.5 If the program has received the messages STEAM BOI-
LER WAITING and PHYSICAL UNITS READY, the initialization process ter-
minates.

Proof. Once the initial mode initialization has been changed, by Prop. B.4 the
system never comes back to it.

By the execution of one of the rules G1, I1 or I3, the operation mode changes
to emergency stop, normal or degraded. Thus, the initialization process ends.

Proposition B.6 If the water level is between the admissible values N1 and N2,

then all pumps must be closed.

Proof. The program tries to maintain the right level of water by the global rule
G2.

If the water level is between the admissible values N1 and N2,
the guard WaterLevelAdjusted of G2 is true and by the execution of
RetainWaterLevel (mode) all possibly open pumps will be stopped, whichever
is the current operation mode.

The pumps can get activated only by the execution of AdjustWaterLevel;
this can happen only by applying G2 when the condition WaterLevelAdjusted is
false, i.e. when the water level is below N1 or above N2.

Proposition B.7 The program cannot send and receive messages at the same

time.

Proof. In our transition rules one can receive messages only when the phase is
reading and one can send messages only when phase is writing.

Proposition B.8 The program follows a cycle which takes place each �ve sec-

onds and consists of the following actions:

{ reception of messages coming from the physical units;

{ analysis of the received information;

{ transmission of messages to the physical units.

Proof. By the form of the timing rules, the program receives messages when
phase is reading, analyses the received information when phase is executing and
executing', and sends messages when phase is writing.

Initially we have (Cond.II) curr time = last time and phase = reading. By
Cond.I, eventually T1 will �re, then T2:1 and T2:2 can �re, then T3. By Cond.I,
eventually T1 will �re again.

Proposition B.9 At any cycle the message MODE(m) is transmitted to the

physical units.



Proof. By execution of T2:1 the content of the messageMODE is updated to the
(possibly updated) value of current operationmode and is sent by SendMessages,
i.e. by each application of T3.

Proposition B.10 If in a given cycle the program has received a RE-
PAIRED message from a physical unit U which had previously sent a

FAILURE DETECTION message which had been acknowledged by that unit,

then during the following cycle either the program must send a RE-
PAIRED ACKNOWLEDGMENT message to U, or the mode is changed to

emergency stop by transmission error.

Proof. If the program has received the REPAIRED message from the phys-
ical unit U and no transmission errors occur, the program sends the RE-

PAIRED ACKNOWLEDGMENT message to the physical units by applying
E3.26

If a transmission error occurs, by the global rule G1 the operation mode is
set to emergency stop.

Proposition B.11 If in a given cycle the program has sent a FAILURE DE-
TECTION message to a physical unit U, either the program receives a FAIL-
URE ACKNOWLEDGMENT message from U, or the mode is changed to

emergency stop by transmission error.

Proof. If the program has sent the FAILURE DETECTION message to a phys-
ical unit U and no transmission errors occur, by the rule E2 it continues to send
the same message until a FAILURE ACKNOWLEDGMENT message has been

received from U (whose status is thereby updated to acknowledged ).

If a transmission error occurs, by the global rule G1 the operation mode is
set to emergency stop.

Proposition B.12 If in a given cycle the program has sent the message OP-
EN PUMP(i) to the pump-i, then during the next two cycles either the program

receives the messages PUMP STATE(i,open) and PUMP CONTROL STATE(i,

ow) from pump{i and pump ctrl{i respectively, or at least one of the two units

has a failure, or the mode is changed to emergency stop by transmission error.

The same holds for CLOSE PUMP(i), PUMP STATE(i,closed) and

PUMP CONTROL STATE(i, no 
ow).

Proof. If in a given cycle the program has sent the message OPEN PUMP i

(resp. CLOSE PUMP i) to a given pump{i and in the following cycle the
message PUMP i OPEN (resp. PUMP i CLOSED) has not been transmitted,

then either there is a failure of pump{i (see NonStartingPump(pump{i)) or the

26 The FAILURE DETECTION message, previously sent by the program to the units,
has been acknowledged by the transmission of the FAILURE ACKNOWLEDG-

MENT message from U ; therefore, when the REPAIRED message is received by

the program, the status of the repaired unit U is acknowledged.



mode changes to emergency stop because of a transmission error (see Missing-

Pump i StateMssg).
If in a given cycle the program has sent the message OPEN PUMP i

(resp. CLOSE PUMP i) to a given pump{i and in the following cy-
cle the PUMP i OPEN (resp. PUMP i CLOSED) has been received
and after two cycles the message PUMP CONTROL i FLOW (resp.
PUMP CONTROL i NO FLOW) has not been transmitted, then either there
is a failure of pump ctrl{i (see NoFlowIndication(pump ctrl{i)) or the mode
changes to emergency stop because of a transmission error (see MissingCon-

trolPump i StateMssg).

Proposition B.13

(i) If the program receives a message which is not consistent with the his-

tory of the system (i.e. an aberrant message), then the program enters

emergency stop mode.

(ii) If mode does not switch to emergency stop, the program reacts to every re-

ceived message from the physical units and sends them appropriate messages

back.

Proof. (i) If the program receives a message that is not consistent with the
history of the system (e.g. it receives a REPAIRED message from a physical unit
without ever having sent a FAILURE DETECTION message to that unit), the
program enters emergency stop mode by the global rule G1 since its enabling
condition EmergencyStop contains TransmissionFailure which in turn contains
all aberrant messages.

(ii) We can assume that the program did not receive the message STOP

tree times in a row because otherwise the mode would have changed to
emergency stop by applying G1 (see ExternalStop).

If mode is initialization and the program receives the message STEAM BOI-

LER WAITING but not yet the message PHYSICAL UNITS READY, then, if
there is no failure of the steam measuring unit nor of the level measuring unit

(whereby the operation mode would change to emergency stop by applying I1)
and if the water level is adjusted (since otherwise the operation mode would
change to emergency stop by applying I3), the program sends the message PRO-
GRAM READY by applying I2.

If mode is initialization and the program receives the messages
STEAM BOILER WAITING and PHYSICAL UNITS READY, then the mode
changes to normal, degraded or emergency stop by the execution of I3, no further
message is required to be sent and the initialization phase ends.

For the reaction to a <UNIT> REPAIRED message, the claim has been
proved by Prop. B.10.

If the program receives a FAILURE ACKNOWLEDGEMENT message by
a defective physical unit, then the status of the concerned unit is updated to
acknowledged (by E2) and no reaction to that message is expected from the
program until it will receive the REPAIRED message from the same unit; that
message will be acknowledged by applying rule E3.



Note that if the program does not receive any of the following mes-
sages which must be present during each transmission, the mode changes
to emergency stop for transmission failure (see MissingMessage) by apply-
ing G1: PUMP i OPEN (resp. CLOSED), PUMP CONTROL i FLOW (resp.
NO FLOW ), LEVEL, STEAM, i = 1,2,3,4.

C GLOSSARY

The glossary contains a complete list of basic universes, functions, constants,
macros, predicates, conditions and transition rules. The items are listed accord-
ing to their alphabetical order without distinguishing between small and capital
letters. We indicate UNIVERSES by capital letters, functions by small letters,
PredicateNames and MacroNames by the �rst character written in capitals 27.

C.1 UNIVERSES

BOOL = ftrue; falseg.

Set of boolean values.

IN : Set of received messages.

MESSAGE = IN [ OUT.
Set of (sent and received) messages.

MODE = finitialization; normal; degraded; rescue; emergency stopg.
Set of all operation modes.

MSGCONT : Set of message contents.

MSGTYPE = fMODE;PROGRAM READY;VALVE;OPEN PUMP i;

CLOSE PUMP i;PUMP i FAILURE DETECTION;

PUMP CONTROL i FAILURE DETECTION;

LEVEL FAILURE DETECTION;

STEAM FAILURE DETECTION;

PUMP i REPAIRED ACKNOWLEDGEMENT;

PUMP CONTROL i REPAIRED ACKNOWLEDGEMENT;

LEVEL REPAIRED ACKNOWLEDGEMENT;

STEAM REPAIRED ACKNOWLEDGMENT;

STOP; STEAM BOILER WAITING;

PHYSICAL UNITS READY;LEVEL; STEAM;

PUMP i OPEN;PUMP i CLOSED;

PUMP CONTROL i FLOW;PUMP CONTROL i NO FLOW;

PUMP i REPAIRED;PUMP CONTROL i REPAIRED;

LEVEL REPAIRED; STEAM REPAIRED;

PUMP i FAILURE ACKNOWLEDGEMENT;

PUMP CONTROL i FAILURE ACKNOWLEDGEMENT;

LEVEL FAILURE ACKNOWLEDGEMENT;

27 In accordance with usual practice we use predicates as boolean valued functions and

macros as abbreviations.



STEAM OUTCOME FAILURE ACKNOWLEDGEMENT

j 1 � i � 4g.
Set of message types.

NAT : Set of natural numbers.
PUMP = fpump-1; : : : ; pump-4g � UNIT.

Set of pumps.
PUMP CTRL = fpump ctrl-1; : : : ; pump ctrl-4g � UNIT.

Set of pump controls.
OUT : Set of messages sent by the control unit.
UNIT = flevel measuring unit; steam measuring unitg [

PUMP [ PUMP CTRL

Set of physical units.

C.2 FUNCTIONS

cont :MESSAGE!MSGCONT.
Message content.

cycle :MESSAGE ! NAT.
Cycle number at which a message comes into life.

curr time : NAT.
Global clock.

curr cycle : NAT.
Cycle counter.

Failure : UNIT! BOOL.
Physical unit operation behaviour.
Failure(level measuring unit)

� OutOfRangeWaterLevel _ IncompatibleWaterLevel _
(status(level measuring unit) 6= regular ^
:transmitted(RepairedMssg (level measuring unit)))

Failure(steam measuring unit)

� OutOfRangeSteamValue _ IncompatibleSteamValue _
(status(steam measuring unit) 6= regular ^
:transmitted(RepairedMssg (steam measuring unit)))

Failure(p)

� NonReactingPump(p) _ IrregularPumpAction(p) _
(status(p) 6= regular ^ :transmitted(RepairedMssg (p)));
for p 2 PUMP

Failure(pc)

� (NonReactingPumpCtrl(pc) ^ :Failure(Pump(pc)) _
IrregularPumpCtrlEvent(pc)) _
(status(pc) 6= regular ^ :transmitted(RepairedMssg (pc)));
for pc 2 PUMP CTRL

last time : NAT.
Beginning of the current cycle.

mode :MODE.
Current operation mode.



phase : freading; executing; executing0; writingg.
Current phase. The executing phase splits into two internal microphases.

status : UNIT! f regular, defective, acknowledged g.
Physical unit status.
status(u) = regular : the unit is considered as operating correctly;
status(u) = defective : a unit failure has occurred but the corresponding

error message has not yet been acknowledged by the unit;
status(u) = acknowledged : the error message has been acknowledged but

no repair message from the unit has been received.
Switched o� : UNIT! BOOL.

Physical unit operation mode.
transmitted :MSGTYPE! BOOL.

Checks if a certain (type of) message has been transmitted (sent or received)
in the current cycle. 28

transmitted(Type)

� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle

transmitted(Type)�

� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle � 1

transmitted(Type)��

� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle � 2

transmitted(Type)�n

� 9m 2MESSAGE : type(m) = Type ^ cycle(m) = curr cycle � n

type :MESSAGE!MSGTYPE.
Message type.

C.3 CONSTANTS

C : Maximal capacity of water in the steam boiler.
M1 : Minimal limit of water in the steam boiler.
M2 : Maximal limit of water in the steam boiler.
N1 : Minimal normal limit of water in the steam boiler.
N2 : Maximal normal limit of water in the steam boiler.
q : Quantity of water in the steam boiler.
v : Quantity of steam exiting the steam boiler.
W : Maximal quantity of steam at the exit of the steam boiler.

C.4 MACROS

ActivateSomePumps

� CreateMssg(OPEN PUMP i) for some i 2 f1 : : :4g
Some pumps will be activated by sending the message OPEN PUMP to the
physical units (it expresses a non-deterministic choice).

28 Note that when a message is read by executing T1, it is assumed to carry the updated

new cycle value curr cycle+ 1 .



AdjustWaterLevel(m)

� if SteamBoilerWaiting

thenifWaterLevelBelowMin

then RaiseWaterLevel (m)
else ReduceWaterLevel (m)

CloseValve � CreateMssg(VALVE, closed)

If the valve is currently activated (open), then it will be closed by sending
the message VALVE to the physical units.

CreateMssg(Type, Cont)

� extend MESSAGE with x

type(x ) := Type

cont(x ) := Cont

cycle(x ) := curr cycle

endextend

for all Type 2MSGTYPE

CreateMssg(Type) � CreateMssg(Type, undef)

Enter[m]Mode � mode := m for all m 2MODE

FailureAcknowledgeMssg (x)
� LEV EL FAILURE ACKNOWLEDGEMENT

if x = level measuring unit;

� STEAM FAILURE ACKNOWLEDGEMENT

if x = steam measuring unit;

� PUMP i FAILURE ACKNOWLEDGEMENT

if x = pump-i 2 PUMP;

� PUMP CONTROL i FAILURE ACKNOWLEDGEMENT

if x = pump ctrl-i 2 PUMP CTRL

FailureDetectionMssg (x)
� LEV EL FAILURE DETECTION if x = level measuring unit;

� STEAM FAILURE DETECTION if x = steam measuring unit;

� PUMP i FAILURE DETECTION if x = pump-i 2 PUMP;

� PUMP CONTROL i FAILURE DETECTION

if x = pump ctrl-i 2 PUMP CTRL

IndicateProgramReady � CreateMssg(PROGRAM READY)

Indicates that the operation of sending the signal PROGRAM READY to
the physical units has been performed.

OpenValve � CreateMssg(VALVE, open)

In initialization mode the message VALVE is sent to the physical units to
request opening the valve for evacuation of water from the steam boiler.

Pump(pump ctrl-i) � pump-i

RaiseWaterLevel(m)

� ActivateSomePumps

if m = initialization then CloseValve

ReadMessages : Indicates the reception of the incoming messages, performed
in the reading phase.



ReduceWaterLevel(m)

� if m = initialization

then StopPumps

OpenValve

else StopSomePumps

RepairedAcknowledgeMssg (x)
� LEV EL REPAIRED ACKNOWLEDGEMENT

if x = level measuring unit

� STEAM REPAIRED ACKNOWLEDGEMENT

if x = steam measuring unit

� PUMP i REPAIRED ACKNOWLEDGEMENT

if x = pump-i 2 PUMP

� PUMP CONTROL i REPAIRED ACKNOWLEDGEMENT

if x = pump ctrl-i 2 PUMP CTRL

RepairedMssg (x)
� LEV EL REPAIRED if x = level measuring unit

� STEAM REPAIRED if x = steam measuring unit

� PUMP i REPAIRED if x = pump-i

� PUMP CONTROL i REPAIRED if x = pump ctrl-i

RetainWaterLevel(initialization)

� StopPumps

CloseValve

SendMessages : Indicates the sending performed in the writing phase, of all
outgoing signals computed in the executing (and executing') phase.

StopPumps �
^

1�i�4

CreateMssg(CLOSE PUMP i)

All pumps will be stopped by sending the message CLOSE PUMP to the
physical units.

StopSomePumps � CreateMssg(CLOSE PUMP i) for some i 2 f1 : : :4g
Some pumps will be stopped by sending the message CLOSE PUMP to the
physical units29.

C.5 PREDICATES

AberrantMessage : Is true when the program receives a message whose pres-
ence is aberrant. This predicate could be de�ned as follows: 30

29 Note that we deliberately abstain here from formalizing further the non-determinism

in the choice of (the number of) pumps.
30 The predicate is deliberately left abstract because there is no explicit de�nition for

it in the informal speci�cation. Note that the de�nition suggested here for purely

illustrative purposes does not cover all possible cases one can reasonably imagine for
aberrant messages to cover the situations which are implicit in the given text.

Because of the lack of information on the intended notion of aberrant messages,

we have implemented aberrant messages in the C++ program by the empty set.



AberrantMessage � 9u 2 UNIT :
(transmitted(RepairedMssg (u)) &status(u) 6= acknowledged) _
(transmitted(FailureAcknowledgeMssg (u)) &status(u) 6= defective)

AllPhysicalUnitsOk � 8x 2 UNIT : :Failure(x )
Indicates the correct behaviour of all physical units.

DegradedMode � mode = degraded

EmergencyStopMode � mode = emergency stop

EmergencyStop � ExternalStop_ReachingLimitLevel _TransmissionFailure

Indicates the conditions wich force the system to immediately enter the
emergency stop mode.

ExternalStop

� transmitted(STOP) ^ transmitted(STOP)� ^ transmitted(STOP)��

Indicates that the message STOP has been received by the program three
times in a row.

IncompatibleSteamValue

� (SteamValue < SteamValueCompMin) _
(SteamValue > SteamValueCompMax)

IncompatibleWaterLevel

� (WaterLevel <WaterLevelCompMin) _
(WaterLevel > WaterLevelCompMax)

InitMode � mode = initialization

IrregularPumpAction(pump-i)

� NonActivatedPump(pump-i) ^ StateChangePump(pump-i)

IrregularPumpCtrlEvent(pump ctrl-i)

� NonPreActivatedPump(pump-i) ^ StateChangePumpCtrl(pump ctrl-i)

MissingControlPump i StateMssg

� :transmitted(PUMP CONTROL i FLOW) ^
:transmitted(PUMP CONTROL i NO FLOW)

MissingLevelMssg � :transmitted(LEVEL)

MissingMessage 31

� MissingLevelMssg _MissingSteamMssg _
MissingPumpStateMssg _MissingPumpControlStateMssg

MissingPumpControlStateMssg

�
_

1�i�4

MissingControlPump i StateMssg

MissingPump i StateMssg 32

� :transmitted(PUMP i OPEN) ^ :transmitted(PUMP i CLOSED)

MissingPumpStateMssg �
_

1�i�4

MissingPump i StateMssg

MissingSteamMssg � :transmitted(STEAM)

31 The de�nition ofMissingMessage incorporates only those messages which are known

to the system to be mandatory. Other cases of messages which have been sent but
do not arrive have to be covered under AberrantMessage(s).

32 We do not consider here the case of inconsistency of messages arising when both

messages, about a pump being open and closed, are transmitted simultaneously.



NoFlowIndication(pump ctrl-i)

� transmitted(OPEN PUMP i)�� ^ :transmitted(CLOSE PUMP i)� ^
transmitted(PUMP CONTROL i NO FLOW)

NonActivatedPump(pump-i)

� :transmitted(OPEN PUMP i)� ^ :transmitted(CLOSE PUMP i)�

NonPreActivatedPump(pump-i)

� :transmitted(OPEN PUMP i)�� ^ :transmitted(CLOSE PUMP i)�

NonReactingPump(pump-i)

� NonStartingPump(pump-i) _NonStoppingPump(pump-i)

NonReactingPumpCtrl(pump ctrl-i)

� NoFlowIndication(pump ctrl-i) _NoStopIndication(pump ctrl-i)

NonStartingPump(pump-i)

� transmitted(OPEN PUMP i)� ^ :transmitted(PUMP i OPEN)

NonStoppingPump(pump-i)

� transmitted(CLOSE PUMP i)� ^ :transmitted(PUMP i CLOSED)

NormalMode � mode = normal

NoStopIndication(pump ctrl-i)

� transmitted(CLOSE PUMP i)�� ^
transmitted(PUMP CONTROL i FLOW)

OutOfRangeSteamValue � (SteamValue < 0) _ (SteamValue > W )

OutOfRangeWaterLevel � (WaterLevel < 0) _ (WaterLevel > C)

PhysicalUnitsReady

� 9n � 0 j transmitted(PHYSICAL UNITS READY)�n

Indicates that the signal PHYSICAL UNITS READY has been received by
the program (either in the current cycle or in any of the previous cycles).

PumpCtrlFailure � 9 c 2 PUMP CTRL : Failure(c)
Indicates that a pump control device is not working correctly.

PumpFailure � 9 p 2 PUMP : Failure(p)
Indicates that a pump is not working correctly.

ReachingLimitLevel : Is true if the water level is risking to reach one of the
limit values M1 or M2.

RescueMode � mode = rescue

StateChangePump(pump-i)

� transmitted(PUMP i OPEN) 6= transmitted(PUMP i OPEN)�

StateChangePumpCtrl(pump ctrl-i)

� transmitted(PUMP CONTROL i FLOW) 6=
transmitted(PUMP CONTROL i FLOW)�

SteamBoilerWaiting

� 9n � 0 j transmitted(STEAM-BOILER WAITING)�n

Indicates that the message STEAM-BOILER WAITING has been received
by the program (either in the current cycle or in any of the previous cycles).

SteamValue = cont(m) j 9m 2MESSAGE : type(m) = STEAM ^cycle(m) =
curr cycle

SteamValueCompMax : Yields the maximal quantity of steam at the exit of
the steam boiler, computed by an externally updatable function, according



to the dynamic of the system33.
SteamValueCompMin : Yields the minimal quantity of steam computed at

the exit of the steam boiler, by an externally updatable function, according
to the dynamic of the system33.

TransmissionFailure � AberrantMessage _MissingMessage

Is true when a transmission failure happens.
ValveClosed : Is true when the state of the valve is closed.
WaterLevel = cont(m) j 9m 2MESSAGE : type(m) = LEVEL ^ cycle(m) =

curr cycle

WaterLevelAdjusted � N1 �WaterLevel � N2

Indicates if the quantity of water in the steam boiler is between the admis-
sible values N1 and N2.

WaterLevelBelowMin �WaterLevel < N1

Is true if the steam boiler water level is below the minimum value N1.
WaterLevelCompMax : Yields the maximal level of the water in the steam

boiler computed, by an externally updatable function, according to the dy-
namic of the system33.

WaterLevelCompMin : Yields the minimal level of the water in the steam
boiler computed, by an externally updatable function, according to the dy-
namic of the system33.

C.6 CONDITIONS

Initialization. For every initial state S0 of the steam boiler algebra A we assume
that the following conditions hold:

Cond II) The functions curr time; last time; curr cycle and phase are initial-
ized as follows (see Sect. 3.1):

S0(curr time) = S0 (last time) = S0 (curr cycle) = 0 ; S0 (phase) = reading

Cond VI) The valve and all pumps are initially switched o� (see Sect. 4.2):

S0 j= ValveClosed ^ (8x 2 PUMP : SwitchedO� (x))

Regular Runs. For every non-�nal state Si which is reachable in a run � of
the steam boiler algebra A from a valid initial state S0 such that Si(phase) 6=
Si+1(phase) we assume that the following conditions hold:

Cond I) The value of curr time increases monotonically to 1 (see Sect. 3.1).

Cond III) As long as the system operates in initialization mode the water level
never is risking to reach one of the limit values M1 or M2 (see Sect. 4.1):

Si j= InitMode) :ReachingLimitLevel

33 This function will be de�ned by the C++ program.



Cond IV) In initialization mode, if the water level value is between the admis-
sible values N1 and N2, the system operates to maintain this value within
an admissible range (see Sect. 4.1):

Si j= InitMode ^ (N1 � q � N2))WaterLevelAdjusted

Cond V) The operations which e�ectively activate or stop the pumps and open
or close the valve do behave in a robust way; i.e., they will be realized such
that they do not cause any e�ects on the state of the addressed device (a
pump or the valve) whenever the current state of that device is already iden-
tical to the requested state (see Sect. 4.1).

Cond VII) In initialization mode, if the quantity of steam exiting the steam
boiler is not equal to zero, then the unit for detection of the level of the
steam is defective (see Sect. 4.2):

Si j= InitMode ^ (v > 0)) Failure(steam measuring unit)

Cond VIII) We assume that a failure detection message will be acknowledged
before the environment sends a repaired message (see Sect. 5.2).

Cond NB. On receiving the message PHYSICAL UNITS READY|when the
program is waiting for this message to come|it immediately switches to
mode emergency stop if the water level is below N1 or above N2 (see
Sect. 4.2).

This article was processed using the LATEX macro package with LLNCS style


