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Abstract: In this paper we show how to integrate the use of Gurevich's Abstract
State Machines (ASMs) into a complete software development life cycle. We present a
structured software engineering method which allows the software engineer to control
e�ciently the modular development and the maintenance of well documented, formally
inspectable and smoothly modi�able code out of rigorous ASM models for requirement

speci�cations. We show that the code properties of interest (like correctness, safety,
liveness and performance conditions) can be proved at high levels of abstraction by
traditional and reusable mathematical arguments which|where needed|can be com-
puter veri�ed. We also show that the proposed method is appropriate for dealing in a
rigorous but transparent manner with hardware-software co-design aspects of system
development.
The approach is illustrated by developing a C

++ program for the production cell con-
trol problem posed in [Lewerentz, Lindner 95]. The program has been validated by
extensive experimentation with the FZI production cell simulator in Karlsruhe and
has been submitted for inspection to the Dagstuhl seminar on \Practical Methods for
Code Documentation and Inspection" (May 1997).
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1 Introduction

Gurevich's Abstract State Machines (previously called evolving algebras, see
[Gurevich 95]) have been used successfully to specify real-life programming lan-
guages (e.g. Prolog, C++, VHDL, Oberon) and architectures (e.g. PVM, Trans-
puter, DLX, APE100), to validate standard language implementations (e.g. of
Prolog on the WAM, of Occam on the Transputer), to verify numerous dis-
tributed and real-time protocols, etc.. A survey and a methodological motivation
for the new ASM approach in comparison to other speci�cation and veri�cation
approaches can be found in [B�orger 95]; see also [B�orger 94], the annotated ASM
bibliography [B�orger 95a], the most recent work appearing in this and the pre-
vious J.UCS special ASM issue and the two ASM home pages http://www.uni-
paderborn.de/cs/asm.html and http://www.eecs.umich.edu/gasm/.

In this paper we investigate the idea to use stepwise re�nement of ASMs
for modular development of well documented, formally inspectable and feasibly
modi�able code out of ASM models for requirement speci�cations. We illustrate



the proposed structured software engineering approach by developing the au-
tomation software for a reactive distributed system, namely a C++ program to
control the production cell introduced in [Lewerentz, Lindner 95] as case study
derived from \an actual industrial installation in a metal-processing plant in
Karlsruhe" to obtain a \realistic, comparative survey" for testing \the usefulness
of formal methods for critical software systems and to prove their applicability
to real-world examples" [Lindner 95]. The speci�cation together with its re�ne-
ment to executable code (see [Mearelli 97]) have been submitted for inspection
to the participants of the Dagstuhl seminar on \Practical Methods for Code
Documentation and Inspection" organized by D. Parnas, P. Joannou and the
�rst author from May 12-16, 1997.

1.1 The Main Development Steps

Speci�cation. As starting point we de�ne a ground model (in the sense of
[B�orger 94]) which is rigorous but transparent and concise and can be convinc-
ingly shown to faithfully reect the production cell as informally speci�ed in
[Lindner 95]. We explain how the information hiding and abstraction mecha-
nisms of ASMs allow the designer to formulate such ground models as an appro-
priate interface to the real world as it is perceived by the customer|a feature
which presupposes in particular that the ground model is expressed in terms
of the given application domain. The standard notation used for ASMs makes
it possible to come up with transparent, application driven descriptions which
provide a realistic chance to expose formalization errors. Moreover information
hiding and abstraction mechanisms of ASMs encourage and facilitate the decom-
position of the system into components and their modular development, based on
a transparent de�nition of precise interfaces through which the components are
put together (at various levels of abstraction). The de�nition of these interfaces
is obtained by a faithful formalization of the distributive features of the problem
as given by the informal task description and yields a clean separation of the
local actions of each simple component from the cooperation activities between
di�erent components. It is interesting that this interface de�nition together with
the abstract ground model de�nition of the functional behaviour of each single
component su�ces for a proof of the strong liveness property required in the
informal task description, see the Agent Progress Lemma below.

Design. Starting from this abstract model we de�ne a series of re�ned models

leading to C++ code which has been validated by extensive experimentation
showing that the program controls successfully the production cell simulation
environment at FZI Karlsruhe. The ability of ASMs to be easily tailored to
any abstraction level facilitates the de�nition of re�nement steps which avoid
premature design decisions and make each design decision transparent. This �ts
well the common experience that a good re�nement hierarchy comes out only
after various attempts to structure the design in an appropriate way.

Analysis.The simplemathematical relations between the various ASMmod-
els allow the designer to produce rigorous arguments for the correctness of his
design, namely to prove the system properties of interest (safety, liveness, max-
imal performance etc.) by �rst establishing them under natural assumptions at
high levels of abstraction and then showing that each re�nement step preserves
those assumptions. In other words one can control the code development at high
levels of abstraction by proving the required code properties for abstract code



through drawing simple conclusions from assumptions which are related in a nat-
ural way to basic conditions of the underlying problem (domain)|and therefore
not yet complicated by later design decisions|and which can easily be shown to
be preserved by the subsequent design steps. The abstraction possibilities o�ered
by ASMs yield a reduction of the proofs to simple proofs of local conditions on
single machines or on groups of communicating machines or of machines which
are related by a re�nement step. It is important that the simplicity of the ASM
models allows one to establish these proofs in ordinary mathematical terms, as
they are familiar to engineers and programmers, so that during the program
development the working computer scientist can check and guarantee by himself
the properties of interest. The value of this feature o�ered by the ASM approach
is enhanced by the fact that those traditional mathematical proofs come in a
form which makes them reusable when the abstract models and the code evolve
due to changing requirements. This is particularly helpful for keeping control of
the functionality of the code during the evolutionary maintenance process.

The possibility to integrate standard system engineering reasoning into the
ASM modeling activity as a means to keep control of the overall system develop-
ment is one of the reasons for the practicality of the method. It has to be judged
against the well known fact that purely mechanical methods like logical deduc-
tion (theorem proving) and symbolic model checking face scalability problems for
applications which are beyond the complexity of relatively simple cases like the
production cell (see the evidence reported in [Lewerentz, Lindner 95b]). However
standard mathematical proofs accompanying the development of stepwise re�ned
ASMs are amenable to further detailing through mechanization in machine based
proof systems. An illustrative example for such an endeavour is the complete ver-
i�cation of the ASM based WAM correctness proof in [B�orger, Rosenzweig 94]
which used the interactive theorem prover KIV and is partially reported in this
volume (see [Schellhorn, Ahrendt 97]); for another machine veri�cation of this
proof which uses ISABELLE see [Pusch 96]. Kirsten Winter has investigated
for the �rst time the possibility to turn ASMs into �nite automata in order to
machine check the correctness of the ASM speci�cation by applying advanced
model checking techniques (see [Winter 97] in this volume). The same idea to use
abstraction to contain the state explosion for model checking has been applied
recently to the SCR method (see [Bharadwaj,Heitmeyer 97]).

The hierarchy of re�ned models, together with the proofs of the correctness
of the implementations relating the di�erent levels, constitute a full documen-
tation of the result of the whole structured software development and make the
executable code amenable to rigorous inspection. This combination of modular
development with controlled stepwise re�nement (including optimizations) pro-
vides also an economical way to achieve extendability and modi�ability for the
design of complex systems where cost e�ective maintenance and evolution of the
code is an issue.

1.2 The Lesson for Software Engineering

We hope to illustrate, through a full treatment of the production cell leading
from capturing requirements to the design of code, that the ASM method can be
integrated with advantage into a complete software development life cycle. The
method makes it possible to solve the ground model problem (providing means



for capturing informal requirements by appropriate|correct, concise, transpar-
ent and exible|formalizations); it supports incremental development by the
systematic use of stepwise re�nement; it allows one to simulate abstract models
to validate these speci�cations (see [P�appinghaus 97] where the Paderborn ma-
chine [Del Castillo et al. 96] for executing ASMs is used); it shows how to turn
the informal reasoning and the application domain driven explanations|which
necessarily accompany every design|into a precise mathematical form which
makes them accessible to (mental or machine) falsi�ability experiments; it can
integrate the use of machine support (type/model checking, theorem proving)
for detecting errors in the formal system analysis (speci�cations and proofs). The
ASM method for structured software engineering therefore respects the guide-
lines for applying formal methods proposed in [Heitmeyer 97]. Since ASMs use
only the standard language and standard methods of programming and mathe-
matics so that their use can be learnt in a couple of days by every experienced
programmer, their integration into the software development life cycle can be
realized for the normal development work avoiding the awkward idea to set up
separate formal speci�cation teams.

This point can be further clari�ed by comparing it to Anthony Hall's re-
cent statement in his invited lecture at the 1997 Z User Meeting where he said
that \the most important characteristic of Z, which singles it out from every
other formal method, is that it is completely divorced from computation" which
\means that you can use logic (otherwise known as ordinary language) to de�ne
your requirements" (see [Hall 97]). Paraphrasing this we would say that the most
important characteristic of the ASM approach, which really singles it out from
every other formal method, is that it allows us to happily marry the use of logic
and of abstract computations. This marriage helps to overcome the devastating
belief|which theoreticians have greatly succeeded to impose on the (above all
theoretical) computer science world for decades now|into an alleged dichotomy
between declarative (or logical) and operational methods. The \argument" which
is usually put forward to make us regard declarative methods as good and op-
erational ones as bad is that logic allows us to express elegantly and succintly
\what" we want without having to worry about the \how" to achieve this goal
whereas operational descriptions unavoidably drive us away to think about con-
trol and implementation details which are irrelevant to the goal of the high level
description. This is not the place to discuss the reasons why this argument is
misleading when we are looking for an appropriate treatment of the dynamics of
complex computation systems (see [B�orger 95]); here we have to limit ourselves
to remarking that the belief in this dichotomy has proved not to be helpful for
�lling, in any rigorous but nevertheless practical way, the huge gap between
abstract system views and their implementations.

ASMs allow the system designer to �ll this gap in a controllable|theoretically
well founded but nevertheless practical|way. The happy marriage ASMs pro-
duce between logic and (abstract) computation provides the software engineer
with a method to de�ne unambiguous but comprehensible and concise require-
ment and system speci�cations and to relate them (by stepwise re�nement of
ASMs) in a direct and feasably controllable way to more detailed design lev-
els and eventually down to executable code. This possibility to directly relate
rigorous models at the levels of abstraction of the software development cycle
has a considerable advantage in particular because nowadays most real systems
are implemented using concurrency. Supported by distributed ASMs (i.e. ASMs



with an underlying notion of concurrent computation) we can avoid doubling the
speci�cation work when it comes to relate the speci�cation in a reliable way to
the design; again the comparison to Z taken from Anthony Hall's invited lecture
at ZUM'97 is illuminating: \Going...towards design we have to recognize that
Z is simply not the right language to use...we need to go from our Z speci�ca-
tion, through some computational model of the speci�cand (such as an action
system) to a re�nement in, for example, a concurrent version of the re�nement
calculus. Of course we may �nd ourselves re-introducing Z or Z-like speci�cations
of modules in the design..."(see [Hall 97]).

At �rst sight the length of this paper seems to con�rm the unavoidability of
combinatorial explosion which most formal methods experience when applied to
more than academic examples, although in publications the phenomenon often
remains hidden behind the argument that \due to the lack of space and time the
details have to be skipped". We want to demonstrate to the reader who is willing
to have a closer look that the proposed use of ASMs for structured software
development is practical and in particular can avoid the combinatorial explosion
even if all the necessary details are spelled out in full. Therefore this paper
develops, from scratch, the entire formal speci�cation, the complete code design

and the analysis (with detailed proofs for all the required system properties),
including citations of those parts of the informal task description which are
relevant for convincing the customer that the ground model problem has been
solved (besides pictures visualizing all the rules, rule summaries and extensive
comments explaining the salient features of the ASM method and comparing it
to competing approaches). Alltogether this is not more than what one has to
expect, for a program with 1000 lines of code, from a professional documentation
which a) explains to the customer that and how the original task is accomplished
by the code, b) contains a software reference manual documenting all the design
decisions and the interface conditions which are needed for the maintenance of
the program and in particular for cost e�ective and reliable program evolution.

The reader who is only interested in the speci�cation method should skip the
proofs of the required system properties and the section on the code and may
jump to the program summaries in the appendices once he has understood the
method from the �rst component machines.

2 Notation and Prerequisites

This section can be skipped to be consulted should the necessity arise. It will
help if the reader is familiar with the semantics of Abstract State Machines,
de�ned in [Gurevich 95]. We could have used also Parnas' tabular notation
[Parnas, Madey 95] for which a simple but rigorous semantics can be given in
terms of ASMs (see [B�orger 96]). However what follows can be understood cor-
rectly also by reading our ASM rules as pseudo{code over abstract data types.
We therefore point here only to some of the basic ASM features.

A distributed ASM is given by a set of agents and a program function Mod

which assigns to each agent a module (\sequential" program) consisting of a
�nite number of so called transition rules of the following form:

If Cond then Updates



where Cond is any expression (of �rst order logic) and Updates is a �nite set of
function updates, i.e. of updates f(t1; : : : ; tn) := t.

The states of ASMs are arbitrary structures, i.e. domains with predicates
and functions de�ned on them (where without loss of generality we treat pred-
icates as characteristic functions). The collection of the types of the functions
(and predicates) which can occur in a given ASM is called its signature. The
computational meaning of an ASM M is that given any state S (of the signa-
ture of M ), for each transition rule such that Cond is true in S, all the updates
f(t1; : : : ; tn) := t in the set Updates of that rule are executed simultaneously,
i.e. the value of function f at the given argument combination t1; : : : ; tn, com-
puted in S, is changed to the value t which has been computed in S. The result
of this computation step is a new state which di�ers from S only by some values
for some of the functions where the 0-ary functions play the role of the usual
programming variables. (The simultaneous execution of all the updates in a rule
abstracts from intermediate copying to save some values which are updated but
are also needed to compute the values for some other update.)

Each agent of a distributed ASM �res its rules at its own \time"; the over-
all distributed computation (a \run") is a graph made up from computation
sequences of the single sequential agents which may be synchronized through
shared functions (the interaction functions, see below). Often it is possible with-
out loss of generality to adopt the eagerness assumption of synchronized lan-
guages, i.e. that whenever a rule is enabled it is immediately applied. (For the
production cell ASM speci�cation below we can make this assumption.) ASMs
usually come together with a set of integrity constraints (on the domains, func-
tions, rules) and with initialization conditions representing assumptions on the
intended computations. This intuitive idea of runs of distributed ASMs should
su�ce for the purposes of this paper. For a precise de�nition see [Gurevich 95].

For a good understanding of how the distributed nature of the production cell
is reected in our models we de�ne here the following classi�cation of functions
which is suggested by the concept of ASMs and has proved to be particularly
convenient for applications. Let an ASM M be given. What follows is to be un-
derstood with respect to M . Functions can be either static|i.e. never changing
during any run of M|or dynamic (otherwise). Dynamic functions may change
during a run of M \as a consequence of" updates by M or updates by the en-
vironment (i.e. by some other agent than M ). This results in the distinction of
the following four subclasses of dynamic functions, called controlled, monitored,
interaction and derived functions respectively. Controlled functions (for M ) are
dynamic functions which are directly updatable by and only by the rules of
M , i.e. functions f which appear in a rule of M as leftmost function (namely
in an update f(s) := t for some s; t) and are not updatable by the environ-
ment. Monitored functions are dynamic functions which are directly updatable
by and only by the environment, i.e. which are updatable but do not appear
as leftmost function in updates of M . Monitored and controlled functions are
generalizations of the controlled and monitored variables in the Parnas-Madey
Four Variable Model (see [Parnas, Madey 95]).

Interaction functions are dynamic functions which are directly updatable by
rules ofM and by the environment. They are particularly useful for decomposing
speci�cations of complex systems into simpler components because they allow
the designer to separate the dynamic aspects he wants to focus on from other
dynamic aspects fromwhich he can abstract by relegating them to environmental



updates. In doing so one has to keep in mind to formulate precise protocols
regulating the mixed access rights to guarantee the consistency of updates of
such functions by di�erent agents (M and the environment). Derived functions
are dynamic functions which are not directly updatable neither by M nor by
the environment but are nevertheless dynamic because de�ned (for example
by an explicit de�nition or by an inductive de�nition) in terms of static and

dynamic functions. Derived functions can be classi�ed into indirectly controlled,
indirectly monitored or indirect interaction functions depending on the nature
of the auxiliary functions used for their de�nition.

Updatable functions are controlled or interaction functions, non updatable

functions are static, monitored or derived. In applications it is sometimes use-
ful to adopt the preceding classi�cation with respect to update locations (i.e.
particular arguments of a function) or with respect to speci�c function values
(see [B�orger, Mazzanti 97] for an example), but we will not need this for the
production cell.

For boolean-valued functions b we often write b(x) instead of b(x)=true and
not b(x) or :b(x) instead of b(x)=false. Sometimes we will take advantage of the
Self function introduced in the de�nition of distributed ASMs in [Gurevich 95]
to parameterize the agent speci�c functions. When the agent Self is clear from
the context, we will omit mentioning it. An example is the function pair Bot-
tom/TopPosition which appears below with parameters ERT (for the elevating
rotary table in the production cell) and Press (for the press).

For the pictorial representation of our rule systems we use the standard
notation from owcharts and �nite automata where states are visualized by
circles, �ring conditions by rhombs and updates by rectangles. One can adopt
automatic translations between these semantically equivalent notations.

3 The Ground Model

The purpose of the �rst production cell model GroundCELL, a ground model in
the sense of [B�orger 94], is to produce an application oriented rigorous formula-
tion of the informal description which allows one to justify that this formalization
provides a correct model of the desired system. The most general abstraction
mechanism and the exibility of the ASM language make it easy to express such
ground models in terms of the given application domain so that one is enabled
to discuss with the customer, by comparison of the ASM ground model with
the informal description, that his requirements are met. The ground model can
then be used as the basis for the subsequent stepwise re�nements and extensions
leading to executable code.

We start in an object-oriented spirit by de�ning what are the basic objects
composing the system, their basic operations and interactions. Our method is
to extract these items from the informal task description (see [Lindner 95]).

: : : the production cell is composed of two conveyor belts, a positioning
table, a two-armed robot, a press, and a travelling crane. Metal plates inserted
in the cell via the feed belt are moved to the press. There, they are forged and
then brought out of the cell via the other belt and the crane.[Lindner 95]

Accordingly we specify the system as a distributed ASM with six modules,
one for each of the agents composing the production cell and working together



concurrently where each of the component ASMs follows its own clock. We will
see below that each of the agents represents a sequential process which can|and
under the Cell Assumption does without loss of generality|execute its rules as
soon as they become enabled. The sequential control of each agent is formalized
using a function currPhase : Agent!Phase which yields at each moment the cur-
rent phase of the agent (characterizing the action this agent is going to perform).
We write currPhase for the 0-ary controlled function currPhase(Self) when the
agent Self is clear from the context.

The dependencies, among the various parts of the cell and between the cell
and the environment, are formalized in the ground cell in such a way that each of
these parts is de�ned with a precise interface to the rest of the system|typically
through functions which are monitored for the single parts and represent for
these parts the embedding environment. Through the ground model we de�ne
the interfaces for each agent and describe the basic actions of each module ma-
chine without detailing the way this action is performed. In order to be able to
prove, at this level of abstraction, the required safety conditions (locally for each
component machine) and the liveness of the system (globally as a property of
the interactions among the machines composing the cell), we explicitly formulate
appropriate assumptions from which these properties follow easily. In order to
preserve these properties through the later re�nements it su�ces then to verify
these assumptions at the re�nement level.

We also have to make plausible assumptions on the physical characteristics of
the production cell devices and of their actions because the informal description
says nothing about their speed, dimension, etc. We abstract from the (�nite)
duration of actions performed by the devices. This is in accordance with what
happens in the simulator (where the actuators are just started and stopped
by the controller to trigger or halt the devices) and in accordance with the
fact that ASM rules are atomic, i.e. \executed in zero time" (although there
are natural ways to describe durative actions with ASMs, see [B�orger et al. 95]
where durative actions of distributed agents are reduced to atomic actions).
Similar assumptions are that the (�nite) belts have at least the space to hold
two pieces each, that every object which keeps moving will eventually arrive at
its destination position and will be detected there by the corresponding sensor
(\device liveness"), that sensor signals arise only when an object is moving into
the correponding position and stay as long as the object does not leave that
position, etc. We refer to such assumptions generically as Cell Assumption. For
the geometrical layout of the production cell see the picture in the appendix.

All the approaches reported in [Lewerentz, Lindner 95] to which we suggest
to compare our solution assume that the reaction of the control software is
su�ciently fast to ful�ll the appropriate timing requirements. Therefore we too
make this assumption. This simpli�es the task although ASMs have no di�culty
of principle to deal with real-time conditions (see [Gurevich, Huggins 96] where
ASM agents perform instantaneous actions in continuous time).

In the following subsections we de�ne separately each of the six sequen-
tial component ASMs which, put together as distributed ASM, constitute the
ground cell GroundCELL. The initialization conditions which we impose on the
ground model are motivated by the desire to avoid a certain number of tedious
case distinctions in the safety and liveness proofs. We will see below that these
assumptions can be guaranteed by a standard preprocessing technique.



3.1 The Feed Belt Ground Model

: : :The task of the feed belt consists in transporting metal blanks to the
elevating rotary table. The belt is powered by an electric motor, which can be

started up or stopped by the control program. A photoelectric cell is installed
at the end of the belt; it indicates whether a blank has entered or left the �nal
part of the belt. ... the photoelectric cells switch on when a plate intercepts the
light ray. Just after the plate has completely passed through it, the light barrier
switches o�. At this precise moment, the plate ... has just left the belt to land
on the elevating rotary table|provided of course that the latter machine is
correctly positioned ... the feed belt may only convey a blank through its light
barrier, if the table is in loading position ... do not put blanks on the table, if
it is already loaded ... [Lindner 95]

We formalize this description by abstracting from the motors (see the re-
mark in the section on the press ground model) which yields an automaton with
three states (phases). In phase NormalRun the automaton is "transporting metal
blanks to the elevating rotary table" none of which has yet "entered the �nal
part of the belt". This phase can and will change to CriticalRun or Stopped when
the photoelectric cell, formalized by a 0-ary boolean-valued monitored function
PieceInFeedBeltLightBarrier , switches to the value true and thereby indicates
that "a blank has entered ... the �nal part of the belt". The automaton switches
to phase CriticalRun if the elevating rotary table is "ready for loading", i.e. if
the value of the 0-ary boolean-valued derived function TableReadyForLoading is
true which is de�ned by the table being in load position and not loaded. If the
elevating rotary table is not "ready for loading", the feed belt is Stopped and
can continue later in CriticalRun only after the elevating rotary table has be-
come ready for loading. The feed belt leaves its CriticalRun phase|and indeed
goes back to NormalRun |when the photoelectric cell, by switching the value
of PieceInFeedBeltLightBarrier from true to false, indicates that "a blank has
... left the �nal part of the belt", i.e. that the table has been loaded with that
blank. We have chosen to let the feed belt run also when it carries no piece, in
accordance with one of the options of the informal speci�cation.

The feed belt \communicates" that the table is loaded by setting the 0-ary
boolean-valued function TableLoaded (i.e. by updating it from false to true)
when dropping a piece. This function is monitored for the elevating rotary table
and an interaction function for the feed belt (and for the robot which will only
reset the function|update it from true to false|, namely when retrieving a
piece from the table. This guarantees the consistency of this function.)

In the informal speci�cation there is no sensor at the beginning of the belt
to determine whether the feed belt is free to receive a piece. It is said that \ a
new blank may only be put on the feed belt, if ... the last one has arrived at the
end of the feed belt". We interpret this as allowing (at most) two pieces on the
belt at any time and formalize the control of the deposit of blanks on the feed
belt by a 0-ary interaction function FeedBeltFree which is updated by the feed
belt from false to true when "a blank ... has arrived at the end of the feed belt".
We will see below that the only other agent which can update this function is
the traveling crane, namely by switching it from true to false when a blank is
dropped onto the feed belt. This will guarantee the consistency of the updates
of this function.

The preceding formalization is summarized by the following ASM. ERT
stands for the elevating rotary table.



NormalRun

 LightBarrier
PieceInFeedBelt

FeedBeltFree:= true

ForLoading
TableReady

TableLoaded:=true

CriticalRun

PieceInFeedBelt
 LightBarrier

ForLoading
TableReady

Stopped

[Feed Belt]

FB NORMAL.
if currPhase = NormalRun and PieceInFeedBeltLightBarrier
then FeedBeltFree := True

if TableReadyForLoading then currPhase := CriticalRun
else currPhase := Stopped

FB STOPPED.
if currPhase = Stopped and TableReadyForLoading
then currPhase := CriticalRun

FB CRITICAL.
if currPhase = CriticalRun and not PieceInFeedBeltLightBarrier
then currPhase := NormalRun

TableLoaded := True

where TableReadyForLoading � TableInLoadPosition and not TableLoaded
TableInLoadPosition � currPhase(ERT) = StoppedInLoadPosition

For the initialization we assume currPhase = NormalRun , FeedBeltFree = true
and consequently PieceInFeedBeltLightBarrier = false.



The lack of a photoelectric cell or of a tra�c light at the beginning of the
feed belt makes the feed belt ASM asymmetric to the deposit belt ASM below;
a simpler uniform feed and deposit belt machine would result from the decision
to have such blank detectors at the beginning and at the end of the belts. We
leave it as an exercise to play with the simple variations which su�ce to reect
such hardware/software co-design decisions and to compare their result.

We illustrate that the feed belt safety property required by [Lindner 95] can
be easily proved at the level of abstraction of this ground model ASM Feed Belt.

Feed Belt Safety Property . The feed belt does not put metal blanks on

the table if the latter is already loaded or not stopped in loading position.

Proof. A piece can be dropped onto the elevating rotary table only by ex-
ecuting the feed belt rule FB CRITICAL. This rule is applicable only if the feed
belt is in phase CriticalRun which can be entered only by applying FB NORMAL
or FB STOPPED when TableReadyForLoading is true, i.e. by de�nition when the
table is not yet loaded and is stopped in loading position.

3.2 The Elevating Rotary Table Ground Model

: : :The task of the elevating rotary table is to rotate the blanks by about
45 degrees and to lift them to a level where they can be picked up by the
�rst robot arm. The vertical movement is necessary because the robot arm is
located at a di�erent level than the feed belt and because it cannot perform
vertical translations. The rotation of the table is also required, because the
arm's gripper is not rotary and is therefore unable to place the metal plates

into the press in a straight position by itself. [Lindner 95]

In the ground model for the elevating rotary table we abstract from the
motors and from the particular movements (rotation and lifting) which are per-
formed in order to bring each blank from the position where it has been loaded
by the feed belt to the position where it can be unloaded by the �rst robot arm
(see the remark on this abstraction in the section on the press ground model).
We formalize this by two 0-ary monitored functions LoadPositionReached and
UnloadPositionReached (which by the cell assumption are true i� the table is in
the respective position).

As a consequence the elevating rotary table becomes a simple automaton
which cycles between being StoppedInLoadPosition (waiting for being loaded by
the feed belt) and being StoppedInUnloadPosition (waiting for being unloaded by
the robot) by going through the intermediate phases MovingToUnloadPosition
and MovingToLoadPosition . The phase changes are determined by the values of
the monitored functions TableLoaded and (Un)LoadPositionReached .

The preceding formalization is summarized by the following ASM.
The table is required (to be shown) not to move over the limits represented

by the load and unload positions in order not to collide with the neighbours.
Although the level of abstraction choosen here is good to show the interaction
with the rest of the cell, it is not detailed enough to express and prove this
safety property by more than just saying that the moving phases terminate as
soon as the goal positions are reached. We therefore postpone this issue to the
re�nement step where we will speak explicitly about the two table movements.



For the initialization we assume currPhase = StoppedInLoadPosition and
TableLoaded = false. It is easy to check by inspection of the rules that after each
cycle the elevating rotary table returns to this situation if a new piece arrives at
the feed belt end.

StoppedInLoad
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TableLoaded MovingToUnload
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UnloadPosition
Reached

StoppedInUnload
Position

TableLoaded
MovingToLoad
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LoadPosition
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[Elevating Rotary Table]

WAITING LOAD.
if currPhase = StoppedInLoadPosition and TableLoaded
then currPhase := MovingToUnloadPosition

MOVING UNLOAD.
if currPhase = MovingToUnloadPosition and UnloadPositionReached
then currPhase := StoppedInUnloadPosition

WAITING UNLOAD.
if currPhase = StoppedInUnloadPosition and not TableLoaded
then currPhase := MovingToLoadPosition

MOVING LOAD.
if currPhase = MovingToLoadPosition and LoadPositionReached
then currPhase := StoppedInLoadPosition

Remark. The reader may have noticed that from the point of view of the mere
transportation of blanks, we could have pushed further the abstraction from
the table movements by avoiding any mentioning of moving at all. This would
yield an elevating rotary table with only two states StoppedIn(Un)LoadPosition
and only two rules (resulting from the above four rules by eliminating the mov-
ing rules and by updating the currPhase directly from StoppedInLoadPosition to



StoppedInUnloadPosition and vice versa). Going from the 2-states 2-rules ASM
to our 4-states 4-rules ASM would become a simple re�nement step (where
the WAITING-(UN)LOAD rule is mapped to the corresponding rule sequence
WAITING-(UN)LOAD, MOVING-(UN)LOAD). A similar remark applies to the
ground model for the robot, the press and the traveling crane.

3.3 The Robot Ground Model

We �rst specify the Robot ASM and then prove for it the safety properties
required by the task description.

3.3.1 The Speci�cation

: : :The robot comprises two orthogonal arms. For technical reasons, the
arms are set at two di�erent levels. Each arm can retract or extend horizon-
tally. Both arms rotate jointly. Mobility on the horizontal plane is necessary,
since elevating rotary table, press, and deposit belt are all placed at di�erent
distances from the robot's turning center. The end of each robot arm is �t-
ted with an electromagnet that allows the arm to pick up metal plates. The

robot's task consists in: taking metal blanks from the elevating rotary table
to the press; transporting forged plates from the press to the deposit belt.
[Lindner 95]

Abstraction from the motors and from the details of the movements yields
four basic robot actions: unload the table/press and load the press/deposit belt.
For each action the robot has to wait, in the position where the action will take
place, until the conditions for the action to start are veri�ed, then it will perform
the action, and �nally it has to move to the position of the next action. This can
be formalized by a small automaton of four groups of three rules each controlling
the passage of the robot from one action to the next.

Since we do not know the duration neither of the actions nor of the move-
ments, we formalize their termination condition by corresponding boolean-valued
0-ary monitored functions actionCompleted and actionPosReached.

In the given task description the table, the press and the deposit belt have
no sensors to indicate whether they are loaded or not. This is reected in our
formalization by the fact that a) TableLoaded , PressLoaded are seen by the ta-
ble and the press as a monitored function (which is controlled or an interaction
function for other agents of the production cell), and b) DepositBeltReadyFor-
Loading is an interaction function for the robot and the deposit belt. The robot
communicates to the table and to the press when they have been unloaded by
resetting TableLoaded and PressLoaded respectively, similarly it communicates
to the press and to the deposit belt when they have been loaded by setting
PressLoaded and by resetting DepositBeltReadyForLoading . (DepositBeltReady-
ForLoading is updated to false by the robot on exit from the phase LoadingDep-
Belt into which it enters only if DepositBeltReadyForLoading = true. We will see
below that the only other device which can update DepositBeltReadyForLoad-
ing is the deposit belt which can update it only to true when it is false. This
guarantees the consistency of the updates for DepositBeltReadyForLoading .)

Remark. How to provide the information on the load status of table, press
and belts is really a hardware/software co-design question. Other decisions than



the one taken by the given task description could be easily formalized and com-
pared by slight changes of our ASMmodel. For example adding a sensor to the ta-
ble and cancelling the updates of TableLoaded yields a model where TableLoaded
is monitored by the robot, the feed belt and the table.

We have to decide upon the order of the robot actions: the choice depends
on many issues such as e�ciency considerations (maximal work of the press or
of the robot, maximal throughput, and so on) or the geometrical placement of
the machines that interact with the robot, or the simplicity of the controller. In
the task description [Lindner 95] a solution is suggested that ensures minimal
movements of the robot; the sequence of movements is determined on the basis
of the relative positions of table, robot, press and deposit belt, and apparently
yields a good usage of the press, letting the robot be ready to load the press
whenever it is unloaded. We adopt the suggested order for our model: 1. Unload
Table: ... picks up a metal blank from the elevating rotary table, 2. Unload Press:
... picks up a forged work piece, 3. Load Deposit Belt: ... places the forged metal
plate on the deposit belt (as soon as there's enough space at the belt end), 4.
Load Press: ... deposits the blank in the press.

UNLOAD TABLE UNLOAD PRESS

LOAD DEPOSIT BELTLOAD PRESS

The preceding formalization is summarized by the ASM below. We antici-
pate the de�nition of Table(Press)In(Un)LoadPosition. For the initialization we
assume that the press is initially loaded with a piece and that the robot is in the
WaitingInUnloadTablePos phase. j separates di�erent cases.

[Robot]

WAITING.
if currPhase = WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos
^ (TablejPressjDepositBeltjPress)ReadyFor(UnloadingjUnloadingjLoadingjLoading)
then currPhase := UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress

ACTION.
if currPhase = UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress
^ (UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress )Completed
then currPhase:=MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos

TableLoaded jPressLoaded jDepositBeltReadyForLoading jPressLoaded :=
falsejfalsejfalsejtrue

MOVING.
if currPhase = MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos
and (UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached

then currPhase:=WaitingIn(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos

where TableReadyForUnloading � (TableInUnloadPosition and TableLoaded )
TableInUnloadPosition � (currPhase(ERT) = StoppedInUnloadPosition )



PressReadyForUnloading � (PressInUnloadPosition and PressLoaded )
PressInUnloadPosition � (currPhase(Press) = OpenForUnloading )
PressReadyForLoading � (PressInLoadPosition and not PressLoaded )
PressInLoadPosition � (currPhase(Press) = OpenForLoading )
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Remark. The above choice for the order of the robot actions is responsible for
the Last Piece Problem discovered in [N�okel, Winkelmann 95] when trying to
model check that when the press holds a piece, the robot will eventually unload
it from the press. In our formalization this problem becomes apparent in the
ground model as resulting from the decision about the order for robot actions,
namely that if there is a last blank which is loaded to the press, then the robot



will not be able to unload it from the press because after having loaded the
press with the last blank the robot will go to unload the table and stay waiting
forever. One way to avoid the problem is to allow a nondeterministic choice for
the order of the robot actions (with the side e�ect that the maximal throughput
of blanks is 8 instead of 7, see the TLT solution in [Lewerentz, Lindner 95] and
the proof for the strong performance property below).
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DepositBeltReadyForLoading:=false
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3.3.2 The Safety Properties

At this level of abstraction we can state robot safety requirements by de�ning
abstract functions modeling the physical movements of the robot (rotating its
base, extending/retracting its arms and switching on/o� its magnets) and prove
them from assumptions which relate the values of these functions to the robot



phases. These assumptions will then be used as integrity constraints to guide
the re�nement steps. The reader who is interested only in the speci�cation and
not in the proofs of the system properties may skip this section.

The description given in [Lindner 95] for the rotation operations performed
by the robot arms can be axiomatized by using two functions RobotRotationMot
(describing the robot rotation, i.e. the action of the motor driving the robot base)
and Angle (for the potentiometer indicating how far the robot has rotated). From
the geometric placement of the components described by the informal speci�-
cation we see that the bounds to the rotation of the robot are represented by
the position where the �rst robot arm points towards the elevating rotary table
(LeftRobotBound, i.e. the value reached when Angle = Arm1ToTable ) and by
the position where the �rst robot arm points towards the press (RightRobot-
Bound, i.e. the value reached when Angle = Arm1ToPress ). The movements
taking place between these two bounds are reected by axioms describing how
the value of Angle increases or decreases between these bounds. We summarize
these conditions in the following two assumptions.

Robot Assumption 1 .

currPhase = MovingTo(UnloadPressjLoadDepBeltjLoadPress)Pos
) RobotRotationMot = counterClock

currPhase = MovingToUnloadTablePos ) RobotRotationMot = clockwise

currPhase = WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos
_ currPhase = UnloadingTable j UnloadingPress j

LoadingDepBelt j LoadingPress
) RobotRotationMot = idle

Angle increases if RobotRotationMot = counterClock, decreases if RobotRo-
tationMot = clockwise, doesn't change if RobotRotationMot = idle

Robot Placement Assumption .

LeftRobotBound = UnloadTablePos
� UnloadPressPos � LoadDepBeltPos
� LoadPressPos = RightRobotBound

UnloadTablePosReached , Angle = Arm1ToTable
UnloadPressPosReached , Angle = Arm2ToPress
LoadDepBeltPosReached , Angle = Arm2ToDepBelt
LoadPressPosReached , Angle = Arm1ToPress

From the initialization condition Angle = Arm1ToTable and these two assump-
tions we can prove the robot safety requirements that the robot must not be
rotated clockwise, if arm 1 points towards the elevating rotary table, and it
must not be rotated counterclockwise if arm 1 points to the press [Lindner 95].

Robot Safety Property 1 .The robot never rotates over its bounds.

Proof. By induction on robot runs. For the base of the induction the claim
holds by initialization. By Robot Assumption 1 , the value of Angle can change



only if RobotRotationMot = idle is not true, i.e. during the MovingTo[...] phases.
Those phases are terminated by the MOVING rules as soon as the robot reaches
the intended positions (which by Robot Assumption 1 and by the Robot Place-
ment Assumption respect the robot bounds).

In order to state conditions guaranteeing the avoidance of collisions between
robot arms and their neighbour components de�ne ArmiExt as the sensor function
(potentiometer) describing the extension of the i-th robot arm, to be measured
as a number indicating the distance of the magnet from the rotating center of
the robot. Consider the safety request that the robot should not crash with the
press. Such a collision would happen would the robot extend too much its arms
while pointing them towards the press or had the robot an arm inside the press
when the press is closing. The collisions can be avoided if one allows the robot
to move (i.e. actually to rotate) near the press only if its arms are retracted
enough. Similar conditions are required for the avoidance of collisions between
the �rst arm and the table, and between the second arm and the deposit belt:

: : : In order to meet the various safety requirements ... a robot arm must
retract whenever a processing step were it is involved is completed. [Lindner 95]

Stated otherwise, the arms should extend only when required to pick up
or to drop a piece. We abstract from the geometrical details of a de�nition of
\in the proximity of the press, table, deposit belt" by imposing the following
Robot Assumption 2 where ArmiIntoPress (for i = 1,2) denotes the maximal safe
extension of the i-th robot arm into the press (i.e. such that the arm will \not
crash" with the press) and 0 represents the value of ArmiExt for which the i-th
arm is fully retracted.

Robot Assumption 2 .

currPhase 62 fUnloadingTable , LoadingPress g ) Arm1Ext = 0
currPhase 62 fUnloadingPress , LoadingDepBelt g ) Arm2Ext = 0
currPhase = LoadingPress ) Arm1Ext � Arm1IntoPress
currPhase = UnloadingPress ) Arm2Ext � Arm2IntoPress

This assumption implies that the robot never crashes with the press, i.e. \a
robot arm may only rotate in the proximity of the press if the arm is retracted
or if the press is in its upper or lower position".

Robot Safety Property 2 .The robot never crashes with the press.

Proof. By de�nition of crash, whenever an arm is retracted, it represents no
danger. So we have to consider only those phases when the robot extends one of
its arms. By Robot Assumption 2 these phases are UnloadingTable and Loading-
Press when the robot can extend the �rst arm, and UnloadingPress and Load-
ingDepBelt when the second arm can be extended. We can restrict our analysis to
LoadingPress and to UnloadingPress because otherwise, by the given geometrical
layout, the arm which may be extended is not in front of the press and there-
fore by de�nition cannot crash against it. During the phase (Un)LoadingPress
Robot Assumption 2 assures that the relevant arm will not crash by extending
too much. The de�nition of the robot rules guarantees that during this phase no



crash can occur due to a wrong position of the press or a wrong movement of the
robot or of the press; in fact the robot can enter the phase (Un)LoadingPress only
by �ring a WAITING rule when it is WaitingIn(Un)LoadPressPos (so that by the
Robot Assumption 1 it does not rotate) and when PressReadyFor(Un)Loading
holds (so that the press is stopped in the correct (un)loading position and is
(un)loaded.)

In order to meet the requirement that the blanks held by the arms don't
collide with other blanks on the table or on the deposit belt we specify by the
following ArmiAssumption when the arms are loaded and unloaded.

Arm 1 Assumption . The �rst robot arm is loaded from the moment
when the robot leaves the UnloadingTable phase (when the table has been
unloaded) until the end of its next LoadingPress phase (when the press has
been loaded).

Arm 2 Assumption . The second robot arm is loaded from the moment
when the robot leaves the UnloadingPress phase (when the press has been
unloaded) until the end of its next LoadingDepBelt phase (when the deposit
belt has been loaded).

Robot Safety Property 3 .The loaded �rst arm is never moved above the

loaded table, if the table is in unloading position.

Proof. By de�nition of the robot rules, by Robot Assumption 2 , by the
given geometrical layout of the robot and by the robot placement assumption,
arm 1 can be extended towards the table only during the UnloadingTable phase
when (by Arm 1 Assumption ) arm 1 is not loaded. When it becomes loaded
(by application of a robot ACTION rule), the table becomes unloaded and the
robot exits the UnloadingTable phase so that by Robot Assumption 2 the �rst
arm has already been retracted from the table.

Robot Safety Property 4 .The loaded second arm is never moved over the

deposit belt unless there is enough space on the belt to receive a new piece.

Proof. As above arm 2 can be extended over the deposit belt only in phase
LoadingDepBelt . By Arm 2 Assumption it is loaded when it enters that phase
by �ring a WAITING rule. The guard of these rules guarantees that DepositBel-
tReadyForLoading is true which by the following Robot Assumption 3 implies
that the deposit belt has enough free space to hold a new piece.

Robot Assumption 3 . DepositBeltReadyForLoading gets value true if
there is enough space on the belt.

We will see below that the formalization of the deposit belt (which can up-
date the function DepositBeltReadyForLoading ) implies this assumption.

Remark.We will see in the deposit belt rules that DepositBeltReadyForLoading
is set by the deposit belt (i.e. updated from false to true) only when a piece has
reached the end of the belt; it is set to false (by the robot) only when it has value



true. This implies that at most two pieces are allowed to be on the deposit belt.
This is a consequence of the fact that a) there is no sensor indicating when the
belt is free to get a new piece, b) we do not know the dimensions of the blanks nor
the motor speed. Therefore we have no information on how much time it takes to
free enough space for a new piece on the belt. For the formalization of the robot
we are not interested to know how the function DepositBeltReadyForLoading gets
the value true, we have only to guarantee that its integrity constraint holds.
From the point of view of the robot it would be the same to have a sensor on the
belt indicating that there is enough space to put a new piece. This is another
simple example of how one can get suggestions from the model to enhance the
system hardware with a little change on the control software (here interpreting
DepositBeltReadyForLoading as a monitored function). The ASM framework
seems to be appropriate to deal with such hardware-software co-design problems
in a clean and transparent way because of the possibility it o�ers to integrate
the description of a part of a complex system into the whole model using well
de�ned interfaces.

In order to guarantee that the robot arms drop pieces only on the press or
on the deposit belt we have to make appropriate assumptions on our abstract
notions of LoadingPress and LoadingDepBelt . According to the informal cell
description, the robot arms drop pieces by deactivating a magnet; arm 1 should
do this only when pointing towards the unloaded press, in its proper extension,
arm 2 should do this only when located over the deposit belt. This is expressed
by the following Robot Assumption 4 where the function ArmiMagnet describes
the state of the magnet on the i-th arm.

Robot Assumption 4 .
Arm1Mag is switched to o� only if

currPhase = LoadingPress ^ Arm1Ext = Arm1IntoPress

Same for Arm2 replacing Press by DepBelt.

Robot Safety Property 5 .The robot never drops pieces outside safe areas.

Proof. The safe areas for dropping metal blanks are by de�nition the press
and the deposit belt. By the robot rules we know that arm 1 drops a piece (by
deactivating its magnet) only in LoadingPress phase so Robot Assumption 4
implies the claim. Similarly, when arm 2 drops a piece, there must be a preced-
ing execution of a WAITING rule guarded by DepositBeltReadyForLoading being
true. By Robot Assumption 3 this implies the claim.

Robot Safety Property 6 .A new blank will be put on the deposit belt only

if there is enough space on the belt.

Proof. A new blank can be put on the deposit belt only during the phase
LoadingDepBelt which can be entered only through �ring a WAITING rule with
true guard DepositBeltReadyForLoading . By Robot Assumption 3 this implies
the claim.



Robot Safety Property 7 .The robot doesn't put blanks into the press if

the press is already loaded.

Proof. A piece can be put into the press only by an action rule preceded by
the application of a waiting rule with guard PressReadyForLoading ; by de�nition
this implies not PressLoaded .

3.4 The Press Ground Model

: : :The task for the press is to forge metal blanks. The press consists of
two horizontal plates, with the lower plate being movable along a vertical axis.
The press operates by pressing the lower plate against the upper plate. Because
the robot arms are placed on di�erent horizontal planes, the press has three
positions. In the lower position, the press is unloaded by arm 2, while in the
middle position it is loaded by arm 1. The operation of the press is coordinated
with the robot arms as follows: 1. Open the press in its lower position and wait
until arm 2 has retrieved the metal plate and left the press, 2. Move the lower
plate to the middle position and wait until arm 1 has loaded and left the press,

3. Close the press, i.e. forge the metal plate. This processing sequence is carried
out cyclically. [Lindner 95]

The press goes through the cycle of loading, forging and unloading under
the control of the robot which loads it with blanks and retrieves forged pieces.
Abstracting from the motors this can be formalized by a simple automaton using
the monitored function PressLoaded (which as we know already is a controlled
function for the robot). PressLoaded signals the press when the operations of
loading or unloading have been completed such that the lower press plate can
safely move to its next position. The monitored functions BottomPosition , Mid-
dlePosition and TopPosition model the three sensors indicating that the lower
press plate has reached the corresponding position.

The informal speci�cation provides no means to know when the forging pro-
cess is completed. We model this through a monitored function ForgingCompleted
whose values are determined by the physical environment. (In the toy model pre-
sented in [Lindner 95] no forging is actually performed so ForgingCompleted is
immediately true once the press has entered the ClosedForForging phase.)

Remark. Our ground model abstraction from the motors realizes an idea
which is expressed in the comparative survey, namely that

: : : it would be quite handy to have local microprocessors for each actuator
which could help in issuing commands to the machines at a higher level. For

instance, instead of switching the motor of the press on and switching it o�
after the press reached the upper position, then one could simply say \move
the press to upper position". This would make the task of writing a control
program much easier, and the programs running on the local microprocessors
could easier be veri�ed. (see [Lewerentz, Lindner 95b])

In e�ect the simplicity of our ground model is partly due to this abstrac-
tion from motors which allows us to issue to the agents such abstract moving
commands, namely in the form of the updates currPhase(agent):=MovingTo....

Initially the Press is in the OpenForUnloading phase and loaded.
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[Press]

WAITING UNLOAD.
if currPhase= OpenForUnloading and PressLoaded = false
then currPhase := MovingToMiddlePosition

MOVING TO MIDDLE.
if currPhase= MovingToMiddlePosition and MiddlePosition
then currPhase := OpenForLoading

WAITING LOAD.
if currPhase= OpenForLoading and PressLoaded = true
then currPhase := MovingToTopPosition

MOVING TO UPPER.
if currPhase= MovingToTopPosition and TopPosition
then currPhase := ClosedForForging

CLOSED.
if currPhase= ClosedForForging and ForgingCompleted
then currPhase := MovingToBottomPosition



MOVING TO LOWER.
if currPhase= MovingToBottomPosition and BottomPosition
then currPhase := OpenForUnloading

Press Safety Property 1 .The press is not moved downward if it is in its

bottom position, it is not moved upward if it is in its top position.

Proof. If the press is moving to its bottom/top position, the movement is
stopped by rule MOVING TO LOWER and MOVING TO UPPER respectively as
soon as the press reaches the bottom/top position.

Press Safety Property 2 .The press does only close when no robot arm is

positioned inside it.

Proof. By de�nition of the press and robot rules, the press can close only
after having been open for loading and having been loaded by a robot action.
This action, preceding in the given run the closure of the press, has put the robot
into a phase (namelyMovingToUnloadTablePos) in which (by Robot Assumption
2 ) both arms are retracted so that in particular none of them is positioned inside
the press. By the robot rules, Robot Assumption 1 and Robot Assumption 2
and the robot placement assumption, from that point on in the given run no
arm can be positioned again inside the press before the robot enters the phase
UnloadingPress. But by de�nition of the robot rules this can happen only after

the press has become ready for unloading, i.e. by de�nition has at least reached
the unloading position. Again by de�nition this means that the press must have
entered its OpenForUnloading phase. This proves that there is no run where an
arm is positioned inside the press when the press is closed.

3.5 The Deposit Belt Ground Model

: : :The task of the deposit belt is to transport the work pieces unloaded by
the second robot arm to the traveling crane. A photoelectric cell is installed
at the end of the belt; it reports when a work piece reaches the end section of

the belt. The control program then has to stop the belt. The belt can restart
as soon as the traveling crane has picked up the work piece. ... photoelectric
cells switch on when a plate intercepts the light ray. Just after the plate has
completely passed through it, the light barrier switches o�. At this precise
moment, the plate is in the correct position to be picked up by the traveling
crane ... [Lindner 95]

The deposit belt is similar to the feed belt but has not to worry about the
passage of the piece to the next machine because the traveling crane takes care
about that. For a faithful formalization of its only photoelectric sensor, using a
0-ary monitored function PieceInDepositBeltLightBarrier , we need three phases:
in NormalRun the deposit belt runs until a work piece intercepts the light bar-
rier at the end section of the deposit belt. At this moment the deposit belt
passes to CriticalRun and runs until the plate has completely passed through
the light barrier (switching PieceInDepositBeltLightBarrier from true to false).
The deposit belt then stops, waiting for being unloaded. A boolean interaction
function PieceAtDepositBeltEnd is used to communicate to the traveling crane



that a piece has arrived in the unloading area. It is used by the crane to commu-
nicate to the deposit belt when the unloading has been completed so that the
deposit belt can restart by returning to the NormalRun phase.

The consistency of the updates of PieceAtDepositBeltEnd by the deposit belt
and by the traveling crane is guaranteed by the fact that this function is updated
to true by the belt only (and only when it is false), and it is updated to false
only by the traveling crane (and only when it is true, see the next section).

Besides the function PieceAtDepositBeltEnd we use the interaction function
DepositBeltReadyForLoading to signal when there is enough space on the belt to
insert a new piece because \a new blank may only be put on the deposit belt if
... the last one has arrived at the end of the deposit belt". Therefore the deposit
belt sets DepositBeltReadyForLoading to true whenever a piece has completely
passed the light barrier.

The preceding formalization is summarized by the following automaton which
cycles through the three phases NormalRun , CriticalRun , Stopped .

Normal
Run LightBarrier

PieceInDepositBelt
Run

Critical

PieceAtDepositBeltEnd:= true
DepositBeltReadyForLoading:= true

PieceInDepositBelt
LightBarrier

Stopped

BeltEnd
PieceAtDeposit

For the initialization we stipulate that the current phase is NormalRun and
that no pieces are on the belt (i.e.PieceAtDepositBeltEnd = false, DepositBel-
tReadyForLoading = true).

[Deposit Belt]

DB NORMAL.
if currPhase= NormalRun and PieceInDepositBeltLightBarrier
then currPhase := CriticalRun

DB CRITICAL.
if currPhase= CriticalRun and not PieceInDepositBeltLightBarrier
then currPhase := Stopped

DepositBeltReadyForLoading := true
PieceAtDepositBeltEnd := true



DB STOPPED.
if currPhase= Stopped and not PieceAtDepositBeltEnd
then currPhase := NormalRun

The safety requirement for the belt|that it does not drop any metal piece|
can be easily proved for our ground model.

Deposit Belt Safety Property .The deposit belt is stopped when a blank

has passed the light barrier at its end and is not re-started until the traveling

crane has picked up that blank.

Proof. Suppose the belt is transporting a piece which arrives at the light
barrier at time t1 and leaves it at a later time t2 > t1. Then the deposit belt
executes the rule DB NORMAL at time t1 and DB CRITICAL at time t2, stop-
ping the belt and setting PieceAtDepositBeltEnd . The deposit belt can restart
only by �ring DB STOPPED which is guarded by PieceAtDepositBeltEnd having
become false, signalling that the crane has picked up the piece in question.

Remark. We can now also make Robot Assumption 3 more precise and prove
that the deposit belt ASM satis�es it. DepositBeltReadyForLoading becomes true
only through the rule DB CRITICAL which (by the proof of the deposit belt
safety property above) can be applied only \when the last blank has arrived at
the end of the deposit belt" providing \enough space on the deposit belt to get
a new piece".

3.6 The Traveling Crane Ground Model

As for the robot ASM, we �rst specify the Traveling Crane ASM and then prove
for it the safety properties required by the task description.

3.6.1 The Speci�cation

: : :The task of the traveling crane consists in picking up metal plates from
the deposit belt, moving them to the feed belt and unloading them there.
: : :The typical operation of the crane is as follows: 1. After the signal from
the photoelectric cell indicates that a work-piece has moved into the unloading
area on the deposit belt, the gripper positions itself through horizontal and
vertical translations over the deposit belt and picks up the metal plate. 2.
The gripper transports the metal plate to the feed belt and unloads it there.
[Lindner 95]

Unloading the deposit belt and loading the feed belt can be formalized by two
groups of rules which are similar to the corresponding rule groups for the robot
and use similar monitored functions ActionCompleted and ActionPosReached.
The crane has to wait until the deposit belt has brought a piece into the unload-
ing area; once a piece has been picked up, the crane switches PieceAtDepositBel-
tEnd to false and moves to a position where it will wait for the feed belt to be
free. Similarly for moving back, after feed belt loading (which sets FeedBeltFree
to false), to the position for the next deposit belt unloading.
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For the initialization we assume currPhase = WaitingToUnloadDepositBelt .



[Travelling Crane]

WAITING(DB).
if currPhase= WaitingToUnloadDepositBelt and PieceAtDepositBeltEnd
then currPhase := UnloadingDepositBelt

UNLOADING(DB).
if currPhase= UnloadingDepositBelt and UnloadingDepositBeltCompleted
then currPhase := MovingToLoadFeedBeltPos

PieceAtDepositBeltEnd := false

MOVING(FB).
if currPhase= MovingToLoadFeedBeltPos and LoadFeedBeltPosReached
then currPhase:= WaitingToLoadFeedBelt

WAITING(FB).
if currPhase= WaitingToLoadFeedBelt and FeedBeltFree
then currPhase := LoadingFeedBelt

LOADING(FB).
if currPhase = LoadingFeedBelt and LoadingFeedBeltCompleted
then currPhase := MovingToUnloadDepositBeltPos

FeedBeltFree := false

MOVING(DB).
if currPhase= MovingToUnloadDepositBeltPos and UnloadDepositBeltPosReached
then currPhase := WaitingToUnloadDepositBelt

Consistency.We have treated the consistency of the updates of PieceAtDeposit-
BeltEnd in the deposit belt section. The consistency of the FeedBeltFree updates
is more complicated because we want our model to work also in the more realistic
case that the input is independent from the output and not linked to it by the
arti�cial traveling crane. Therefore FeedBeltFree must be resettable also by the
environment and we need an assumption which guarantees that the insertion of
pieces by the environment respects the safety requirements. The Insertion Prior-
ity Assumption below guarantees that the traveling crane and the environment
updates of FeedBeltFree will never be in conict. The assumption constitutes a
basis for a rigorous de�nition and analysis of various possible hardware/software
design decisions with respect to blank insertion.

It remains to show that the updates of FeedBeltFree by the feed belt will
never collide with those from the crane or from the environment.

Insertion Priority Assumption . New pieces can be put on the feed
belt from outside the cell (whereby FeedBeltFree is set to false) only if
there is enough space on the belt (i.e. only if FeedBeltFree = true) and
if the travelling crane is not loaded. By de�nition the travelling crane is
not loaded in all the phases which are related to unloading the deposit belt
(i.e.MovingToUnloadDepositBeltPos , WaitingToUnloadDepositBelt , Unload-
ingDepositBelt ), otherwise it is loaded.



The crane updates FeedBeltFree only to false, in the rule LOADING(FB),
which can be executed only after �ring the rule WAITING(FB) which is guarded
by FeedBeltFree = true. When the crane excutes WAITING(FB) it is loaded by
de�nition so that (by the Insertion Priority Assumption ) between �ringWAIT-
ING(FB) and �ring LOADING(FB) the environment cannot insert a piece (and
thereby switch FeedBeltFree to false): thus the crane updates FeedBeltFree only
to false and only if it is true. By the Insertion Priority Assumption also the
environment updates FeedBeltFree only to false and only if it is true.

We show now that the feed belt can update FeedBeltFree only to true and
only when it is false; this implies that its update cannot collide neither with
the updates from the crane nor with those from the environment. The feed belt
can update FeedBeltFree only to true, namely by the rule FB NORMAL which
can be executed only after PieceInFeedBeltLightBarrier has switched to true|
which by our formalization of the sensors presupposes that \a blank has entered
the �nal part of the belt" and therefore that the (initially free) feed belt has
previously been loaded with that blank. But whenever a blank is dropped onto
the feed belt (either by the crane or by the environment) then FeedBeltFree
is switched to false. Therefore FB NORMAL �res only if FeedBeltFree = false.
Notice that initially FeedBeltFree can be updated only by the environment.

3.6.2 The Traveling Crane Safety Properties.

One of the safety requirements for the traveling crane is that the crane gripper
has to remain between its two positions over the feed belt and over the deposit
belt. One can prove this condition for the traveling crane ground model by as-
suming for the horizontal movements Travelling Crane Assumption 1 .

Travelling Crane Safety Property .The traveling crane remains always

between the loading position over the feed belt and the unloading position over

the deposit belt. If the crane is positioned above the feed belt, it may only move

towards the deposit belt, and if it is positioned above the deposit belt, it may only

move towards the feed belt.

Proof. By Travelling Crane Assumption 1 the traveling crane is positioned
initially in the unloading position over the deposit belt, can move from there only
towards the feed belt and is stopped by �ring MOVING(FB) which is executed
when the traveling crane has reached the loading position above the feed belt (i.e.
LoadFeedBeltPosReached = true). From that position, by the same assumption
the traveling crane can move only towards the deposit belt and is stopped by
�ring MOVING(DB), i.e. when it has reached the unloading position above the
deposit belt (i.e. UnloadDepositBeltPosReached = true).

Travelling Crane Assumption 1 . The travelling crane moves towards
the feed (deposit) belt only when currPhase = MovingToLoadFeedBeltPos
(MovingToUnloadDepositBeltPos ). In its Waiting[...] and (Un)Loading[...]
phases the travelling crane stays in the corresponding (Un)Loading[...]Pos
over the corresponding belt.

The controller is required to avoid also collisions during the vertical gripper
movements. Since in the ground model we did not want to reect the details



of how the crane moves the gripper vertically (because it would have forced
us to think about implementation features like the di�erent heights of the two
belts), we have to make appropriate assumptions on the gripper positions. The
height of the gripper is indicated by a monitored function GripperVerticalPos
measuring the distance of the gripper from the crane bridge. The value Minimal-
GripperVerticalPos indicates the minimal distance that the gripper has to stay
away from the traveling crane bridge to avoid clashing with the crane support.
SafeDistanceFromFeedBelt indicates the maximal distance from the crane bridge
in which the gripper can move towards the feed belt without colliding with it,
SafeDistanceFromDepBelt is the corresponding value for the deposit belt. The
values OnFeedBelt and OnDepositBelt indicate respectively the right gripper
height to put a piece on the feed belt or to pick up a piece from the deposit belt.

We use two boolean-valued monitored functions GripperOverFeedBelt and
GripperOverDepositBelt supposed to become true if the gripper is above the
feed and the deposit belt respectively. An obvious integrity constraint is that
GripperOverFeedBelt and GripperOverDepositBelt exclude each other. In terms
of the above functions we state Travelling Crane Assumption 2 which su�ces
to imply the second traveling crane safety property on the vertical movements
of the crane.

Travelling Crane Safety Property 2 .The gripper never crashes with the

belts or the �xed part of the traveling crane, i.e. the gripper does not move down-

ward, if it is in the position required for picking up a work piece from the deposit

belt, and it does not move upward beyond a certain limit; the traveling crane does

not knock against a belt laterally.

Proof. By Travelling Crane Assumption 2 the gripper never retracts more
than the lower bound MinimalGripperVerticalPos which prevents collisions with
the �xed part of the crane. From Travelling Crane Assumption 1 and Travelling
Crane Assumption 2 we see that when moving towards or staying over a belt,
the gripper remains at a safe distance from the belt, the same if it is above the
deposit belt.

Travelling Crane Assumption 2 .

MinimalGripperVerticalPos � SafeDistanceFromFeedBelt ,
SafeDistanceFromDepBelt , GripperVerticalPos

GripperOverFeedBelt ) GripperVerticalPos � OnFeedBelt
Same for DepositBelt.

currPhase= MovingToLoadFeedBeltPos jWaitingToLoadFeedBelt
) GripperVerticalPos � SafeDistanceFromFeedBelt
Same for Unload and DepositBelt.

Travelling Crane Assumption 3 . The magnet on the gripper is
switched to on only during the phase UnloadingDepositBelt and it is
switched to o� only if the phase is LoadingFeedBelt and GripperVertical-
Pos = OnFeedBelt .

Travelling Crane Safety Property 3 .The crane does not drop pieces

outside the safe area over the feed belt, i.e. the magnet of the crane may only be



deactivated, if its magnet is above the feed belt and su�ciently close to it.

Proof. Follows immediately from Travelling Crane Assumption 3 and the
fact that the crane can drop a piece only in phase LoadingFeedBelt .

Travelling Crane Safety Property 4 . A new blank is put on the feed belt

only if there is enough space on the latter to deposit the blank safely.

Proof: By the de�nition of the rules for the traveling crane, a new blank can
be put on the feed belt only if FeedBeltFree is true. By the insertion priority
assumption, the same condition has to hold when the environment can insert a
new blank because the traveling crane is not loaded.

3.7 Liveness and Performance Properties

The informal task speci�cation asks to prove the following liveness property (to
be understood under the assumption that each time a blank has been inserted,
there exists still another blank which can be inserted if the feed belt becomes
free again; see above the discussion of the Last Piece Problem).

Liveness. Every blank inserted into the system (by initialization or via the
feed belt) will eventually arrive at the end of the deposit belt (and then be
dropped by the crane on the feed belt again) and will have been forged.

There are di�erent ways to prove this Liveness property. Most of the solu-
tions presented in [Lewerentz, Lindner 95] succeeded to prove only weaker forms
of liveness, like for example that at each moment at least one of the machines
composing the cell is not stopped. We establish the required strong liveness
property and establish also the maximal performance statement showing that
our model indeed copes with the maximal number of pieces that the cell is able
to process cyclically. Furthermore we show that under natural assumptions our
controller \achieves minimal possible time", declared in the informal task de-
scription to be \the best result" on e�ciency for the production cell control.
Moreover the insertion priority assumption guarantees the additional property
mentioned in the informal task description as desirable, namely \that the con-
troller takes care that there are never less than a certain number of work pieces
in the system, provided that there are enough blanks available."

The order in which the blanks are transported through the points of the pro-
duction cell gives us the clue to the proof. The progress points p|points which
can hold blanks|are ordered by the following cyclic successor function p+1:
FeedBeltSource, FeedBeltLight Barrier, Elevating RotaryTable, Robot, Press, De-

positBeltSource, DepositBeltEnd, TravelingCrane, FeedBeltSource.
The guards of the rules by which a blank can progress require that p + 1 is

\free" in order to receive a blank from its predecessor p. Therefore by the pigeon
hole principle the production cell would be in a deadlock if it contains 8 blanks.

Let blank x be the occurrence of a blank which is inserted into the produc-
tion cell via FeedBeltSource through the x-th insertion (for x > 0) or via Press
through insertion 0 (imposed by the initialization). In the formulation of the
following lemma the progress points before the Press have to be treated sepa-
rately because by initialization blank 0 is inserted into the press and blank 1 can



immediately be put on the feed belt and progress unconditionally to the robot.

Blank Progress Lemma.For every natural number x, every run of the

production cell ground model can be extended to a run where the following holds:

{ blank i + 2 reaches p after and only after blank i + 1 has reached p + 1 for

p � Robot;

{ blank i+ 1 reaches p after and only after blank i has reached p+1 for Press

� p � TravelingCrane

for every progress point p and every i � x.

Proof of the Liveness Property. We assume for the proof the Blank
Progress Lemma which will be proved below. Let blank x � 1 be inserted in
a given run via the feed belt. (Due to the Last Piece Problem blank 0 has no
chance to arrive at (the end of) the deposit belt unless blank 1 is inserted). By
the Blank Progress Lemma, the given run can be extended to a run where blank
x has reached the traveling crane and (due to the rule FB-normal) FeedBeltFree
is true so that for some 1 � n � 7, blank x + n can be inserted via the feed
belt. (The particular value of n depends on the speed of the agents and the
environment.) Therefore the traveling crane is loaded with blank x so that by
the insertion priority assumption the blank x+ n to be inserted next is another
occurrence of the blank which after insertion x has been transported through all
the progress points and now has reached TravelingCrane.

It remains to prove the Blank Progress Lemma.We �rst prove a lemmawhich
states the conditions under which each sequential agent progresses. We say that
an agent proceeds from a to b, performing update, if condition if and only if for
every state A which is reachable in GroundCELL from the initial state with
agent in phase a, the following holds: if GroundCELL reaches from A a state
satisfying condition with agent still in phase a, then agent is again enabled and
can perform update and reach a state B in phase b.

Agent Progress Lemma.The following local progress conditions hold in

the ground model GroundCELL:

FB { The Feed Belt proceeds from NormalRun to Stopped or CriticalRun, set-

ting FeedBeltFree, if FeedBeltFree = false.

{ The Feed Belt proceeds from Stopped or CriticalRun to NormalRun, set-

ting TableLoaded, if TableReadyForLoading.

{ Initially FeedBelt is in NormalRun.

ERT { The Elevating Rotary Table proceeds from StoppedInLoadPos to

StoppedInUnloadPos, if TableLoaded.

{ The Elevating Rotary Table proceeds from StoppedInUnloadPos to

StoppedInLoadPos, if TableLoaded = false.

{ Initially the Elevating Rotary Table is ready for loading

(i.e. in StoppedInLoadPos and not Loaded).

Robot { For every robot Action, Robot proceeds from WaitingInActionPos to

WaitingInAction'Pos if ActionCondition, where Action' is the next action

the robot may execute after having performed Action and ActionCondi-

tion is the second condition in the guard of the Robot rule for Action.



{ Initially the robot is in WaitingInUnloadTablePos. The sequence of pos-

sible robot actions is UnloadingTable, UnloadingPress, LoadingDepBelt,

LoadingPress.

Press { Press proceeds from OpenForUnloading to OpenForLoading if

PressLoaded = false.

{ Press proceeds from OpenForLoading to OpenForUnloading if

PressLoaded = true.

{ Initially the Press is OpenForUnloading and loaded.

DepBelt { Deposit Belt proceeds from NormalRun to Stopped, setting

PieceAtDepositBeltEnd, if DepositBeltReadyForLoading = false.

{ Deposit Belt proceeds from Stopped to NormalRun if

PieceAtDepositBeltEnd = false.

{ Initially the Deposit Belt is in NormalRun and can execute no rule.

TravCrane { Crane proceeds from WaitingToUnloadDepositBelt

to WaitingToLoadFeedBelt, resetting PieceAtDepositBelt End,

if PieceAtDepositBeltEnd.

{ Crane proceeds from WaitingToLoadFeedBelt to

WaitingToUnloadDepositBelt if FeedBeltFree.

{ Initially Crane is WaitingToUnloadDepositBelt and cannot apply any

rule (because PieceAtDepositBeltEnd = false).

Proof of the Agent Progress Lemma is by inspection of the rules. The Blank
Progress Lemma follows from the Agent Progress Lemma by an induction on
the number of insertion blocks of (� 2 and � 7) blanks inserted consecutively
through GroundCELL runs until the �rst block element is loaded on the traveling
crane|to be reinserted via the feed belt as �rst element of the next insertion
block; the block length depends on the agent and environment speed.

The basis of the induction follows from the initialization, the insertion priority
assumption and the Agent Progress Lemma; namely at the beginning at least 1
and at most 6 blanks can be inserted successively by the environment, in addition
to blank 0 inserted into the press by the initialization.

For the inductive step assume that in the given run of GroundCELL m in-
sertion blocks have taken place. Then by the de�nition of insertion block the
traveling crane is loaded with the �rst blank of block m so that by the insertion
priority assumption this blank will be reinserted as �rst blank of block m + 1
once the last blank of block m has reached FeedBeltLightBarrier. The rest of
the inductive step follows by repeated applications of the Agent Progress Lemma.

Strong Performance Property. Depending on the speed of the agents and

of the environment, the GroundCELL is able to process the maximal number 7

of pieces.

Once enough blanks have been inserted by the environment so that 7 blanks are

present in the machine, there will never be less than 7 blanks in the system (in

case of absence of the traveling crane under the additional assumption of ea-

ger rule application and blank insertion, i.e. immediately responding agents and

blank inserting operator).

No blank stays longer in (any round of) the production cell than needed because

under the assumption of eager rule application the GroundCELL achieves the

minimum possible time.



Proof. The above proof of the strong liveness property shows that if the
environment succeeds to insert 6 new blanks faster than the agents need to load
the traveling crane with blank 0, then GroundCELL is able to process 7 pieces
simultaneously and will never process less. With eager rule application each agent
and the environment process every blank as soon as it can progress. (Nothing
more can be said about the time a blank spends in each component unless we
have some speci�c information on the duration of the di�erents actions.)

4 The Re�ned Model

In this section we re�ne the GroundCELL by de�ning the movements of the
agents as driven by the actuators (electric motors and electromagnets) and as
watched by the corresponding additional sensors (switches and potentiometers)
which occur in the informal task description. This provides a level of abstraction
that o�ers itself for a direct translation to executable code in the next section.
The re�ned model Re�nedCELL can easily be proved to correctly implement
GroundCELL. It is remarkable that the speci�cation of the distributed ground
model as composition of independent submachines which interact through rig-
orously de�ned interfaces yields the possibility to combine components even if
they are chosen from di�erent levels of abstraction. The rigorous separation of
the \local" functionality from the cooperation of the submachines allows us to
prove the correctness of the interface preserving re�nements separately for each
single component, establishing alltogether the following theorem.

Re�nement Theorem .The Re�nedCELL implements the GroundCELL

correctly.

Proof. The re�nement of the ground model GroundCELL maintains the
interfaces, among the submachines and between them and the environment.
Therefore the theorem follows from the correctness lemmas stated and proved
below showing that each module (i.e. rule set of an agent) in Re�nedCELL is a
correct implementation of the corresponding abstract one in GroundCELL.

4.1 The Re�ned Feed Belt

In the informal task description the feed belt is driven by an electric motor which
one can model by a function FeedBeltMot with values in f on, o� g. One then
needs a 0-ary boolean function Delivering to distinguish between the two phases
NormalRun and CriticalRun in which the motor is on. This comes up to re�ne
the currPhase-guards as follows whereby the controllable currPhase-function is
linked to the system input for the feed belt motor:

currPhase = NormalRun � FeedBeltMot = on ^ : Delivering
currPhase = CriticalRun � FeedBeltMot = on ^ Delivering
currPhase = Stopped � FeedBeltMot = o�

It is straightforward to rewrite the rules for the ground model feed belt along
these lines: changing from NormalRun to CriticalRun (resp. vice versa) means



setting (resp. resetting) Delivering , changing from NormalRun to Stopped (resp.
vice versa) means resetting FeedBeltMot (resp. setting FeedBeltMot and Deliv-
ering . See appendix B where the details are spelled out.

Feed Belt Re�nement Lemma. The re�ned feed belt RefFB is a correct

implementation of the ground model feed belt GroFB. With respect to the re�ne-

ment de�nition the runs of GroFB and of RefFB are isomorphic and semantically

equivalent (preserving in particular the Feed Belt Safety Property).

Proof. By the above re�nement de�nition each rule in GroFB is mapped to
the homonymous rule in RefFB which by de�nition has the same e�ect.

4.2 The Re�ned Elevating Rotary Table

We de�ne here the abstract action moving to (un)load position in terms of rota-
tion and elevation. In the informal task description two motors|which may be
started and stopped independently from each other|rotate the elevating rotary
table and move it vertically to pass from the position where it can be loaded by
the feed belt to the one where it can be unloaded by the robot and viceversa.
We formalize this using two 0-ary functions: TableElevationMot has values in
fUp, Down, Idleg and TableRotationMot has values in fClockwise, CounterClock-
wise, Idleg. The two sensors (switches) which indicate that the table is in its
upper or lower position are modeled with two 0-ary boolean functions TopPosi-
tion and BottomPosition (which are parameterized by the agent ERT in order
to distinguish them from the corresponding functions of the Press). For the po-
tentiometer measuring the angle of rotation of the table to indicate \how far
the table has rotated", the controller needs two values, formalized by boolean
functions MaxRotation andMinRotation which|following the given geometrical
layout|have value true if the table is rotated to the position near the feed belt
or to the position where the robot can correctly get a piece respectively.

This yields the following de�nitions for the currPhase guards in the waiting
rules of the elevating rotary table ground model:

currPhase = StoppedInLoadPosition �
(BottomPosition ^ MinRotation
^ (TableElevationMot = Idle) ^ (TableRotationMot = Idle))

currPhase = StoppedInUnloadPosition �
(TopPosition ^ MaxRotation
^ (TableElevationMot = Idle) ^ (TableRotationMot = Idle))

Similarly currPhase = MovingToUnloadPosition is re�ned to TableElevationMot =
Up or TableRotationMot =clockwise and the same for MovingToLoadPosition with
Up, Clockwise replaced by Down, counterClockwise. The disjunction appearing in
this de�nition reects that in the re�ned model for the elevating rotary table,
moving is not anymore an atomic action, but is decomposed into two independent
actions. Correspondingly each moving rule in the elevating rotary table ground
model is re�ned by two rules for stopping separately each of the two motors. It
is straightforward to re�ne the initialization condition and the rules along this



de�nition of phase re�nement where the start of the two moving actions is trig-
gered by corresponding updates in the re�nedWAITING rules (see the appendix).

Elevating Rotary Table Re�nement Lemma. Runs of the re�ned ele-

vating rotary table and of the elevating rotary table ground model correspond to

each other via homonymous rules and are semantically equivalent.

Proof. Follows by induction on runs from the fact that corresponding runs

(WAITING LOAD , MOVING UNLOAD , WAITING UNLOAD , MOVING LOAD)

(WAITING LOAD , MOVING UNLOAD.ajb , WAITING UNLOAD ,
MOVING LOAD.ajb)

of the two ASMs are equivalent; \j"denotes rule execution in any order.
At this level of abstraction it is appropriate and easy to prove the safety

property required by the informal task description for the elevating rotary table.

Table Safety Property.The re�ned model RefERT for the elevating rotary

table never moves over its vertical limits and does not rotate clockwise (resp.

counterclockwise) if it is in the position required for transfering blanks to the

robot (resp. for receiving blanks from the feed belt).

Proof. We have to show that the table does never move over the limits
represented by the maximal and minimal elevation/rotation. The two stop rules
MOVING (UN)LOAD.(ajb), executed while the table is moving to the position
where it can be (un)loaded, guarantee this.

4.3 The Re�ned Robot

In the informal task description the robot has one motor for extending and
retracting each of its arms to reach the table, the press or the deposit belt which
are located at di�erent distances from the rotating center of the robot where
the two arms are �xed. These motors are formalized by controlled functions
Arm1Mot and Arm2Mot with values in f extend, retract, idle g. Two monitored
functions Arm1Ext and Arm2Ext model the sensors indicating how much the
arms are extended. The intended meaning of their few signi�cant values will be
clear from the chosen names (e.g. Arm1IntoPress is the value of Arm1Ext for
which the �rst robot arm is in the position to put a piece into the press).

A controlled function RobotRotationMot models the action of the motor
which drives the rotation of the robot base. A monitored function Angle models
the sensor indicating the rotation angle for which we need the four values iden-
tifying the four positions at which the robot has to stop the rotation to let the
arms retrieve or put pieces: Arm1ToTable , Arm2ToPress , Arm2ToDepBelt and
Arm1ToPress .Two functions Arm1Mag and Arm2Mag assume the value on if
and only if the magnet of the respective arm is switched on.

For these functions we will prove below the assumptions made for the safety
proofs in the ground model robot GroR.

In terms of these functions it is easy to de�ne the guards appearing in the
ground model for the WaitingIn[...]Pos and the MovingTo[...]Pos phases. The fol-
lowing de�nition reects the order of the robot actions which is suggested in the



informal task description. WaitingIn[...]Pos means that the rotation Angle has
reached the right value for the given Pos(ition) with all motors idle, the arms
retracted and the magnets in the correct state. MovingTo[...]Pos di�ers from
Waiting by the rotation motor being on and rotating the robot in the right di-
rection within the corresponding rotation interval. Notationally we speak about
intervals for the angle values although (through the discretization assumed for
the controller) only a �nite number of the real values are relevant.

currPhase= WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress
and ArmsRetracted and RobotIdle and Arm1Mag = o�jonjonjon
and Arm2Mag = o�jo�jonjo�

currPhase= MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos �

ArmsRetracted and Arm1Mot = idle and Arm2Mot = idle and
RobotRotationMot = counterClockjcounterClockjcounterClockjclockwise
and Arm1Mag = onjonjonjo� and Arm2Mag = o�jonjo�jo� and
Angle 2 [Arm1ToTable , Arm2ToPress ]j

[Arm2ToPress , Arm2ToDepBelt ]j
[Arm2ToDepBelt , Arm1ToPress ]j
[Arm1ToTable , Arm1ToPress ]

RobotIdle � RobotRotationMot = Arm1Mot = Arm2Mot = idle
ArmsRetracted � Arm1Ext = Arm2Ext = retracted
Since the only movement performed by the robot during its MovingTo[...]Pos

phases is the rotation of its base, the abstract notion of reaching a position where
to stop a moving phase in the ground model can be de�ned using the values of
the angle rotation sensor as follows:

(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached �
Angle = Arm2ToPress jArm2ToDepBelt jArm1ToPress jArm1ToTable

It is easy to check that with these de�nitions the moving rules of the ground
model are correctly re�ned by replacing the phase update with stopping the
rotation (i.e. robotRotationMot := idle) which de�nes the movement of the re�ned
robot. It remains to de�ne the robot actions in terms of motors, magnets and
sensor. The order of the motor and magnet actions is as follows: a) extend the
appropriate arm until it has reached the place to pick up or to drop a piece; b)
pick up or drop a piece by switching on or o� the magnet of the extended arm
(the \proper" action); c) retract the arm until it has become fully retracted (so
that the robot can safely rotate to the position of the next action).

Therefore (un)loading is de�ned as decomposed into three subactions, namely
extension, the proper (magnet) action and retraction. For each of these actions
it is easy to de�ne the beginning and the completion in terms of sensor and
actuator values. (Un)Loading is started by switching on the motor for extending
the corresponding arm; when this arm is extended, the proper action takes place



by (de)activating the magnet of the arm, followed by switching on the motor for
retracting the arm. When the retraction terminates, the robot rotation motor is
started. For reasons of simplicity of exposition the following formalization incor-
porates the magnet switching into the rule for terminating the arm extension.

Extending( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Mot = extend

Extended( OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Ext =(OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )
and Arm(1j2j2j1)Mot = idle

Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Mot = retract

UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress �
Extending( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress ) or
Extended( OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress ) or
Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )

(UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress )Completed �
Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )
and Arm(1j2j2j1)Ext = retracted

For the initialization we assume both arms to be fully retracted (Arm1Ext =
Arm2Ext = retracted), the robot rotated such that it points its �rst arm towards
the table (Angle = Arm1ToTable ) and completely stopped (i.e. RobotRotationMot
= idle and Arm1Mot = Arm2Mot = idle). Both magnets are supposed to be o�
(Arm1Mag = Arm2Mag = o�). This re�nes correctly the condition imposed on
the ground model that the initial phase is WaitingInUnloadTablePos .

The following rules are the result the above re�nements where WaitingIn...Pos
and MovingTo...Pos denote the de�nitions given above for currPhase = Waitin-
gIn/MovingTo...Pos.

[Robot]

WAITING.
if WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos and
(TablejPressjDepositBeltjPress)ReadyFor(UnloadingjUnloadingjLoadingjLoading)

then Arm(1j2j2j1)Mot := extend

ACTION.extension.
if Extending( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress ) and
Arm(1j2j2j1)Ext =(OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )



then Arm(1j2j2j1)Mot := idle
Arm(1j2j2j1)Mag := onjonjo�jo�

ACTION.proper.
if Extended( OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )
and Arm(1j2j2j1)Mag = onjonjo�jo�

then Arm(1j2j2j1)Mot := retract

ACTION.retraction.
if Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )
and Arm(1j2j2j1)Ext = retracted

then Arm(1j2j2j1)Mot := idle
RobotRotationMot := counterClockjcounterClockjcounterClockjclockwise
TableLoadedjPressLoadedjDepositBeltReadyForLoadingjPressLoaded
:=falsejfalsejfalsejtrue

MOVING.
if MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos
and (UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached

then RobotRotationMot := idle

Robot Re�nement Lemma.The re�ned robot ASM RefR is a correct im-

plementation of the ground robot ASM GroR, i.e. RefR runs and GroR runs

correspond to each other via homonymous rules with respect to the re�nement

de�nition above and compute the same robot behaviour.

Proof. The above re�nement de�nition relates the states of the two ASMs
in such a way that the corresponding rule guards are equivalent. In mapping
homonymous rule groups to each other the re�ned rules are mapped in the
order extension, action, retraction to the corresponding action rule in the ground
model. It is a routine exercise to check that via this mapping corresponding runs
compute the same result.

It remains to prove that the re�ned robot ASM satis�es the ground model
assumptions 1-4 for the robot and the assumptions for the robot arms.

Assumptions Correctness Lemma.The robot assumptions 1-4 and the

Armi Assumptions of the ground model are satis�ed in the re�ned model.

Proof. The conditions on the moving and waiting phases and on Angle in
Robot Assumption 1 are satis�ed in the re�ned robot model by de�nition of
moving and waiting. It remains to check that during extension and retraction
the robot rotation motor is idle. RobotRotationMot initially is idle and remains so
through waiting, extension and retraction. Only when the rule ACTION.retraction
is executed it becomes clockwise or counterClock for the moving phase and is set
back to idle when this phase is terminated by the execution of a MOVING rule.

The robot placement assumption holds in the re�ned robot model by de�ni-
tion. The appropriate arms begin to extend and are stopped (without exceeding
the limit of Robot Assumption 2 ) when theWAITING and the ACTION.extension
rules are executed; they start the retraction when ACTION.proper is executed and
stop it at extension 0 by executing ACTION.retraction. This proves that Robot



Assumption 2 holds for the re�ned robot model.
Robot Assumption 3 on the DepositBeltReadyForLoading function is shown

below to hold for the re�ned model of the deposit belt.
Only the rule ACTION.extension for loading the press can switch o� the mag-

net of the �rst arm; the rule guard guarantees that the �rst condition of Robot
Assumption 4 is true. Similarly only the rule ACTION.extension for loading the
deposit belt can switch o� the magnet of the second arm; the rule guard guaran-
tees that the second condition of Robot Assumption 4 is true. Therefore Robot
Assumption 4 holds for the re�ned robot model.

Following the rules of the magnets through a full robot cycle (from waiting
in unload table position through press and deposit belt loading to press and
table unloading) we can see that Arm 1 Assumption and Arm 2 Assumption
are satis�ed by RefR. Initially both magnets are switched o� so that none of
the two arms is loaded. They can be loaded only through an application of an
ACTION.etension rule (whereby at the same time the table and the press respec-
tively are unloaded) and remain loaded until the corresponding next execution of
an ACTION.extension rule (whereby at the same time the press and the deposit
belt respectively are loaded).

4.4 The Re�ned Press

The press is powered by one motor modeled by a function PressMot with values
in f up, down, idle g . We can then de�ne the phases of the press as follows:

currPhase = OpenForUnloading � (BottomPosition and PressMot = idle)
currPhase = MovingToMiddlePosition � (notPressLoaded and PressMot = up)
currPhase = OpenForLoading � (MiddlePosition and PressMot = idle)
currPhase = MovingToTopPosition � (PressLoaded and PressMot = up)
currPhase = ClosedForForging � (TopPosition and PressMot = idle)
currPhase = MovingToBottomPosition � (PressMot = down)

This de�nition clari�es how the ground model press rules are re�ned, namely
by replacing the phase updates with updates of PressMot; starting to move to the
Middle/Top/Bottom position becomes setting the press motor to up/up/down
respectively, switching to opening or closing becomes resetting PressMot to idle.
The re�ned Press rules are spelled out in detail in the appendix. We remind the
reader that we intend the two functions Bottom/TopPosition as parameterized
by the agent Press in order to distinguish them from the corresponding functions
of the elevating rotary table.

Press Re�nement Lemma. The re�ned press is a correct implementation

of the ground model press. Their runs are in one-to-one correspondence via the

re�nement de�nition and model the same press behaviour.

Proof. Homonymous rules have the same e�ect.

4.5 The Re�ned Deposit Belt

The Deposit Belt is re�ned similarly to the feed belt using a motor function
DepBeltMot with (\boolean") values in f on, o� g and a boolean function



Critical to distinguish between the normal and the critical belt run phases. The
re�nement is de�ned as follows:

currPhase = NormalRun � (DepBeltMot = on and not Critical )
currPhase = CriticalRun � (DepBeltMot = on and Critical )
currPhase = Stopped � (DepBeltMot = o�)

The corresponding rule re�nement is obtained by replacing the phase up-
dates to CriticalRun, Stopped and NormalRun with updates of Critical to true,
of DepBeltMot to o�, of DepBeltMot to on and of Critical to false respectively
(see the appendix where the rules are spelled out in detail).

DB Re�nementCorrectness Lemma. The re�ned deposit belt is a correct

implementation of the ground model deposit belt. Their runs are in one-to-one

correspondence via the re�nement de�nition and model the same table behaviour.

Proof. Via the re�nement homonymous rules have the same e�ect.
Since no speci�c assumption has been made for the proof of the deposit belt

safety properties for the ground model, that proof is preserved by the re�nement.

4.6 The Re�ned Traveling Crane

The traveling crane is moved by two motors whose action is modeled by two
controlled functions CraneVerticalMot (with gripper movement values up, down,
idle) and CraneHorizontalMot (indicating whether the crane is moving horizon-
tally (towards the feed belt or the deposit belt) or whether it is stopped). For
the sensors we use the monitored functions introduced already for proving the
traveling crane safety properties in the ground model. In terms of these functions
it is easy to de�ne the waiting phases of the traveling crane as follows:

currPhase =WaitingToUnloadDepositBelt �
GripperOverDepositBelt and GripperVerticalPos = OnDepositBelt and
CraneHorizontalMot = idle and CraneVerticalMot = idle and
CraneMagnet = o�

currPhase = WaitingToLoadFeedBelt �
GripperOverFeedBelt and GripperVerticalPos = SafeDistanceFromFeedBelt and
CraneHorizontalMot = idle and CraneVerticalMot = idle and
CraneMagnet = on

For de�ning the moving phases we use that from the geometric placement of
the two belts and of the crane the following holds:

0= MinimalGripperVerticalPos � OnFeedBelt � OnDepositBelt .

Therefore we assume without loss of generality the following:



SafeDistanceFromFeedBelt = MinimalGripperVerticalPos
SafeDistanceFromDepBelt = OnDepositBelt .

The informal task description contains the information that the feed belt is
higher than the deposit belt so that the traveling crane can safely move from the
feed belt to the deposit belt with the gripper still in feed belt position, followed
by moving the gripper down to the safe deposit belt position. (We assume that
the unloaded gripper cannot collide with a piece that eventually will arrive on
the deposit belt because it stays at a su�cient height above the belt.) This
explains the following de�nitions for the moving phases of the ground model in
the re�ned model:

MovingToLoadFeedBeltPos �
GripperVerticalPos = SafeDistanceFromFeedBelt and CraneVerticalMot = idle
and CraneHorizontalMot = toFeedBelt

MovingToUnloadDepositBeltPos �
(CraneHorizontalMot = toDepositBelt and
GripperVerticalPos = OnFeedBelt and CraneVerticalMot = idle)

or
(CraneHorizontalMot = idle and GripperOverDepositBelt and
CraneVerticalMot = down)

The (un)loading actions of the traveling crane consist of a magnet and a
gripper action. To unload the deposit belt the crane has to switch on the magnet
on the gripper and then to retract the gripper to a safe distance for moving
horizontally to the feed belt. To load the feed belt the crane has to extend the
gripper until it has reached a safe distance from the belt and then to switch o� the
magnet. This leads to the following de�nition of the ground model (un)loading
phases in the re�ned traveling crane model:

UnloadingDepositBelt �
GripperOverDepositBelt and CraneHorizontalMot = idle and CraneMagnet and
((CraneVerticalMot = idle and GripperVerticalPos = OnDepositBelt ) or
(CraneVerticalMot = up))

LoadingFeedBelt �
GripperOverFeedBelt and CraneHorizontalMot = idle and
((CraneMagnet and CraneVerticalMot = down) or
(notCraneMagnet and CraneVerticalMot = idle

and GripperVerticalPos = OnFeedBelt ) )

The initialization is re�ned to the crane being in the position where it can
unload the deposit belt with all the motors stopped and the magnet switched
o�. That implements correctly the initial phase WaitingToUnloadDepositBelt .

Using the preceding de�nitions it is easy to re�ne the ground model traveling
crane rules. Switching|through an application of the WAITING(DB) rule|
to starting the deposit belt unloading becomes turning CraneMagnet on and is



followed by applying the two new UNLOADING(DB) rules, namely for start-
ing the (vertical) gripper movement and stopping it upon completion together
with switching to moving to the feed belt (by starting the horizontal crane mo-
tor). Switching|through an application of the MOVING(FB) rule|to Wait-
ingToLoadFeedBelt becomes stopping the horizontal crane motor. Starting the
feed belt loading at the end of the waiting period|through an application of
the WAITING(FB) rule|becomes starting to move the gripper down to the
feed belt, followed by an execution of the two feed belt loading rules for proper
loading (by switching the crane magnet o�) and triggering the horizontal move-
ment back to the deposit belt. The rule MOVING(DB) now splits into two
for stopping the horizontal movement with simultaneously starting the vertical
gripper movement over the deposit belt, followed eventually by stopping the
gripper movement and waiting for unloading the deposit belt. The re�ned rules
are spelled out in full in the appendix.

Traveling Crane Re�nement Lemma.The re�ned traveling crane RefTC

is a correct implementation of the grond model traveling crane GroTC. The runs

of RefTC correspond to GroTC runs via groups of homonymous rules and via

the re�nement de�nition model the same traveling crane behaviour.

Proof. Follows from the following mapping F of homonymous rule groups:

F ([WAITING(DB)]) = [WAITING(DB)]
F([UNLOADING(DB).a, UNLOADING(DB).b]) = [UNLOADING(DB)]

F([MOVING(FB)]) = [MOVING(FB)]
F([WAITING(FB)]) = [WAITING(FB)]

F([LOADING(FB).a, LOADING(FB).b]) = [LOADING(FB)]
F([MOVING(DB).a, MOVING(DB).b]) = [MOVING(DB)]

Remark on optimizations.We could reduce the waiting time of the two
belts (for FeedBeltFree and PieceAtDepositBeltEnd getting false) by placing the
corresponding interface update of the ground model (un)loading rule into the
�rst instead of the second of the re�ned rules, together with the crane magnet
update. It is a routine exercise to show that under reasonable assumptions on
the speed of the devices this optimization is correct, i.e. preserves the interface
behaviour (including the safety) of the model.

It remains to prove that the re�nement de�nition satis�es the assumptions
made in the ground model for proving the traveling crane safety properties.

Proposition.The Traveling Crane Assumptions 1-3 of the ground model are

satis�ed in the re�ned model.

Proof.

UnloadingDepositBeltCompleted �
GripperOverDepositBelt and GripperVerticalPos = SafeDistanceFromFeedBelt
and CraneHorizontalMot = idle and CraneVerticalMot = up and
CraneMagnet = on



LoadingFeedBeltCompleted �
GripperOverFeedBelt and GripperVerticalPos = OnFeedBelt and
CraneHorizontalMot = idle and CraneVerticalMot = idle and
CraneMagnet = o�

The traveling crane can start to move towards the feed belt only by apply-
ing rule UNLOADING(DB).b whose guards and updates guarantee that Moving-
ToLoadFeedBeltPos is true. The traveling crane can start to move towards the
deposit belt only by applying the LOADING(FB).b rule. The guards and updates
of that rule guarantee that MovingToUnloadDepositBeltPos is true. This proves
Travelling Crane Assumption 1 .

The following condition:

SafeDistanceFromFeedBelt � MinimalGripperVerticalPos
SafeDistanceFromDepBelt � MinimalGripperVerticalPos

in Travelling Crane Assumption 2 is satis�ed by the assumption made above;
GripperVerticalPos � MinimalGripperVerticalPos is true because the gripper starts
moving upward only when the rule UNLOADING(DB).a is �red, this movement
is stopped by the execution of UNLOADING(DB).b whose guard guarantees that
the MinimalGripperVerticalPos is never passed.

As shown above MovingToLoadFeedBeltPos becomes true when the rule UN-
LOADING(DB).b is executed, it becomes false (with WaitingToLoadFeedBelt be-
coming true) by execution of the rule MOVING(FB); when thereafter the rule
WAITING(FB) is executed, WaitingToLoadFeedBelt gets value false. When UN-
LOADING(DB).b is �red, the traveling crane has a SafeDistanceFromFeedBelt ;
thereafter it is moved only by �ring WAITING(FB). Therefore the re�ned model
satis�es the following condition:

currPhase= MovingToLoadFeedBeltPos jWaitingToLoadFeedBelt
) GripperVerticalPos � SafeDistanceFromFeedBelt

Examination of the rules shows that the gripper is never moved to a vertical
position lower than the position where it can get a piece from the deposit belt,
namely (see above) SafeDistanceFromDepBelt = OnDepositBelt . Therefore also
the following is true:

currPhase= MovingToUnloadDepositBeltPos jWaitingToUnloadDepositBelt
) GripperVerticalPos � SafeDistanceFromDepBelt

By examining the rules one can also see that when the gripper is over the feed
belt (i.e. GripperOverFeedBelt = true), then its downward movement is stopped
once it has reached the OnFeedBelt distance from the crane bridge and is not
moved further as long as GripperOverFeedBelt = true. Thus also the following
condition is true:

GripperOverFeedBelt ) GripperVerticalPos � OnFeedBelt .

A similar argument shows that the gripper is never moved below the On-
DepositBelt position when GripperOverDepositBelt = true. Therefore Travelling
Crane Assumption 2 is true in the re�ned model.



For the proof of Travelling Crane Assumption 3 it su�ces to observe that
the gripper magnet is switched on only by applying rule WAITING(DB) and
keeps this value during the deposit belt unloading until it is switched o� by the
rule LOADING(FB).a (in the loading feed belt phase when GripperVerticalPos =
OnFeedBelt ).

5 The Re�nement to C++ Code

In this section we introduce the re�nement of the ASM Re�nedCELL to a C++

program which we have shown by extensive experimentation to control success-
fully the simulation of the production cell (proposed in [Brauer, Lindner 95] as
a validation environment for the speci�cations and the implementations). Based
upon the ASM de�nition of the semantics of C++ (see [Wallace 95]) one also
has the possibility to prove, by a detailed mathematical argument, that Re�ned-
CELL is correctly implemented by the C++ program. The reader will see that
writing down the detailed proof could be a long, but not a di�cult task because
the coding is guided by the structure of the ASM model and because the re�ne-
ment relation from Re�nedCELL to the C++ program is simple. The structural
similarity between the two is so close that transforming Re�nedCELL into the
code was to a great extent a matter of (mechanizable) cut and paste. To some it
may come as a surprise that one can combine the advantages of using an e�cient
and rich language like C++ and of a clean, module and interface oriented, struc-
tured design method which provides the possibility of turning design reasoning
into rigorous correctness arguments.

We explain here only the overall structure of the translation to C++ code and
refer for the details to [Mearelli 97] which contains, for a complete documentation
of this last re�nement step, the entire executable controller.

5.1 The Structure of the Control Program

The informal task desciption (see [Lewerentz, Lindner 95a]) requires that the
control

: : : program ... reads sensor values from UNIX stdin and writes its control
commands to stdout according to standardized ASCII protocol.

The controller can use two kinds of commands, namely commands to get
status information from the simulation and commands for switching the devices
on and o� (together with a command blank add which can be used by the
controller to simulate the actions of an operator inserting pieces from outside
the cell). The status information comes as a 15-element vector indicating the
sensor values and the errors which occurred since the last status request.

Therefore it is natural to implement each submachine of the Re�nedCELL
by a module and to add a module to handle the errors which are reported by
the simulation. The most important implementation decision is about how to
sequentialize the distributed Re�nedCELL in a semantics preserving and prov-
ably correct way. We have to decide upon the order in which the controller asks
the simulation environment for new status information, forwards it to the seven
modules and executes them (thereby implementing the reaction of the agents



to the changes in their environment). Such scheduling principles are easily dealt
with at a high level of abstraction; see [B�orger,Durdanovic 96] where this idea
has been developed for the (correctness proof of the) sequentialization of Occam
programs as part of their implementation by Transputer code. We abstain here
from further developing this idea because for the production cell the sequential-
ization and the proof of its correctness are a routine exercise if one follows the
order applied by the simulator.

This results in the main program structured as a loop where the controller
�rst asks the simulation for new status information.Then each machine|declared
to be an object from the corresponding class|gets its updated sensors readings
from the standard input, in the order speci�ed by the status vector in the simula-
tor (see [Brauer, Lindner 95]), and eventually reacts updating its internal status
and outputting the required commands. Finally the errors provided through
the last vector element are taken by the controller from the input stream and
processed.

This yields the following C++ code for the main program control.cc where
the seven classes represent the seven program modules and control.h contains
the class de�nitions and the de�nition of the modules AskNewStatus() (for the
interface of the controller to the simulator) and Oper() which implements the
behaviour of an operator continuously trying to insert new pieces on the feed
belt under the regime of the Insertion Priority Assumption .

#include "control.h"

cElist Errors;

cFeedBelt FeedBelt;

cElevRotTable ElevatingRotaryTable;

cRobot Robot;

cPress Press;

cDepositBelt DepositBelt;

cTravCrane TravelingCrane;

int main()

{ loop

{ AskNewStatus();

cin>> Press

>> Robot

>> ElevatingRotaryTable

>> TravelingCrane

>> FeedBelt

>> DepositBelt

>> Errors;

Oper();

};

}

The initialization of the cell is performed by the constructors of the classes.
The initialization of the C++ program di�ers slightly from the initialization of
the ASM models. The di�erences are mainly motivated by the desire to insert
initially all blanks through the feed belt (avoiding the preloading of the press)



and concern only the robot, the press and the traveling crane. We skip here
the easy exercise in standard preprocessing techniques to add a preprocessor to
GroundCELL and Re�nedCELL which preserves the required safety assumptions
and brings the model into the initial state assumed above for our ASM models.

For the possible delay between the moment when the sensors values are
read and the moment when the controller can react we need an assumption to
guarantee that our controller is fast enough to control the simulation correctly.

Simulation Assumption. Each time a sensor of the cell gets a new
value, a) the controller has enough time to read the new value and to react
by emitting the required commands, b) the simulation can execute the
commands before any changes to the value of the sensor are detected.

We have veri�ed during the many hours of test runs that this assumption is
valid for the simulation and our controller.

5.2 From Component ASMs To C++ Modules

In order to uniformly reect also the structure of the ASM component machines
of Re�nedCELL in the structure of the corresponding C++ class, we derive each
cell-component class from an abstract class cModule which has abstract member
functions Where and Rules implementing for each machines its private macros
and its rules respectively. Notationally we switch here to the common practice
to de�ne the macros before the instructions where they are used.

class cModule { protected:

virtual void Where() = 0;

virtual void Rules() = 0; };

The classes derived from cModule overload the input operator >> such that
it can be used to retrieve from the input stream the new values for the sensors
and then to call the Where and Rules functions.

The ASM functions modeling the sensors and the actuators are implemented
by two class templates cSensor and cActuator; they are templates because the
various sensors or actuators have di�erent value ranges or commands. Thus in
each class describing a submachine we have an object of the class cSensor for
each sensor and one of the class cActuator for each actuator of that machine.

As example we include the feed belt class code. The reader will recognize the
various functions and macros from the re�ned feed belt ASM which have now
become variables and conditions. It is a routine exercise to show that this code
implements the re�ned feed belt ASM correctly. Remember that the constructor
intializes the belt status functions.

class cFeedBelt : public cModule

{ bool Delivering;

bool NormalRun;

bool CriticalRun;

bool Stopped;

bool TableReadyForLoading;



// The Sensor

cSensor<bool> PieceInFeedBeltLightBarrier;

// The Actuator

cActuator<OnOff> FeedBeltMot;

void Where()

{ NormalRun = (FeedBeltMot == on)&&(!Delivering);

CriticalRun = (FeedBeltMot == on)&&Delivering;

Stopped = FeedBeltMot == off;

TableReadyForLoading = TableInLoadPosition &&

(!TableLoaded);

};

void Rules()

{ if (NormalRun && PieceInFeedBeltLightBarrier())

{FeedBeltFree = true;

if (TableReadyForLoading)

{ Delivering = true;}

else { FeedBeltMot = off;};};

if (CriticalRun && (! PieceInFeedBeltLightBarrier()))

{ Delivering = false;

TableLoaded = true;};

if (Stopped && TableReadyForLoading)

{ FeedBeltMot = on;

Delivering = true;};

};

public:

cFeedBelt()

: PieceInFeedBeltLightBarrier(false), FeedBeltMot(FB_com, 2)

{ FeedBeltMot = on;

Delivering = false;

NormalRun = true;

CriticalRun = false;

Stopped = false;

TableReadyForLoading = TableInLoadPosition &&

(!TableLoaded);

};

friend istream& operator>>(istream& is, cFeedBelt& fb)

{ is>> fb.PieceInFeedBeltLightBarrier;

fb.Where();

fb.Rules();

return is;

};

};



The reader can �nd the complete re�nement to C++ modules in [Mearelli 97].

6 Evaluation and Conclusions

We answer here the questions posed in [Lindner 95] to evaluate the proposed
problem solution and compare from the methodological point of view our solution
to the solutions in [Lewerentz, Lindner 95].

6.1 Answers to the Evaluation Questions

We have proved (for the formal requirement speci�cation model and for the re-
�ned model) all the required safety, liveness and performance properties and have
established without di�culties the maximal throughput of the system (a prop-
erty which the informal task description declares to be \very di�cult to prove").
Our proofs are simple because we could exploit for them the abstraction features
built into the ASM notion which allowed us to separate the proof obligations
for each submachine and to establish the interaction properties on the basis of
transparent (precisely de�ned) interfaces. All the assumptions concerning the
cell behavior or the architecture appear explicitly in our speci�cation and are
documented. Some of the abstract assumptions made in the ground model have
guided the re�nement process and the code development.

We have tested our C++ code extensively and with success against the FZI
simulator in Karlsruhe; we didn't experience a single failure in controlling the
simulator under the required safety, liveness and performance conditions.

The reader will judge whether he shares our conviction that both the ground
model and the re�ned model are a) as short and simple as the system to be
built does permit, and b) can be understood by every experienced programmer
without any familiarity with the ASM method|it su�ces to use and read the
ASMs as pseudocode over abstract data. Since ASMs o�er the possibility of
a satisfactory solution for the ground model problem, the ASM approach can
be used as a candidate \for intuitive and adequate formalisms that allow for
building models which closely simulate reality and support discussions with the
customer" (see [Lewerentz, Lindner 95b]). The process of stepwise development,
and the use of explicit assumptions, provide a complete documentation of the
system which makes it easy to change the controller and to reuse proofs|the use
of abstraction for components and for interfaces in the hierarchical ASM design
approach guarantees maximal design exibility, re-usability and extendability
through easy adaptations of ASMs to evolving requirement speci�cations; this
is particularly important due to the experience of various formal method case
studies that \even problems of modest real world complexity are just within
the current limits of available automatic proof tools and model-checkers" (see
[Lewerentz, Lindner 95b]; see [Abrial,B�orger,Langmaack 96] where the same ex-
perience is reported). Due to our abstract (object oriented and modular) ap-
proach, typically a change in one part of the cell does not invalidate all proofs;
for example if one makes local changes to the model while leaving the interfaces
among the modules unchanged, we just need to update the proofs relative to
that module.

Along the way we have illustrated through simple examples that the ASM
method �ts well as description vehicle for Hardware/Software Co-Design, due



to the abstraction mechanisms o�ered by ASMs. This answers positively the
question whether it is possible to draw from our solution conclusions on how the
hardware design of the production cell could be improved. In this connection
it is interesting to observe that our ASM cell models can be easily extended to
reect the additional hardware (another press, more sensors for the two belts,
for the table and the press, etc.) and the failure situations introduced in a re-
cent fault-tolerant extension of the production cell (see [L�otzbeyer 96a]). Also
the real-time properties proposed in another extension (see [L�otzbeyer 96b])
can be incorporated into our models using techniques from [B�orger et al. 95,
Gurevich, Huggins 96]). The reader may enjoy to verify this claim.

6.2 Comparison to Other Solutions

[Lewerentz, Lindner 95b] contains a detailed comparative survey of the solutions
in [Lewerentz, Lindner 95] so that we limit ourselves to mention only the salient
features which distinguish them from the ASM solution proposed here.

Our ASMmodels are considerably simpler than the numerous �nite state ma-
chine or transition system based models in [Lewerentz, Lindner 95]. To mention
just one concrete example we suggest to compare the ASM models (and their
graphical visualization) for the elevating rotary table with the corresponding
statechart speci�cation (see [Damm et al. 95, pages 135-138]); the authors ad-
mit that \the conditions of the transitions are very complex" so that they could
not be layed down graphically, missing already for the speci�cation of such a sim-
ple device one of the declared \key features of the presented approach", namely
\the use of graphical speci�cation techniques". The simplicity of our ASM mod-
els (and of their graphical de�nition) is due to the systematic use of abstraction
and re�nements which allows us to remain close to the informal task description
(the ground model problem), to obtain simple proofs for the required system
properties and to provide models for structured and easily modi�able code|
and this also in cases which are more challenging than the �nite automaton like
production cell.

The possibility o�ered by the ASM approach to support a theoretically sound
but nevertheless simple and practical integration of di�erent methods for dif-
ferent concerns|code development, mathematical or machine veri�cation and
documentation|is a distinctive feature of the method (see [Beierle et al. 96] for
its application to the Steam Boiler Control case study). Just one comparison
must su�ce here as example to illustrate this claim. The solution which uses the
FOCUS method is explained through the really rather trivial elevating rotary ta-
ble as running example (sic) and produces a Concurrent ML program implement-
ing an abstract stream based speci�cation; it is admitted however that \since so
far Concurrent ML has no denotational semantics", it is not possible to prove the
correctness of this functional program which the authors suggest to transform
further into a procedural program (presumably in a language with rigorously|
functionally?|de�ned semantics as reference for proving the correctness of this
additional transformation). Why not use right away the operational semantics
for Concurrent ML (see [Nielson 96])? The problem the FOCUS method has
with applications derives from its commitment to the denotational cause: The
classical denotational paradigm ... has some de�nite limitations. Firstly, �ne-

structural features of computation, such as sequentiality, computational complex-

ity, and optimality of reduction strategies, have either not been captured at all



denotationally, or not in a fully satisfactory fashion. Morevore, once languages

with features beyond the purely functional are considered, the appropriateness of

modeling programs by functions is increasingly open to question. Neither concur-

rency nor `advanced' imperative features have been captured denotationally in a

fully convincing fashion (see [Abramsky 97]). In comparison, the ASM concept
is operational but abstract; it has a simple theoretical foundation, described in
[Gurevich 95] starting from scratch and understandable by the working com-
puter scientist without any theoretical prerequisites; the method based on this
concept reects and supports current practice and therefore can be applied as is

at each level of the software development life cycle. For our solution we can base
a correctness proof of the C++ code with respect to the re�ned ASM model on
the rigorous ASM de�nition of the semantics of C++ given in [Wallace 95].

Some solutions have put a particular emphasis on exhibiting how to support
modi�ability and reuse during the design process. For example in the SDL speci-
�cation (see [Heinkel, Lindner 95]) the belts have been designed as instantiations
or modi�cations of a \general" belt, similar uniformisations have been proposed
for the vertical and horizontal moves (of the robot and the crane) and for the
rotation (of the robot and the table). All these reusability features spring out
rather naturally from the corresponding abstractions in our ASM models and
are visible in the symmetry of the rules for the feed and the deposit belt, in the
symmetry of the four groups of waiting/action/moving rules of the robot, etc. In
addition we can reuse not only the speci�cations but also the proofs to establish
the desired system properties.

Some solutions have separated the speci�cation of local state transitions from
imposing the restrictions due to the safety conditions or the speci�cation of the
components of the system from the speci�cation of the controller. In contrast
our ground model exposes explicitly|but abstractly|all the interfaces and the
conditions which determine the functionality of the components as part of the
desired system behaviour; the ground model de�nes the control of the system
in such a way that the safety conditions can be shown to hold under explicitly
stated assumptions on the abstractions (which have to be preserved by the re-
�nements). As a result we have simpler speci�cations, simpler proofs and a more
directly process oriented model which can be made executable as a prototype
and|being complete|can serve for checking the correctness of the formaliza-
tion through discussion with the customer. Since the ASM models can always
be made \complete" in this sense, it is always possible (but not mandatory)
to make them executable, at any desired level of abstraction. In the RAISE ap-
proach, which shares many of the properties of the ASM method but comes with
a more restricted language and more restricted proof possibilities, the interme-
diate models are only mentally simulatable.

A major di�erence of our production cell models with respect to others is the
strict separation of safety from error concerns. We formalize the behaviour of the
components only so far as it is relevant for the desired regular system behaviour.
The de�nition of the controller is geared to guarantee this intended safe system
behaviour. To deal with de�nition, detection and handling of physical errors|
say that a blank falls down from a belt or that a magnet becomes defective|
is relegated to a separate error handling ASM. This approach has been used
with success for integrating the Prolog error handling mechanism into the ASM
de�nition of the ISO Prolog standard semantics (see [B�orger, Rosenzweig 94]).

Our ASM models come with some useful object oriented features resembling



those reported in the object oriented solutions in [Lewerentz, Lindner 95]. Basic
object oriented features are inherent in the data and action abstraction mecha-
nism of ASMs and have facilitated the transition from the re�ned ASM model
to structured C++ code. This transparent code structure, which is driven by the
re�nement process and enhances the reusability of design and proof elements,
constitutes also a major di�erence of the ASM solution with respect to the \at"
descriptions using Esterel, Lustre, Signal. In a sense this holds also with respect
to the successful model checking solution described in [N�okel, Winkelmann 95].
However, by enriching �nite state machines with powerful abstraction mech-
anisms, ASMs provide a chance to make a powerful symbolic model checker
applicable also to systems where the traditional approach brakes down due to
the state explosion problem; we will gain both, the advantages o�ered by decom-
posing complex systems into smaller systems, at di�erent levels of abstraction,
and the advantages of exploiting state-of-the-art tools for machine supported
veri�cation and program synthesis.

A major di�erence with the (temporal logic based) TLT solution concerns
the treatment of the synchronization of the actions of the components. The
TLT solution starts with an abstract centralized model which is re�ned by in-
troducing the environment (through instructions for reading sensor values and
for setting actuator values) and is then distributed by introducing a schedul-
ing mechanism which forces di�erent components to execute certain instructions
simultaneously (for example deliverTable and collectRobot). Our ASM mod-
els avoid the somehow arti�cial grouping of rules concerning more than one
agent; the synchronization (read: sequentialization) of speci�c actions of other-
wise independent modules is obtained in the ASM models through appropriate
interfaces (in the example: TableLoaded). Also the synchronization events used
in [Rischel,Sun 97] to de�ne interfaces avoid any splitting of rules and allow
the authors to decompose their program into small, manageable components,
closely resembling the structure of our component machine rules. One can map
our interface updates to the interface de�ning event pairs in [Rischel,Sun 97] (for
example begin t a1!end t a1 corresponds to the update TableLoaded := false in
the robot rule whereafter the table can terminate its waiting phase for unloading
and proceed to moving to the loading position). The CSP-style formalization is
geared to treat synchronization by a uniform communication scheme which ab-
stracts from the explicit formulation of the "interface content" of the action (in
the example: that a function TableLoaded is updated by one agent to be read by
another agent).
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7 Appendix A. Summary of the GroundCELL Programs

[Feed Belt]

FB NORMAL.
if currPhase = NormalRun and PieceInFeedBeltLightBarrier
then FeedBeltFree := True

if TableReadyForLoading then currPhase := CriticalRun
else currPhase := Stopped

FB STOPPED.
if currPhase = Stopped and TableReadyForLoading
then currPhase := CriticalRun

FB CRITICAL.
if currPhase = CriticalRun and not PieceInFeedBeltLightBarrier
then currPhase := NormalRun

TableLoaded := True

where TableReadyForLoading � TableInLoadPosition and not TableLoaded
TableInLoadPosition � currPhase(ERT) = StoppedInLoadPosition

Initialization: currPhase = NormalRun , FeedBeltFree = true,
PieceInFeedBeltLightBarrier = false

[Elevating Rotary Table]

WAITING LOAD.
if currPhase = StoppedInLoadPosition and TableLoaded
then currPhase := MovingToUnloadPosition

MOVING UNLOAD.
if currPhase = MovingToUnloadPosition and UnloadPositionReached
then currPhase := StoppedInUnloadPosition

WAITING UNLOAD.
if currPhase = StoppedInUnloadPosition and not TableLoaded
then currPhase := MovingToLoadPosition

MOVING LOAD.
if currPhase = MovingToLoadPosition and LoadPositionReached
then currPhase := StoppedInLoadPosition

Initialization: currPhase = StoppedInLoadPosition , TableLoaded = false



[Robot]

WAITING.
if currPhase = WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos
^ (TablejPressjDepositBeltjPress)ReadyFor(UnloadingjUnloadingjLoadingjLoading)
then currPhase := UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress

ACTION.
if currPhase = UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress
^ (UnloadingTable jUnloadingPress jLoadingDepBelt jLoadingPress )Completed
then currPhase:=MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos

TableLoaded jPressLoaded jDepositBeltReadyForLoading jPressLoaded :=
falsejfalsejfalsejtrue

MOVING.
if currPhase = MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos
and (UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached

then currPhase:=WaitingIn(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos

where TableReadyForUnloading � (TableInUnloadPosition and TableLoaded )
TableInUnloadPosition � (currPhase(ERT) = StoppedInUnloadPosition )
PressReadyForUnloading � (PressInUnloadPosition and PressLoaded )
PressInUnloadPosition � (currPhase(Press) = OpenForUnloading )
PressReadyForLoading � (PressInLoadPosition and not PressLoaded )
PressInLoadPosition � (currPhase(Press) = OpenForLoading )

Initialization: currPhase = WaitingInUnloadTablePos ,:UnloadingTableCompleted

[Deposit Belt]

DB NORMAL.
if currPhase= NormalRun and PieceInDepositBeltLightBarrier
then currPhase := CriticalRun

DB CRITICAL.
if currPhase= CriticalRun and not PieceInDepositBeltLightBarrier
then currPhase := Stopped

DepositBeltReadyForLoading := true
PieceAtDepositBeltEnd := true

DB STOPPED.
if currPhase= Stopped and not PieceAtDepositBeltEnd
then currPhase := NormalRun

Initialization: currPhase = NormalRun , PieceAtDepositBeltEnd = false,
DepositBeltReadyForLoading = true



[Press]

WAITING UNLOAD.
if currPhase= OpenForUnloading and PressLoaded = false
then currPhase := MovingToMiddlePosition

MOVING TO MIDDLE.
if currPhase= MovingToMiddlePosition and MiddlePosition
then currPhase := OpenForLoading

WAITING LOAD.
if currPhase= OpenForLoading and PressLoaded = true
then currPhase := MovingToTopPosition

MOVING TO UPPER.
if currPhase= MovingToTopPosition and TopPosition
then currPhase := ClosedForForging

CLOSED.
if currPhase= ClosedForForging and ForgingCompleted
then currPhase := MovingToBottomPosition

MOVING TO LOWER.
if currPhase= MovingToBottomPosition and BottomPosition
then currPhase := OpenForUnloading

Initialization: currPhase = OpenForUnloading , PressLoaded = true

[Traveling Crane]

WAITING(DB).
if currPhase= WaitingToUnloadDepositBelt and PieceAtDepositBeltEnd
then currPhase := UnloadingDepositBelt

UNLOADING(DB).
if currPhase= UnloadingDepositBelt and UnloadingDepositBeltCompleted
then currPhase := MovingToLoadFeedBeltPos

PieceAtDepositBeltEnd := false

MOVING(FB).
if currPhase= MovingToLoadFeedBeltPos and LoadFeedBeltPosReached
then currPhase:= WaitingToLoadFeedBelt

WAITING(FB).
if currPhase= WaitingToLoadFeedBelt and FeedBeltFree
then currPhase := LoadingFeedBelt



LOADING(FB).
if currPhase = LoadingFeedBelt and LoadingFeedBeltCompleted
then currPhase := MovingToUnloadDepositBeltPos

FeedBeltFree := false

MOVING(DB).
if currPhase= MovingToUnloadDepositBeltPos and UnloadDepositBeltPosReached
then currPhase := WaitingToUnloadDepositBelt

Initialization: currPhase = WaitingToUnloadDepositBelt ,
UnloadingDepositBeltCompleted = false

8 Appendix B. Summary of the Re�nedCELL Programs

For reasons of space we refer to the main text for the declaration of functions
(as monitored, controlled, interaction or derived).

[Feed Belt]

FB NORMAL.
if NormalRun and PieceInFeedBeltLightBarrier
then FeedBeltFree := true

if TableReadyForLoading then Delivering := true
else FeedBeltMot := o�

FB STOPPED.
if Stopped and TableReadyForLoading
then FeedBeltMot := on

Delivering := true

FB CRITICAL.
if CriticalRun and not PieceInFeedBeltLightBarrier
then Delivering := false

TableLoaded := True

where NormalRun � FeedBeltMot = on and notDelivering
CriticalRun � FeedBeltMot = on and Delivering
Stopped � FeedBeltMot = o�
TableReadyForLoading � TableInLoadPosition and not TableLoaded
TableInLoadPosition � StoppedInLoadPosition

Initialization: FeedBeltMot = on, Delivering = false,
FeedBeltFree = true, PieceInFeedBeltLightBarrier = false



[Elevating Rotary Table]

WAITING LOAD.
if StoppedInLoadPosition and TableLoaded
thenTableElevationMot := Up

TableRotationMot := Clockwise

MOVING UNLOAD.a.
if (TableElevationMot = Up) and TopPosition
then TableElevationMot := Idle

MOVING UNLOAD.b.
if (TableRotationMot = Clockwise) and MaxRotation
then TableRotationMot := Idle

WAITING UNLOAD.
if StoppedInUnloadPosition and not TableLoaded
thenTableElevationMot := Down

TableRotationMot := CounterClockwise

MOVING LOAD.a.
if (TableElevationMot = Down) and BottomPosition
then TableElevationMot := Idle

MOVING LOAD.b.
if (TableRotationMot = CounterClockwise) and MinRotation
then TableRotationMot := Idle

where StoppedInLoadPosition � (BottomPosition ^
MinRotation ^ (TableElevationMot = Idle) ^ (TableRotationMot = Idle))

StoppedInUnloadPosition � (TopPosition ^
MaxRotation ^ (TableElevationMot = Idle) ^ (TableRotationMot = Idle))

Initialization: TableElevationMot = idle, TableRotationMot = idle,
TableLoaded = false, MinRotation = true, BottomPosition = true

[Robot]

WAITING.
if WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos
^ (TablejPressjDepositBeltjPress)ReadyFor(UnloadingjUnloadingjLoadingjLoading)
then Arm(1j2j2j1)Mot := extend

ACTION.extension.
if Extending( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )
^ Arm(1j2j2j1)Ext =(OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )
then Arm(1j2j2j1)Mot := idle

Arm(1j2j2j1)Mag := onjonjo�jo�



ACTION.proper.
if Extended( OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )
and Arm(1j2j2j1)Mag = onjonjo�jo�

then Arm(1j2j2j1)Mot := retract

ACTION.retraction.
if Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )
and Arm(1j2j2j1)Ext = retracted

then Arm(1j2j2j1)Mot := idle
RobotRotationMot := counterClockjcounterClockjcounterClockjclockwise
TableLoadedjPressLoadedjDepositBeltReadyForLoadingjPressLoaded
:=falsejfalsejfalsejtrue

MOVING.
if MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos
and (UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached

then RobotRotationMot := idle

where WaitingIn(UnloadTablejUnloadPressjLoadDepBeltjLoadPress)Pos�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress
and ArmsRetracted and RobotIdle and Arm1Mag = o�jonjonjon
and Arm2Mag o�jo�jonjo�

Extending( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Mot = extend

Extended( OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Ext =(OverTable jArm2IntoPress jOverDepBelt jArm1IntoPress )
and Arm(1j2j2j1)Mot = idle

Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )�
Angle = Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress and
Arm(1j2j2j1)Mot = retract

(Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )Completed �
Retracting( Arm1ToTable jArm2ToPress jArm2ToDepBelt jArm1ToPress )
and Arm(1j2j2j1)Ext = retracted

MovingTo(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)Pos �
ArmsRetracted and Arm1Mot = idle and Arm2Mot = idle
RobotRotationMot = counterClockjcounterClockjcounterClockjclockwise
Arm1Mag = onjonjonjo� and Arm2Mag = o�jonjo�jo�
Angle 2 [Arm1ToTable , Arm2ToPress ]j

[Arm2ToPress , Arm2ToDepBelt ]j
[Arm2ToDepBelt , Arm1ToPress ]j
[Arm1ToTable , Arm1ToPress ]

(UnloadPressjLoadDepBeltjLoadPressjUnloadTable)PosReached �
Angle = Arm2ToPress jArm2ToDepBelt jArm1ToPress jArm1ToTable

ArmsRetracted � Arm1Ext = retracted and Arm2Ext = retracted
RobotIdle � RobotRotationMot = idle ^ Arm1Mot = idle ^ Arm2Mot = idle
TableReadyForUnloading � (TableInUnloadPosition and TableLoaded )
TableInUnloadPosition � (TopPosition and MaxRotation )



PressReadyForUnloading � (PressInUnloadPosition and PressLoaded )
PressInUnloadPosition � (currPhase(P) = OpenForUnloading )
PressReadyForLoading � (PressInLoadPosition and not PressLoaded )
PressInLoadPosition � (currPhase(P) = OpenForLoading )

Initialization: Angle = Arm1ToTable , Arm1Ext = retracted,
Arm2Ext = retracted, RobotRotationMot = idle, Arm1Mot = idle,
Arm2Mot = idle, Arm1Mag = o�, Arm2Mag = o�

[Press]

WAITING UNLOAD.
if OpenForUnloading and PressLoaded = false
then PressMot := up

MOVING TO MIDDLE.
if MovingToMiddlePosition and MiddlePosition
then PressMot := idle

WAITING LOAD.
if OpenForLoading and PressLoaded = true
then PressMot := up

MOVING TO UPPER.
if MovingToTopPosition and TopPosition
then PressMot := idle

CLOSED.
if ClosedForForging and ForgingCompleted
then PressMot := down

MOVING TO LOWER.
if MovingToBottomPosition and BottomPosition
then PressMot := idle

where OpenForUnloading � BottomPosition and PressMot = idle
MovingToMiddlePosition � notPressLoaded and PressMot = up
OpenForLoading � MiddlePosition and PressMot = idle
MovingToTopPosition � PressLoaded and PressMot = up
ClosedForForging � TopPosition and PressMot = idle
MovingToBottomPosition � PressMot = down

Initialization: BottomPosition = true, PressMot = idle, PressLoaded = true



[Deposit Belt]

DB NORMAL.
if NormalRun and PieceInDepositBeltLightBarrier
then Critical := true

DB CRITICAL.
if CriticalRun and not PieceInDepositBeltLightBarrier
then DepBeltMot := o�

DepositBeltReadyForLoading := true
PieceAtDepositBeltEnd := true

DB STOPPED.
if Stopped and not PieceAtDepositBeltEnd
then DepBeltMot := on

Critical := false

where NormalRun �
DepBeltMot = on and not Critical

CriticalRun �
DepBeltMot = on and Critical

Stopped �
DepBeltMot = o�

Initialization: DepBeltMot = on, Critical = false,
PieceAtDepositBeltEnd = false, DepositBeltReadyForLoading = true

[Travelling Crane]

WAITING(DB).
if WaitingToUnloadDepositBelt and PieceAtDepositBeltEnd
then CraneMagnet := on

UNLOADING(DB).a.
if CraneVerticalMot = idle and GripperVerticalPos = OnDepositBelt and
CraneMagnet = on

then CraneVerticalMot := up

UNLOADING(DB).b.
if CraneVerticalMot = up and GripperVerticalPos = SafeDistanceFromFeedBelt
then CraneVerticalMot := idle

CraneHorizontalMot := toFeedBelt
PieceAtDepositBeltEnd := false

MOVING(FB).
if CraneHorizontalMot = toFeedBelt and GripperOverFeedBelt
then CraneHorizontalMot := idle



WAITING(FB).
if WaitingToLoadFeedBelt and FeedBeltFree
then CraneVerticalMot := down

LOADING(FB).a.
if CraneVerticalMot = down ^ GripperVerticalPos = OnFeedBelt ^ GripperOverFeedBelt
then CraneVerticalMot := idle

CraneMagnet := o�

LOADING(FB).b.
if CraneVerticalMot = idle ^ GripperVerticalPos = OnFeedBelt ^ GripperOverFeedBelt
and CraneHorizontalMot = idle and not CraneMagnet

then CraneHorizontalMot := toDepBelt
FeedBeltFree := false

MOVING(DB).a.
if CraneHorizontalMot = toDepositBelt and GripperOverDepositBelt
then CraneHorizontalMot := idle

CraneVerticalMot := down

MOVING(DB).b.
if GripperOverDepositBelt and
CraneVerticalMot = down and GripperVerticalPos = OnDepositBelt

then CraneVerticalMot := idle

where WaitingToUnloadDepositBelt �
GripperOverDepositBelt and GripperVerticalPos = OnDepositBelt and
CraneHorizontalMot = idle and CraneVerticalMot = idle and
CraneMagnet = o�

WaitingToLoadFeedBelt �
GripperOverFeedBelt and GripperVerticalPos = SafeDistanceFromFeedBelt and
CraneHorizontalMot = idle and CraneVerticalMot = idle and
CraneMagnet = on

Initialization: CraneHorizontalMot = idle, CraneVerticalMot = idle,
GripperOverDepositBelt = true, GripperVerticalPos = OnDepositBelt ,
CraneMagnet = o�



9 Appendix C. Geometrical Layout of the Production Cell

The FZI simulator for the production cell can be accessed through

http://www.fzi.de/divisions/prost/projects/production_cell

/ProductionCell.html

The executable code for our program which controls this simulator is available
at

http://www.fzi.de/prost/projects/production_cell

/contributions/ASM.html

Travelling
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Elevating
Rotary Table
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Feed Belt
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Arm 1

Arm 2
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Published in: Special ASM issue of J.UCS (Journal of Universal Computer
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