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Abstract. We propose a simple foundation for a practice-oriented undergraduate course
that links seamlessly computation theory to principles and methods for high-level computer-
based system development and analysis. Starting from the fundamental notion of virtual
machine computations, which is phrased for both synchronous and asynchronous systems
in terms of Abstract State Machines, the course covers in a uniform way the basics of
algorithms (sequential and distributed computations) and formal languages (grammars and
automata) as well as the computational content of the major programming paradigms and
high-level system design principles. The course constitutes a basis for advanced courses on
algorithms and their complexity as well as on rigorous methods for requirements capture
and for practical hardware/software design and analysis.

We outline here a successful use one can make of Abstract State Machines (ASMs) as a unify-
ing conceptual ground for a practice-oriented undergraduate course on computation theory which
covers classical models of computation—algorithms (undecidability and complexity) and formal
languages (grammars and automata of the Chomsky hierarchy)—, but also the principles of pro-
gramming constructs and of high-level design and analysis of computer-based systems. The fun-
damental notion of virtual machine computations and the ways to investigate them taught in this
course seem to appeal to practice-oriented students and provide a basis for advanced courses on
the use of rigorous methods for requirements capture and for the design and the analysis of real-life
hardware/software systems, as illustrated in the experience reports [13,15].

In Section 1 we outline the fundamental questions and concepts addressed in the proposed
course and introduce the basic notion of Abstract State Machines, a rigorous form of virtual ma-
chines which allows one to treat in a uniform way computation theory and system design issues. In
Section 2 we explain how to uniformly present the variety of classical formal languages (Chomsky
hierarchy grammars and equations for recursive functions) and the corresponding automata, by
appropriately instantiating basic ASMs. This naturally leads to a coding-free undecidability proof,
on half a page with five lines of proof starting from scratch, for the termination problem of any
computation-universal language, including any programmming language that satisfies a few nat-
ural closure properties, and to a discussion of the Church-Turing thesis, strengthened by ASMs
to capture also resource bound considerations. In Section 3 we propose using ASMs to define the
computational meaning of the major sequential and concurrent programmming constructs appear-
ing in imperative, object-oriented, functional or logic programs. In Section 4 we indicate how the
rigorous-pseudo-code character of ASMs can be exploited to use these machines as conceptual frame
for advanced courses on accurate high-level modeling and analysis (validation and verification) of
complex real-life computer-based systems.

In this paper we can only give an outline of the themes for the course so that we refer for
an elaboration of the technical details to the literature. Except for the undecidability proof, we
also restrict our attention on the definitional aspects for which we suggest a novel approach, which
allows the lecturer to a) define only once the notion of (mono-agent or synchronous or asynchronous
multi-agent virtual machine) computation, which covers all the variations one encounters in the
literature, and to b) directly deploy the involved fundamental theoretical concepts for challenging
practical problems the working computer scientist has to face in his professional life, covering in a
uniform way two things:



The investigation of the basic concepts from the theory of computation and programming
through the well-known classical theorems. The textbook [9] is still a good source for many
simple proofs.
Teaching practical system design principles through building and analysing rigorous high-level
models. The AsmBook [30] contains some real-life case studies.
We do not discuss any purely didactical concern or techniques how to teach the course. The

AsmBook [30] shows a way how to teach ASMs. It includes a CD with a set of slide decks, in
pdf and ppt format, for lecturers of introductory and advanced courses. That material can also be
downloaded from the AsmBook website at http://www.di.unipi.it/AsmBook/. As to the level
of the course, it depends on the depth chosen. The course fits wherever an introductory course on
computability or automata or more generally computation theory is taught. As to the size of the
course, it may vary between 20 and 50 hours, depending again on the depth into which the lecturer
wishes and can afford to go in treating the proposed arguments.

1 The Basic Questions and Concepts

The proposed course is centered around the following four basic questions any conceptual frame-
work of computation theory and of computer-based system design and analysis has to address.

What are the basic virtual machines needed to perform any kind of computation (uni-
versal virtual machine concept), whether stand-alone or in cooperation involving distributed
computations?
• What are the states (data structures) of such a general-purpose concept of virtual machines?

What are the data sharing structures to express the cooperation of these virtual machines?
What are the basic programs (algorithms) for most general virtual machines?
• What are the basic control structures provided by the programs of such machines?
• What are the basic communication means provided by the programs of such machines?
• What are the runs, sequential or distributed, formed by executing instructions for state-

transforming or communication steps of such machines?
What are the basic properties of such machines and their programs, like their functionality
(required or achieved), their computational power, their memory or time complexity, etc? What
are the languages to appropriately express these properties?
What are the basic means of analysis to establish, in terms of experimental validation
and of mathematical verification, desired properties for running programs on such machines?

In dealing with these questions we advocate to separate from the very beginning different con-
cerns. This creates in the student a firm divide-and-conquer attitude that encourages an approach
to system design and analysis which uses systematically the piecemeal introduction of design and
verification details (so-called stepwise refinement method) and thereby enables the future practi-
tioner to adopt for each development step the appropriate one among the multitude of available
definition and proof methods. The three major types of activities we suggest to teach to distinguish
are the following ones:

Separate design from analysis. For conceptually simple or small systems as the ones used in clas-
sical computation theory, definition and analysis means are often intertwined with advantage,
e.g. when a recursive definition of some concept is coupled with recursively defined deduction
rules to prove properties for that concept in a calculational manner. Also systems that are tai-
lored to successfully deal with particular classes of to-be-verified programs take advantage from
a tight link between means of program development and proof techniques to check program
properties; a good example for this is the B-method [2]. However, the complexity of real-life
computer-based systems makes it appropriate to generally separate design from analysis. This
helps to not restrict the design space or its structuring into components by proof principles
which are coupled to the design framework in a fixed a priori defined way, as happens for
example with the refinement concept in the B-method.

http://www.di.unipi.it/AsmBook/


Separate different analysis types and levels. Such a stratification principle is widely accepted
in mathematics. It also applies to system analysis where it can be instantiated in the following
way.

• Separate experimental validation (system simulation and testing) from mathematical ver-
ification.
• Distinguish verification levels and the characteristic concerns each of it comes with. Each

verification layer has an established degree of to-be-provided detail, formulated in an appro-
priate language. E.g. reasoning for human inspection (design justification by mathematical
proofs) requires other features than using rule-based reasoning systems (mechanical design
justification). Mathematical proofs may come in the form of proof ideas or proof sketches
or as completely carried out detailed proofs. Formalized proofs are based on inference cal-
culi which may be operated by humans or as computerized systems, where one should
distinguish interactive systems (theorem proving systems like PVS, HOL, Isabelle, KIV)
from automatic tools (model checkers and theorem provers of the Otter type). Another dis-
tinction comes through separating static program analysis from a run-time-based analysis
of dynamic program properties (so called runtime verification). For each verification level
the lecturer finds in the literature case studies, coming from different domains (hardware,
programming languags, protocols, embedded systems), showing how to use ASMs to reason
about the specification a the given level of abstraction.

1.1 Abstract State Machines

An important reason for starting the course with the notion of Abstract State Machines, whose
definition is outlined in this section, is that these machines represent a most general definition
of Virtual Machines. This has become clear from over ten years of experience with modelling and
analysing outstanding real-life virtual machines and is theoretically underpinned by the ASM thesis,
a resource-bound-aware generalization of the thesis of Church and Turing (see the next section). In
addition ASMs provide a framework for a theoretically well-founded, coherent and uniform prac-
tical combination of abstract operational descriptions with functional and axiomatic
definitions, thus eventually overcoming an alleged, though unjustified and in fact destructive,
dichotomy between declarative and operational design elements which has been advocated for the
last thirty years in the literature and in teaching.

Formally, ASMs can be presented as transition systems which transform structures, thus in-
volving two ingredients, namely notions of abstract state and of single computation step.
Abstract system states are represented by structures, understood the way they appear in
Tarski’s semantical foundation of classical logic1, given as domains of objects coming with predi-
cates (attributes) and functions defined on them. If this definition of structures cannot be assumed
to be known from an introduction into classical logic, structures can equivalently be viewed as sets
of values residing in abstract memory units, so-called locations, which are organized into tables.
Here a table is an association of a value to each table entry. Each table entry is a location, con-
sisting of a table (or function) name and an argument. These tables are nothing else than what
logicians call the interpretation of a function.

This general concept of structures incorporates truly ‘abstract data types’, which may be defined
in many satisfactory ways, not only by equations or by logical axioms, but also operationally by
programs or rules producing dynamic sets of updates of locations, as explained now. In fact ASMs
represent a form of “pseudo-code over abstract data”, virtual machine programs whose instructions
are guarded function updates, structure transforming “rules” of the form2

if Condition then f (t1, . . . , tn) := t
1 which is directly related to the object-oriented understanding of classes and their instances
2 This definition of machine “instructions” combines the traditional distinction between branching (test)

instructions and action instructions (see for example Scott’s definition of abstract machine programs
in [59]) and avoids, for reasons explained below, to name instructions by labels which support the
interruption of the standard sequential instruction execution by branching.



Also the auxiliary functions and predicates, which appear in the expressions ti , t and thus
are part of the system states, can be given purely functional or axiomatic or whatever other
form of satisfactory definitions. This is supported by a classification of functions into basic and
derived. Derived functions are those whose definition in terms of basic functions is fixed and may
be given separately, e.g. in some other part (“module” or “class”) of the model to be built. An
orthogonal classification which supports this combination of declarative and operational features
is the distinction between static and dynamic functions. The further classification of dynamic
functions with respect to a given (machine executing) agent into controlled (readable and writable),
monitored (readable), output (writable) and shared functions supports to distinguish between the
roles different ‘agents’ (e.g. the system and its environment) play in using (providing or updating the
values of) dynamic functions. A particularly important class of monitored functions are selection
functions, for which also a special notation is provided (see below). Monitored and shared functions
also represent a rather general mechanism to specify communication types between different agents,
executing each a basic ASM. For details see the AsmBook [30, Ch.2.2.3].
ASM computations are understood as for traditional transition systems, except that the rules
of ASMs are executed in parallel3 so that the students learn from the very beginning to avoid, as
long as they are concerned with building a high-level system model, to sequentialize independent
actions. The definition of further control structures (like sequential execution or iteration) can be
added where needed for a concrete implementation, some standard examples will be discussed in
Section 2 in connection with the concept of structured programming. For asynchronous multi-agent
ASMs it suffices to generalize runs from sequences (linear orders) of transition system moves of
just one basic ASM to partial orders of moves of multiple agents, each executing a basic ASM,
subject to a natural coherence condition, see [30, Def.6.1.1].
Non-determinism as incorporated in selection functions has also an explicit standard notation,
namely choose x with φ do rule and

choose x with φ
rule

standing for the rule to execute rule for one element x , which is arbitrarily chosen among those
satisfying the selection criterion φ.
Synchronous parallelism, already present in the execution of ASM rules, is extended by a
standard notation, namely forall x with φ do rule and

forall x with φ
rule

standing for the execution of rule for every element x satisfying the property φ.
Control state ASMs, introduced in [10], are an alternative way to define basic ASMs as an
extension of finite state machines (FSMs), if for some reason that concept is already known to the
students. This comes up to enrich the notion of state and state transition: the internal states i
become part of general structures4 and the transitions are generalized to guarded synchronous
parallel updates of those structures, in addition to updating what is now called more specifically
control state i or mode. In this perspective, synchronous ASMs are given by sets of locally syn-
chronous and globally asynchronous control state ASMs. To make this generalization of FSMs to
control state ASMs transparent, we use the notation Fsm(i , if cond then rule, j ) for the following
rule:

if ctl state = i and cond then
rule
ctl state := j

3 More precisely: to execute one step of an ASM in a given state S determine all the fireable rules in S
(s.t. Condition is true in S), compute all expressions ti , t in S occuring in the updates f (t1, . . . , tn) := t
of those rules and then perform simultaneously all these location updates.

4 This departs from the unstructured notion of states in the above-mentioned Scott machines, see [59].



The above working definition refers only to basic intuitions from programmming practice. It
suffices for most of the course material discussed below. A formalized definition of the semantics
of basic or asynchronous ASMs is obviously needed for detailed proof verifications within the
fixed syntax of some logic or to understand special features of implementations of ASMs. Such
a definition can be given and is available in textbook form in terms of a first-order-logic-based
derivation system in [30, Ch.2].

The use of ASMs on the one side allows one to explain in a uniform way the classical models of
computation and the semantics of the basic programming concepts. Furthermore, these very same
ASMs can be taught to support describing system behavior by succinct, purely mathematical
(read: platform-independent) but intuitive operational models, which the practitioner can use for
experimentation by running executable versions and for rigorous analaysis. How to present this in
a course is what we are going to explain in the following sections.

2 Algorithms: Computability and Undecidability

In this section we outline how in terms of ASMs one can introduce in a uniform manner all the
classical models of computation that are most frequently adopted in computation theory courses,
namely automata that characterize (generate and accept) languages of the Chomsky hierarchy.
We show how simple structured ASMs, defined in terms of sequentialization and iteration of com-
ponents, can be used to compute the recursive functions (Structured Programmming Theorem).
We indicate a coding-free five-lines undecidability proof for the termination problem of programs
of any programming language satisfying some natural closure properties and point to a resource-
bound-aware generalization of the Church-Turing thesis in terms of ASMs. We have experienced
that this core material can be covered in two weeks (6-8 lecture and exercise hours). Details for
most of the material and further references can be found in the papers [16,29] and in chapters 7
and 4 of the AsmBook [30].

2.1 Automata and Grammars

We outline here how to uniformly define, in terms of simple ASMs, the classical automata that
are related to the grammars forming the Chomsky hierarchy. We concentrate upon deterministic
machine versions, from which the non-deterministic counterparts are obtained by governing the
Rules to select from by a choose operator in the form choose R ∈ Rules in R.
Finite Automata. Deterministic Mealy and Moore automata can be introduced as control state
ASMs, with one output function and a monitored input function, where every rule has the following
form (in the case of Moore automata one has skip instead of the output assignment):

Fsm(i , if Reading(a) then Output(b), j ) where
Reading(a) = (in = a)
Output(b) = (out := b)

If one prefers to write programs in the usual tabular form, where one has one entry (i , a, j , b)
for every instruction “in state i reading input a, go to state j and print output b”, one obtains the
following guard-free FSM rule scheme for updating (ctl state, out), where the parameters Nxtctl and
Nxtout are the two projection functions which define the program table, mapping ‘configurations’
(i , a) of the current control state and the currently read input to the next control state j and
output b.

MealyFsm(in, out ,Nxtctl ,Nxtout) =
ctl state := Nxtctl(ctl state, in)
out := Nxtout(ctl state, in)



We like to discuss important specializations of FSMs through exercises where the students are
asked to formalize variations of the above scheme. We give here three simple examples, more can
be found in [16]. To formalize an input tape which is scanned piecemeal it suffices to change the
monitored function in into a shared one which is supposed to be initialized by the environment
and is at each step updated by the rule. To obtain 2-way automata it suffices to include into the
instructions also Moves (of the position head) of a reading device on the input tape in—so that
in(head) represents the currently read part of the input tape in—and to add updates of the head
position.

TwoWayFsm(in, out ,Nxtctl ,Nxtout ,Move, head) =
MealyFsm(in(head), out ,Nxtctl ,Nxtout)
head := head + Move(ctl state, in(head))

In timed automata the letter input comes at a real-valued occurrence time which is used in the
transitions where clocks record the time difference of the current input with respect to the previous
input: time∆ = occurrenceTime(in) − occurrenceTime(previousIn). The firing of transitions may
be subject to clock constraints5 and includes clock updates (resetting a clock or adding to it the
last input time difference). Thus timed automata can be defined as specialized FSMs with rules of
the following form:

Fsm(i , if Reading(a) then ClockUpdate(Reset), j )
where

Reading(a) = (in = a and Constraint(time∆) = true)
ClockUpdate(Reset) =

forall c ∈ Reset do c := 0
forall c 6∈ Reset do c := c + time∆

Push-Down Automata. In pushdown automata the Mealy automaton ‘reading from the input
tape’ and ‘writing to the output tape’ is extended to reading from input and/or a stack and writing
on the stack . In the following formulation of the form of PDA-rules, the optional input-reading or
stack-reading are enclosed in []; the meaning of the stack operations push, pop is the usual one.

Fsm(i , if Reading(a, b) then StackUpdate(w), j ) where
Reading(a, b) = [in = a] and [top(stack) = b]
StackUpdate(w) = stack := push(w , [pop](stack))

Turing-like Automata. The Turing machine combines readable input and writable output of a
two-way FSM into one read/write tape memory, identifying in and out with tape. This is a good
reason to rename the function Nxtout of the TwoWayFsm to Write.

TuringMachine(tape,Nxtctl ,Write,Move, head) =
TwoWayFsm(tape, tape(head),Nxtctl ,Write,Move, head)

Wegner’s interactive Turing machines [66] in each step can additionally receive some environ-
mental input and yield output to the environment. So they are an extension of the TuringMachine

by an additional input parameter of the program table functions Nxtctl ,Write,Move and by an
additional output action6. The output action may consist in writing the output on an in-out tape;
the input can be a combination of preceding inputs/outputs with the new user input, it also may
be a stream vector input = (inp1, . . . , inpn) (so-called multiple-stream machines).
5 Typically the constraints are about input to occur within (<,≤) or after (>,≥) a given (constant) time

interval, leaving some freedom for timing runs, i.e. choosing sequences of occurrenceTime(in) to satisfy
the constraints.

6 When introducing additional parameters we write fp for the function defined by fp(x ) = f (p, x ).



TuringInteractive(tape,Nxtctl ,Write,Move, head , input) =
TuringMachine(tape,Nxtctlinput ,Writeinput ,Moveinput , head)
Output(input , ctl state, tape(head))

Numerous other variations of Turing-like machines appear in the literature, e.g. computa-
tionally equivalent ones like the k -tape or the n-dimensional Turing machines, the machines of
Wang, Minsky, Sheperdson and Sturgis, Scott, Eilenberg, the substitution systems of Thue, Post,
Markov, etc., but also weaker machines like the linear bounded Turing machines. Their definitions
can be covered by exercises where the students are asked to appropriately instantiate the following
scheme of which also the above classical TuringMachine is a specialization. The characteristic
feature of every TuringLikeMachine is that in each step, placed in a certain position of its
memory, it reads this memory in the env ironment of that position (which may be requested to
satisfy a certain Cond ition) and reacts by updating mem and pos. Therefore the rules of each
TuringLikeMachine(mem, pos, env) are all of the following form:

Fsm(i , if ReadingCond then Update (mem(env(pos)), pos), j )
where ReadingCond = Condition(mem(env(pos)))

Details of how to instantiate this scheme to the classical machine or substitution systems can
be found in [16]. For Chomsky grammars see also Section 3. As example we illustrate how the
standard Turing machine is extended to alternating Turing machines, namely by adding new types
of control states whose role is to spawn trees for subcomputations, which upon termination are
accepted or rejected. The existential and universal control states play the role of tree roots where
subcomputations are spawned; they differ in the way their yield is collected upon termination
to either accept or reject the spawned subcomputations. Directly accept ing or reject ing control
states appear at the leaves of such subcomputations. Different subcomputations of an alternating
Turing machine, whose program is defined by the given functions Nxtctl , Write, Move used by all
subcomputations, are distinguished by parameterizing the machine instances by their executing
agents a, obtaining TuringMachine(a) from the standard TuringMachine by replacing the
dynamic functions ctl state, tape, head with their instances a.ctl state and a.tape, a.head . For the
details of the new submachines see [16].

AlternatingTm(tape,Nxtctl ,Write,Move, head) =
if type(self .ctl state) = normal then

TuringMachine(tape,Nxtctl ,Write,Move, head)(self)
if type(self .ctl state) ∈ {existential , universal} then

AltTmSpawn(self)
TmYieldExistential(self)
TmYieldUniversal(self)

if type(self .ctl state) ∈ {accept , reject} then
yield(self) := type(self .ctl state)

We conclude with a short discussion of Petri nets. In their most general understanding they are
an instance of multi-agent asynchronous ASMs, namely distributed transition systems transforming
objects under given conditions. In Petri’s classical instance the objects are marks on places (‘passive
net components’ where objects are stored), the transitions (‘active net components’) modify objects
by adding and deleting marks on the places. In modern instances (e.g. the predicate/transition nets)
places are locations for objects belonging to abstract data types (read: variables taking values of
given type, so that a marking becomes a variable interpretation), transitions update variables and
extend domains under conditions which are described by arbitrary first-order formulae. Technically
speaking, each single transition is modeled by a basic ASM rule of the following form, where
pre/post-places are sequences or sets of places which participate in the ‘information flow relation’
(the local state change) due to the transition and Cond is an arbitrary first-order formula.

PetriTransition =



if Cond(prePlaces) then Updates(postPlaces)
where

Updates(postPlaces) = a set of function updates

2.2 Structured ASMs for Recursive Functions

No computation theory course should miss a discussion of the notion of recursion, independently
of its realizations in programming languages. This is a place to exploit the elegance of purely func-
tional equational definitions, characterizing primitive recursive and general recursive functions in
the Gödel-Herbrand style. We however replace the tedious still widely used programming of the
Turing machine to compute recursive functions by the introduction of so-called turbo ASMs defined
in [29]. These machines solve in a natural way the problem to incorporate into the basic synchronous
parallel computation model of basic ASMs the fundamental control structures for sequential exe-
cution and iteration (as well as of submachines). This provides a simple proof for Böhm-Jacopini’s
Structured Programming Theorem and more importantly a programming-language-independent
general framework to discuss imperative and functional programmming concepts like composition,
general recursion and procedure calls, parameterization, naming, encapsulation and hiding, local
state, returning values, error handling, etc. We illustrate this by three very simple but characteris-
tic turbo ASMs, namely to compute the composition and the minimalization operator for recursive
functions and the classical recursive quicksort algorithm. Every lecturer will make up more exam-
ples tailored to his audience and taste. More details can be found in [17,41] or in chapter 4 of the
AsmBook [30]. See also the interesting recent comparison of the transition from basic ASMs to
turbo ASMs to the transition from FORTRAN/ALGOL58 to ALGOL60 in [53].

For computing recursive functions by turbo ASMs one can follow the standard way to compute
them by structured programs for the register machine or Rödding’s register operators, see [9, pages
19-23]. The turbo ASMs M we need can be defined, using only the composition operators seq,
while defined in [29], from basic ASMs whose non-controlled functions are restricted to one (a 0-
ary) input function (whose value is fixed by the initial state), one (a 0-ary) output function, and the
initial functions of recursion theory as static functions. The 0-ary input function inM contains the
number sequence which is given as the input for the computation of the machine, outM receives
the computed function value as output of M . If functions g , h1, . . . , hm are computed by turbo
ASMs G ,H1, . . . ,Hm , then their composition f defined by f (x ) = g(h1(x ), . . . , hm(x )) is computed
by the following machine F = FctCompo, where we write out := F (in) as abbreviation for
inF := in seq F seq out := outF , similarly F (in) for inF := in seq F :7

FctCompo(G ,H1, . . . ,Hm) =
{H1(inF ), . . . ,Hm(inF )} seq outF := G(outH1 , . . . , outHm )

The formula for this structured program makes the order explicit in which the subterms in the
defining equation for f have to be evaluated. First, the input is passed to the constituent functions
hi to compute their values, whereby the input functions of Hi become controlled functions of F . The
parallel composition of the submachines Hi(inF ) reflects that their computations are completely
independent from each other, though all of them have to terminate before the next “functional”
step is taken, consisting in passing the sequence of outHi

as input to the constituent function g .
Finally the value of g on this input is computed and assigned as output to outF .

In the same way, if f is defined from g by minimalization, i.e. f (x ) = µy(g(x , y) = 0), and if a
turbo ASM G computing g is given, then the following machine F = MuOperator computes f .
The start submachine computes g(x , rec) for the initial recursor value 0, and the iterating ma-
chine computes g(x , rec) for increased values of the recursor until for the first time 0 shows up as
computed value of g , in which case the reached recursor value is set as output.

MuOperator(G) = {G(inF , 0), rec := 0} seq
(while (outG 6= 0) {G(inF , rec + 1), rec := rec + 1}) seq

outF := rec
7 The set denotes the rules of an ASM which are to be executed in parallel.



The turbo ASM below for Quicksort follows its well-known recursive definition: FIRST partition the
tail of the list L into the two sublists tail(L)<head(L), tail(L)≥head(L) of elements < head(L) respec-
tively ≥ head(L) and quicksort these two sublists independently of each other, THEN concatenate
the results taking head(L) between them.

Quicksort(L) = if | L |≤ 1 then result:= L else
let

x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result:= concatenate(x , head(L), y)

The structuring principles of structured programming are directly reflected by the turbo ASM
operators seq and while. Also more sophisticated structuring principles are supported by ASMs.
We mention here the decomposition of systems into components [14], the instantiation of parame-
terized submachines [29] and the organization of classes into an inheritance hierarchy by a subclass
(compatibility) relation as formalized for Java and the Java Virtual Machine in [62].

2.3 Undecidability and Church-Turing Thesis

In this section we show the general undecidability proof we use, starting from scratch, using half
a page and five lines of proof, for the termination problem of any class of universal programs, as
a preparation for the epistemological discussion of the intrinsic boundaries of the notion of virtual
machine computation as well as of its wide range (Church-Turing thesis and its generalization by
ASMs).
Undecidability. Consider any programming language L that satisifies the following four closure
properties (which are known to suffice to be computationally universal, see for example the above
turbo ASMs computing recursive functions)8:

L provides a notion of sequential execution, for definiteness say in the form of an operator seq
such that P ,Q ∈ L implies P seq Q ∈ L.
L provides a notion of program iteration, for definiteness say P ∈ L implies while b = 1 P ∈ L,
where b is a program variable with boolean values 0,1.
L provides a notion of calling a program for given input, for definiteness say in the form that
P ∈ L implies Call P(in) ∈ L, where in is a program input variable.
L permits program text as input for programs9.
We denote for the given L as usual a) by Halt(p,in) that program p started with input in

terminates, and b) by ‘p computes H ’ that for every input in, Halt(p,in) and upon termination
the output variable, say out , satisfies out = 1 if H (in) and out = 0 otherwise. We prove by
contradiction that there is no L-program h that computes the Halt predicate for L-programs.
In fact, otherwise by the above listed closure properties the following program Diag with input
variable in and output variable out would be an L-program (draw the flowchart diagram visualizing
the diagonal argument):

Diag = Call h(in, in) seq (while out = 1 Call h(in, in))

Due to its definition and to the definition of the Halt ing property, this program would satisfy the
contradictory property that Halt(Diag,Diag) is true if and only if Halt(Diag,Diag) is not true.
Church-Turing Thesis. After having shown the above undecidability proof, we link this result
to the ASMs for standard machines, algorithms, programming constructs and virtual machine or
general system design models to motivate the discussion of what became known as ASM Thesis,
stating roughly that for any algorithm (in the intuitive sense of the word) an ASM can be defined
which simulates this algorithm with the same number of steps (up to a constant factor). This thesis
8 We thank Francesco Romani for having pointed out an oversight in an earlier version of this argument
9 This condition is of technical nature: it allows one to avoid the discussion of ways of coding of program

text as input for other programs.



generalizes the Church-Turing Thesis and provides a chance for the lecturer to attract students
who have a mind for epistemological questions and are not afraid of mathematical reasoning. In
fact for the case of so-called sequential and synchronous parallel ASMs a proof for the thesis can
be given from a small number of postulates, as shown in [46,8] (for the sequential case one may
wish to also consult the expositions in [30, Ch.7.2] and [55]).

3 Principles of Programming Languages

The literature offers a rich variety of ASM models the lecturer can choose from for every major
programming language paradigm, whether logical, functional, imperative, object-oriented, with or
without parallelism. This includes the complete definition (together with a mathematical anal-
ysis10) of real-life programmming languages and their implementations, like Java [62], C# [21],
SDL-2000 [49,45] and the (forthcoming OASIS standard for the) Business Process Execution Lan-
guage for Web Services BPEL4WS [39,65,38]. It also includes modeling various forms of parallelism
and thread handling, for example the ones in Occam [20] or C# [61].

Instead of focussing on a particular language, an alternative is to define an ASM to inter-
pret high-level object-oriented programmming constructs, structured into layered modules of by
and large orthogonal language features for an imperative core (related to sequential control by
while programs, built from statements and expressions over the simple types), static class features
(realizing procedural abstraction with class initialization and global (module) variables), object-
orientation (with class instances, instance methods, inheritance), exception handling, concurrency,
delegates (together with events, properties, indexers, attributes), unsafe code with pointer arith-
metic. In a next step one can then instantiate that interpreter to one for a particular language, as
done in [31] to concretely compare Java and C#, distilling their similarities and differences.

As a small illustrative example we extract here from the ASM for the core of Prolog in [26]
a basic tree generation and traversal ASM Backtrack. This machine yields plenty of modeling
and refinement exercises, namely to define by variations of the model the core of ISO Prolog [19]
and of its various extensions (e.g. IBM’s Protos-L [7,6] and constraint logic programming language
CLP(R) [28]), of a functional programming language like Babel [23], of context free and of attribute
grammars [50], etc. For details see [16].

The machine dynamically constructs a tree of alternatives and controls its traversal. In control
state mode = ramify , it creates as many new children nodes to be computation candidates for its
currnode as there are computation alternatives, provides them with the necessary env ironment
and switches to select ion mode. In mode = select , if at currnode there is no more candidate the
machine Backtracks, otherwise it lets the control move to TryNextCandidate to get executed.
The (static or monitored) function alternatives determines the solution space depending upon its
parameters and possibly the current state. The dynamic function env records the information every
new node needs to carry out the computation determined by the alternative it is associated with.
The macro Back moves currnode one step up in the tree, to parent(currnode), until the root is
reached where the computation stops. TryNextCandidate moves currnode one step down in
the tree to the next candidate, where next is a possibly dynamic choice function which determines
the order for trying out the alternatives. Typically the underlying execution machine will update
mode from execute to ramify , in case of a successful execution, or to select if the execution fails.

Backtrack =
Ramify

Select

10 The lecturer who speaks to students with interest in verification can expand here as much as he wants.
For example, the detailed mathematical analysis of Java/JVM in [62] includes proofs that Java is type-
safe, that the compiler is correct and complete and that the bytecode verifier is complete and sound. Also
a mechanical verification of such ASM-based mathematical proofs can be presented, see for example the
KIV-verification reported in [56] for the ASM-based correctness proof in [27] for the Prolog-to-WAM
implementation.



Ramify =
if mode = ramify then

let k = |alternatives(Params)|
let o1, . . . , ok = new(NODE )

candidates(currnode) := {o1, . . . , ok}
forall 1 ≤ i ≤ k

parent(oi) := currnode
env(oi) := ith(alternatives(Params))

mode := select

Select =
if mode = select then

if candidates(currnode) = ∅ then Back

else
TryNextCandidate

mode := execute

Back =
if currnode = root

then mode := Stop
else currnode := parent(currnode)

TryNextCandidate =
currnode := next(candidates(currnode))
Delete(next(candidates(currnode)),

candidates(currnode))

The above mentioned exercises consist in finding instantiations of the here not furthermore spec-
ified functions alternatives, next and of the underlying system env ironment and execution engine
Execute. Instantiating the ASM to one describing tree adjoining grammars generalizes Parikh’s
analysis of context free languages by ‘pumping’ of context free trees from basis trees (with terminal
yield) and recursion trees (with terminal yield except for the root variable).

4 High-Level System Design and Analysis

In the very same way we have illustrated in Section 2 ASMs to capture classical models of computa-
tion, one can show that they can also be used to model the basic semantical concepts of executable
high-level design languages (like UNITY and COLD), of widely used state-based specification lan-
guages (e.g. B [2] or SCR [47,48]), of dedicated virtual machines as well as of axiomatic logic-based
or stateless modeling systems. The reader can find details in [16].

This naturally leads to continue the course with advanced courses on practical system engi-
neering methods. We have described in [13,15] a program for teaching the ASM system design and
analysis method, which over the last decade has been elaborated upon the basis of ASMs as rigor-
ous notion of virtual machine and which within a single, precise yet simple, conceptual framework
naturally supports and uniformly links the major activities which occur during the typical software
life cycle, namely:

Requirements capture by constructing satisfactory ground models, i.e. accurate high-level
system blueprints, serving as precise contract and formulated in a language which is understood
by all stakeholders (see [11]).
Detailed design by stepwise refinement, bridging the gap between specification and code
design by piecemeal, systematically documented detailing of abstract models down to exe-
cutable code (see [12]). This includes refinement steps which lead from a high-level ASM to an
executable and therebey mechanically validatable ASM.



Validation of models by their simulation, based upon the notion of ASM run and supported
by numerous tools to execute ASMs (ASM Workbench [34], AsmGofer [57], C-based XASM [3],
.NET-executable AsmL engine [40]).
Verification of model properties by proof techniques, also tool supported, e.g. by KIV [56] or
PVS [36,42] or Stärk’s theorem prover [60] or model checkers [67,35,44].
Documentation for inspection, reuse and maintenance by providing, through the intermediate
models and their analysis, explicit descriptions of the software structure and of the major design
decisions.

The lecturer can choose among a great variety of ASM-based modeling and analysis projects in
such different areas as:

industrial standardization projects: the above mentioned models for the forthcoming OASIS
standard for BPEL [65], the ECMA standard for C# [21], the ITU-T standard for SDL-
2000 [45], the IEEE standard for the hardware desing language VHDL93 [22], the ISO-Prolog
standard [19],
programmming languages: definition and analysis of the semantics and the implementation
for the major real-life programmming languages, e.g. SystemC [54], Java and its implementa-
tion on the Java Virtual Machine [62], domain-specific languages used at the Union Bank of
Switzerland [52], etc.
architectural design: verification (e.g. of pipelining schemes [24] or of VHDL-based hardware
design at Siemens [58, Ch.2]), architecture/compiler co-exploration [63,64],
reengineering and design of industrial control systems: software projects at Siemens related
to railway [18,25] and mobile telephony network components [33], debugger specification at
Microsoft [4],
protocols: for authentication, cryptography, cache-coherence, routing-layers for distributed mo-
bile ad hoc networks, group-membership etc., focussed on verification,
verification of compilation schemes and compiler back-ends [27,20,37,62],
modeling e-commerce [1] and web services [39],
simulation and testing: fire detection system in coal mines [32], simulation of railway scenarios
at Siemens [25], implementation of behavioral interface specifications on the .NET platform
and conformence test of COM components at Microsoft [5], compiler testing [51], test case
generation [43].

The lecturer may also use instead the AsmBook [30] and the teaching material on the accom-
panying CD. The book introduces into the ASM method and illustrates it by textbook examples,
which are extracted from the above listed real-life case studies and industrial applications.
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45. U. Glässer, R. Gotzhein, and A. Prinz. Formal semantics of SDL-2000: Status and perspectives.
Computer Networks, 42(3):343–358, June 2003.

46. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms. ACM Trans. Com-
putational Logic, 1(1):77–111, July 2000.

47. C. Heitmeyer. Using SCR methods to capture, document, and verify computer system requirements. In
E. Börger, B. Hörger, D. L. Parnas, and D. Rombach, editors, Requirements Capture, Documentation,
and Validation. Dagstuhl Seminar No. 99241, Schloss Dagstuhl, Int. Conf. and Research Center for
Computer Science, 1999.

48. C. Heitmeyer. Software cost reduction. In J. J. Marciniak, editor, Enc. of Software Engineering. 2nd
edition, 2002.

49. ITU-T. SDL formal semantics definition. ITU-T Recommendation Z.100 Annex F, International
Telecommunication Union, November 2000.

50. D. E. Johnson and L. S. Moss. Grammar formalisms viewed as Evolving Algebras. Linguistics and
Philosophy, 17:537–560, 1994.

http://research.microsoft.com/foundations/AsmL/
http://research.microsoft.com/foundations/AsmL/


51. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using ASM specifications
for compiler testing. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines
2003–Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer Science, page
415. Springer-Verlag, 2003.

52. P. Kutter, D. Schweizer, and L. Thiele. Integrating domain specific language design in the software life
cycle. In Proc. Int. Workshop on Current Trends in Applied Formal Methods, volume 1641 of Lecture
Notes in Computer Science, pages 196–212. Springer-Verlag, 1998.

53. H. Langmaack. An ALGLO-view on TURBO ASM. In W. Zimmermann and B. Thalheim, edi-
tors, Abstract Sate Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages 20–37.
Springer-Verlag, 2004.

54. W. Mueller, J. Ruf, and W. Rosenstiel. An ASM-based semantics of systemC simulation. In W. Mueller,
J. Ruf, and W. Rosenstiel, editors, SystemC - Methodologies and Applications, pages 97–126. Kluwer
Academic Publishers, 2003.

55. W. Reisig. On Gurevich’s theorem on sequential algorithms. Acta Informatica, 39(5):273–305, 2003.
56. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The WAM case study.

J. Universal Computer Science, 3(4):377–413, 1997.
57. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at http://www.tydo.de/

AsmGofer.
58. J. Schmid. Refinement and Implementation Techniques for Abstract State Machines. PhD thesis,

University of Ulm, Germany, 2002.
59. D. Scott. Definitional suggestions for automata theory. J. Computer and System Sciences, 1:187–212,

1967.
60. R. F. Stärk. Formal verification of the C# thread model. Department of Computer Science, ETH
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