
Abstract State Machines
at the Cusp of the Millenium

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it (Visiting Microsoft Research, Redmond)

The ASM’2000 Workshop marks for the ASM method the transition from its
adolescence to the maturation period. The goals which have been achieved open
new frontiers and put us into the position to embark on new challenges.

1 The Start at the End of the Twentieth Century

We went a long way since the Spring of 1987 when Yuri Gurevich visited Pisa and,
in a series of lectures on the fundamental problem of semantics of programming
languages, presented the world première of the concept of ASMs (then called dy-
namic/evolving structures/algebras). He gave the main motivation: reconsider
Turing’s thesis in the light of the problem of semantics of programs. He illustrated
his ideas with examples, in particular specifications of Turing machines, stack
machines and some Pascal programs. He gave also proofs of simple properties of
these programs. This material appeared a year later in [22]. It was preceded by
the first appearance of the ASM Thesis, in embryo in a 1984 technical report [20],
and fully spelled out in a notice presented on May 13 of 1985 to the American
Mathematical Society [21]. It was accompanied by the first real-world applica-
tion, namely the dynamic semantics of MODULA-2 [26], and shortly afterwards
followed by the ASM treatment of concurrency used to define the semantics of
OCCAM [27], which was presented by Gurevich in another series of lectures in
Pisa in May 1990. Since then the concept of Abstract State Machines essentially
remained stable [23, 24]1and triggered hundreds of publications in various do-
mains including finite model theory, complexity theory and numerous areas of
applied computer science, in particular programming languages, database query
languages, protocols, architectures and embedded control software [1].

The first attempts to put the bold ASM thesis to the test were focussed on the
problem of the dynamics of programming languages known to us, and we came
from a purely theoretical background and had no practical, let alone industrial,
experience. What came out of that is a practical method which exploited ASMs
for the development of a full-fledged refinement approach which enabled us to
rigorously define and analyse the dynamic semantics of real-life programming
languages and their implementation on virtual or real machines. By now, the
1 The initially present construct to shrink domains, which was motivated by concerns
about resource bounds, was abandoned because it belongs to garbage collection
rather than to high-level specification. Some technical variation was later introduced
concerning the treatment of non determinism and of inconsistent update sets.



covered programming paradigms include the paradigms of all the major modern
programming languages. The method of constructing ground models, described
in [5] where the name primary model (rather than ground model) was used,
proved to be mature and was chosen for standardization purposes by the In-
ternational Standards Organization, see [8, 9, 11, 12, 3], and by the International
Telecommunication Union, as reported in [19] and in these Proceedings [18].

At the next step, the method was tried out for the specification and verifi-
cation of machine architectures and protocols. Eventually this was followed by
applications to software engineering. Here one starts by constructing a ground
model for a proposed (or, in the case of reverse engineering, for an existing)
software system. Through the entire design process, one refines and/or coarsens
the models linking the high level models in a traceable and inspectable way to
executable code; see the survey in [6].

The key for the surprisingly fast success of the method lies in (a) the two
constituents of the notion of ASM, namely being abstract (Abstract State) and
operational (Abstract Machine) (see the section Abstract Machines + Abstract
State = ASM in [6] for the historical reconstruction of the confluence of these
two concepts2) and (b) in the systematic way it offers for practical software
development to separate different concerns.

The abstract character of ASMs allows one, on one side, to tailor the mod-
els to the needs or purposes of the design, and, on the other side, to make their
rigorous analysis feasible. The latter is due to the freedom to use those proof
methods which are appropriate for the present discourse. In other words, the ab-
straction mechanism, built into the notion of ASM, permits one to make real the
old dream of well documented and controllable hierarchical system development.
Use ASMs to do the following:

– Make the faithfulness of the models, with respect to the design intentions,
checkable by direct inspection (falsifiable in the Popperian sense). This holds
in particular in requirements engineering for the faithfulness of the ground
model with respect to the informally given requirements. The faithfulness
becomes checkable by the application domain expert once an ASM model is
there (see [16]).

– Link, by hierarchies of stepwise refinements, the high-level definition in a
transparent way to its implementation. Here each refinement step is supposed
to reflect design decisions one wants to document for future use, e.g. for
maintenance purposes or for changes by extensions and modifications.

– Make the (mathematical, possibly machine checked) justification of the cor-
rectness of a complex design feasible. ASMs offer the necessary rigorous
framework for the analysis of run-time properties, at the appropriate level
of abstraction, which allows one to prove that the implementation conforms
to the high-level specification.

2 Notice that the ASM abstract machine is different from the familiar abstract ma-
chines. It has built-in parallelism which allows one to abstract from irrelevant se-
quentialization.



The operational character of ASMs provides a sufficient basis for turning
the definitions into executable models. These can be used for high-level validation
of user scenarios prior to coding or of test beds by means of mental or machine
driven experiments. This luckily breaks with the still widely held traditional
view that specifications should be, or are by definition, non-executable.

The separation of different concerns is incorporated into the techniques
provided by the ASM method for constructing different system views and linking
them into hierarchies of system levels. Here are the major software development
concerns we systematically separate and recombine, making divide and conquer
the main methodical principle, and it led us very far.

– The separation of orthogonal design decisions is the most important one in
practice. It is made possible by the most general abstraction and refinement
capabilities of ASMs, and it is motivated by the necessity to keep the design
space open as long as possible and to structure it, for “design for change”
and for modular development.

– The separation of design from analysis corrects the long standing tradition
of identifying “rigorous” with “formalized in logic”. This tradition is one of
the reasons why the so called formal methods have not really had a strong
impact on practical software development.

– The separation, within the analysis, of experimental validation from math-
ematical verification is possible with ASMs because once the ASM models
have been made executable, they can be used for simulation. The simulation
of a higher-level model can be performed prior to writing the final code. It
can also enhance testing the code, so that the correspondence of the imple-
mentation to the abstract specification can be checked.

– The separation of different degrees of detail within verification allows one to
adapt the justification of a design to the current development stage. ASMs
give the means to differentiate justifying a design to domain experts from
justification in terms of mechanical reasoning systems. Further, one should
distinguish between interactive logical systems and fully automated tools
like model checkers or automatic theorem provers.

– The separation of mathematical concerns within verification. For example,
one may want to split the proof of a property P for a complex system S into
three steps, namely:

• prove P for an abstract model M of S under an appropriate assumption
A,

• refine M to S so that S implements M correctly,
• prove that S satisfies the assumption A.

Experience shows that it is not only easier to prove properties for complex
systems in this way, but this splitting of proof obligations often is the only
known way to show that a run-time system works the way it is supposed
to. A characteristic example are the ASM-based proofs of the correctness of
compilation schemes [13, 10, 17] and the implementation of those schemes by
provably correct real-life compilers, a problem which is addressed in these
Proceedings. By the way, collecting such justificational evidence yields an
interesting byproduct: a detailed analysis of the design itself.



Most of these lines of research and principles were present, in embryo, already
at the first international ASM workshop held as early as 1994, as part of the IFIP
World Computer Congress in Hamburg, Germany [30]. Although the applications
which appeared there were limited by our academic experience and were largely
motivated by an effort to critically test the ASM thesis, it is not incidental that
right from the beginning, by making good use of the freedom of abstraction
offered by the ASM concept, we were naturally led to “separate and combine”
design levels, design and analysis, verification and validation, and degrees of
detail in verification. Concerning validation, let us note that the first tools for
making ASMs executable date back to 1990; see the Prolog-based compiler for
ASMs Angelika Kappel developed in [29], to execute my ASMs for PROLOG
[8], and the Michigan interpreter mentioned in [23]3.

Only 5 years later, at the ASM workshop which was held as part of the
International Formal Methods Conference FM’99 in Toulouse, France4, one can
observe (see again the survey [6] for details) that

– the theory of ASMs is richly developed,
– the applications include industrially successful standardization and software

engineering projects, some of which become publicly visible for the first time
in these Proceedings [15, 4],

– there is a proliferation of different tools5, most of them developed in academia,
for both the experimental validation and the machine supported verification
of ASMs, providing execution mechanisms for ASMs (via interpretation or
compilation) and links to verification systems like PVS, KIV and model
checkers.

All of these themes are reflected in the rich program of ASM’2000. These
Proceedings, which constitute the first book entirely devoted to ASMs, docu-
ment what has been achieved in the first decade after the formulation of the
ASM concept. We see confirmation of our conviction expressed already at the
3 Here is what Jim Huggins wrote to me on June 4, 2000, about the details of the
history: “Yuri taught a course in programming language design at Michigan during
the Fall of 1990. Of course, he introduced ASMs in the class. A very sharp young
undergraduate named Ben Harrison wrote a bare-bones interpreter for ASMs in
LISP in a weekend and distributed it to the class. Yuri was impressed enough with
Harrison that he hired him to write a full-fledged ASM interpreter, this time in C.
Ben built the core of the interpreter in May-June 1991. At that point the interpreter
was handed over to me, and I worked on it for 3 years or so, finishing up the rest
of the unfinished business at that time. In 1994 development was handed over to
Raghu Mani, who worked on it for a couple of years...”. Let me add that Raghu’s
task was to upgrade the interpreter for one-thread ASMs to multi-agent ASMs.

4 In between, ASM workshops had been held in Paderborn (May 1996), Cannes (June
1997, June 1998) and Magdeburg (September 1998).

5 When I was working on this introduction, a message from Prof. Igor Soloviev, of
St.Petersburg State University, arrived: “One of my students, Andrew Usov, has
written an ASM interpreter. It is implemented as an java-applet designed to run
under an internet-browser (it has been tested under IE 5.0 and NS 4.7).”



first ASM workshop in 1994, namely that (paraphrased) “the extraordinary po-
tential of the ASM method will change drastically the industrial future of formal
specifications” [5, pg.393].

2 New Frontiers

The experience accumulated with the ASM concept, and with the method which
has been developed for its use, did change the way we think about high-level
software design and analysis. Now we have to actualize this vision to make
it work for established software development disciplines, at a large scale. The
achievements of the last decade open new frontiers and put us into the position
to face the new challenges.

Through the extensive ASM modeling, validation and verification work of
the past decade, the ASM thesis was experimentally confirmed. But this year
brought us a theoretical explanation of the observed phenomenon, namely via
a proof [25] that the sequential version of the thesis follows from three funda-
mental system theory axioms. Once established, the thesis allows one to draw
conclusions of practical importance, as is illustrated by an example in these
Proceedings [7]: the thesis guarantees that there is no loss of generality in sub-
stituting the fundamental but vague UML concepts of action and activity by the
mathematically rigorous concepts of ASM step and ASM run. It seems that in
UML [31, 2] the meanings of action/activity were intentionally left unspecified,
namely to leave the space of possible implementations as open as possible. But
this was achieved at the price of making it difficult to control the implications
the concepts have in the context of the event-driven run-to-completion scheme,
in particular concerning the possibly numerous and nested exit/entry actions,
coming through interrupts, and concerning the launch and abortion of internal
activities.

On the practical side we have to take advantage of the experience, acquired
with building tools for executing ASMs, to develop an entire tool environment
which is also industrially satisfactory. It has to support the different activities
of defining, transforming (by refinements and by code generation) and analysing
ASM models (by testing, via visualization supported simulation, and by verifi-
cation). The tool environment has to enable us to capture the design knowledge
in a rigorous, electronically available and reusable way, and to achieve this goal
it must be integrated into established design flows and their tool environments.
The integration potential of ASMs, as a universal model of computation which
is well established by the accumulated experimental evidence and by the the-
oretical explanation we have by now for the ASM thesis, is helpful to capture
the overall behavior of a complex system by combined use of whatever rigorous
descriptions are appropriate and mandatory in established design approaches
(static, dynamic, functional, state-based, object-oriented, etc.).

This is a difficult and probably long way to go, “a ridge walk between freedom
and discipline, creativity and pattern oriented design, generality and specializa-
tion, expressability and limitations by tool support” [6]. But it is worth the effort.



Here are some among other challenging problems where I see a large potential
for fruitful exploitation of the ASM method.

– If we succeed to construct paradigmatic and parameterized ASM compo-
nents and to extract (de)composition techniques that can be made available
in libraries, the “codeless” form of ASM programming will help porting ap-
plication programs from one platform or language to another and can lead
to fruitful applications for plug-and-play software technology.

– If we succeed to exploit ASMs for defining and implementing methods for
generating test suites from high-level specifications, this will turn a dark and
at present overwhelming part of software development into an intellectually
challenging and methodologically well supported task of enormous practical
value. Indeed using ASMs one can solve the crucial and essentially creative
part of test case selection, given that this selection is driven typically by
appplication domain expert knowledge and thus can be formulated using the
ASM ground model. Similarly the ground model supports solving the oracle
problem of testing: the expected output, which has to be compared with
the execution output, can be defined using the ground model specification
(which is independent of the programming language where the system will
be encoded)6.

– If we exploit ASMs to enhance current (mostly signature oriented) software
architecture description techniques by adding to the structural definitions
also relevant semantical content, we will solve a widely felt need for building
reliably reconfigurable conceptual and module interconnection architectures
[28].

– If we succeed to exploit the atomic transaction nature of the notion of ASM-
step to model practically useful patterns for communication and synchroniza-
tion of multi-agent ASMs, typically based on shared memory or on message
passing, then we will contribute to solve a crucial problem of distributed
computing.

On the theoretical side a model and a proof theory of ASMs are needed. We
need definitions which capture and enhance the practical refinement schemes we
have used with success for ASMs, together with useful proof principles which
can be built into state-of-the-art mechanical verification systems (for some steps
in this direction see the contributions to PVS and model checking in these Pro-
ceedings and [32, 14]). The proof theory we need should alleviate the verification
effort encountered in practical applications, namely by offering structuring and
layering of proof obligations which avoid the bottleneck of a priori fixed levels
of overwhelming proof details. We need to find the right way to exploit the no-
tion of monitored (real-valued) function for connecting the discrete ASM world
to the continuous world of control theory. We need to help in building models
for mobile computing. We badly need to extract the inherent object oriented
features of ASMs, which are visible in the concept of ASM agents and of their
6 A similar remark applies also to static testing (code inspection) where one has to
formulate the properties to be checked.



state, to make them explicitly and syntactically available, adapted to established
object-oriented programming techniques.

These Proceedings contain numerous contributions where the mentioned is-
sues are raised and thus constitute a good point of departure to help solving the
challenging problems which are waiting for us.

References

1. Abstract State Machines. http://www.eecs.umich.edu/gasm/.
2. Rational Software Corporation, Unified Modeling Language UML, version 1.3,
1999.

3. ISO/IEC 13211-1. Prolog-Part 1: General Core. In Information Technology-
Programming Languages. International Standards Organization, 1995.

4. M. Barnett, E. Börger, Y. Gurevich, W. Schulte, and M. Veanes. Using ASMs at
Microsoft: A Case Study. In This volume.

5. E. Börger. Logic Programming: The Evolving Algebra Approach. In B. Pehrson
and I. Simon, editor, IFIP 13th World Computer Congress, number I (Technol-
ogy/Foundations), pages 391–395. Elsevier, 1994.

6. E. Börger. High Level System Design and Analysis using Abstract State Machines.
In D. Hutter and W. Stephan and P. Traverso and M. Ullmann, editor, Current
Trends in Applied Formal Methods (FM-Trends 98), number 1641 in LNCS, pages
1–43. Springer-Verlag, 1999.

7. E. Börger, A. Cavarra, and E. Riccobene. Modeling UML State Machines. In This
volume.

8. E. Börger and K. Dässler. PROLOG. DIN Papers for Discussion. Report 58,
ISO/IEC JTC1 SC22 WG17, April 1990.

9. E. Börger and B. Demoen. The view on database updates in Standard Prolog: a
proposal and a rationale. Report 74, ISO/IEC JTC1 SC22 WG17 , February 1991.

10. E. Börger and I. Durdanovic. Correctness of Compiling Occam to Transputer
Code. Computer Journal, (39(1)):52–92, 1996.

11. E. Börger and D. Rosenzweig. An Analysis of Prolog Database Views and Their
Uniform Implementation. In K. Dässler and R. Scowen, editor, Prolog. Paris
Papers–2, number 80, pages 87–130. National Physical Laboratory, Middlesex, July
1991.

12. E. Börger and D. Rosenzweig. The Mathematics of Set Predicates in Prolog. In K.
Dässler and R. Scowen, editor, Prolog. Copenhagen Papers–2, number 105, pages
33–42. National Physical Laboratory, Middlesex, 1993.

13. E. Börger and D. Rosenzweig. The WAM–Definition and Compiler Correctness.
In Ch. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, pages 20–90. Elsevier Science B.V./North–Holland, 1995.

14. E. Börger and J. Schmid. Composition and Submachine Concepts for Sequential
ASMs. In P. Clote and H. Schwichtenberg, editor, Gurevich Festschrift CSL 2000,
LNCS. Springer-Verlag, 2000. (In print).

15. E. Börger, J. Schmid, and P. Päppinghaus. Report on a Practical Application of
ASMs in Software Design. In This volume.

16. E. Börger, J. Schmid, and E. Riccobene. Capturing Requirements by Abstract
State Machines: The Light Control Case Study. J. Universal Computer Science,
2000. Special Requirement Engineering Issue, to appear.



17. E. Börger, J. Schmid, R. Stärk, and W. Schulte. Java and the Java Virtual Ma-
chine. Springer-Verlag, 2000. to appear.

18. R. Eschbach, U. Glässer, R. Gotzhein, and A. Prinz. On the Formal Semantics of
SDL-2000: a Compilation Approach Based on an Abstract SDL Machine. In This
volume.

19. U. Glässer, R. Gotzhein, and A. Prinz. Towards a New Formal SDL Semantics
Based on Abstract State Machines. In R. Dssouli and G.v. Bochmann and Y.Lahav
, editor, SDL’99 - The Next Millenium (Proc. of the 9th SDL FORUM). Elsevier
Science B.V., 1999.

20. Y. Gurevich. Reconsidering Turing’s Thesis: Toward More Realistic Semantics of
Programs. Technical Report CRL-TR-36-84, University of Michigan, Computing
Research Lab, 1984.

21. Y. Gurevich. A New Thesis. Notices of the American Mathematical Society, page
317, 1985. abstract 85T-68-203, received May 13.

22. Y. Gurevich. Logic and the Challenge of Computer Science. In E. Börger, editor,
Current Trends in Theoretical Computer Science, pages 1–57. Computer Science
Press, 1988.

23. Y. Gurevich. Evolving Algebras: An Attempt to Discover Semantics. In G. Rozen-
berg and A. Salomaa, editors, Current Trends in Theoretical Computer Science,
pages 225–234. World Scientific, 1993. A reprint of the article in the Bulletin of
the European Association for Theoretical Computer Science, Number 35 (1991),
pp.71-82.

24. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

25. Y. Gurevich. Sequential Abstract State Machines Capture Sequential Algorithms.
ACM Transactions on Computational Logic, 1, 2000.

26. Y. Gurevich and J. Morris. Algebraic operational semantics and modula-2. In
Börger, E. et al., editor, CSL’87, 1st Workshop on Computer Science Logic, number
329 in LNCS, pages 81–101. Springer-Verlag, 1988.

27. Y. Gurevich and L. A. Moss. Algebraic operational semantics and occam. In
Börger, E. et al., editor, CSL’89, 3d Workshop on Computer Science Logic, number
440 in LNCS, pages 176–192. Springer-Verlag, 1990.

28. C. Hofmeister, R.L. Nord, and D. Soni. Applied Software Architecture. Addison
Wesley, 1999.

29. A.M. Kappel. Implementation of Dynamic Algebras with an Application to Prolog.
Master’s thesis, CS Dept., University of Dortmund, Germany, November 1990.
An extended abstract ”Executable Specifications based on Dynamic Algebras”
appeared in A. Voronkov (ed.): Logic Programming and Automated Reasoning,
volume 698 of LNAI, Springer, 1993, pages 229-240.

30. B. Pehrson and I. Simon. IFIP 13th World Computer Congress. Vol.I: Technol-
ogy/Foundations. Elsevier, 1994.

31. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley, 1999.

32. G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. Phd thesis, CS
Dept., University of Ulm, Germany, 1999. For an English version consult
www.informatik.uni-ulm.de/pm/kiv/papers/verif-asms-english.ps.gz.

To appear as introduction to the volume Y.Gurevich, M.Odersky, P.Kutter,
L.Thiele (Eds): ”International Workshop on Abstract State Machines ASM’2000”,
Springer LNCS, 2000


