
Linking the Meaning of Programs to What the
Compiler Can Verify

Egon Börger

Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

Abstract. We formulate some research and development challenges that
relate what a verifying compiler can verify to the definition and analysis
of the application-content of programs, where the analysis comprises both
experimental validation and mathematical verification. We also point to
a practical framework to deal with theses challenges, namely the Ab-
stract State Machines (ASM) method for high-level system design and
analysis. We explain how it allows one to bridge the gap between in-
formal requirements and detailed code by combining application-centric
experimentally validatable system modeling with mathematically verifi-
able refinements of abstract models to compiler-verifiable code.

This paper is a position paper, triggered by the formulation of the program
verifier challenge in [46]. By its definition, Hoare’s challenge is focussed on the
correctness of programs: software representations of computer-based systems, to-
be-compiled by a verifying compiler. As a consequence, “the criterion of correct-
ness is specified by types, assertions and other redundant annotations associated
with the code of the program”, where “the compiler will work in combination
with other program development and testing tools, to achieve any desired degree
of confidence in the structural soundness of the system and the total correctness
of its more critical components.” [46] Compilable code however is the result of
two program development activities, which have to be checked too:

– turning the requirements into ground models, accurate “blueprints” of the
to-be-implemented piece of “real world”, which define the application-centric
meaning of programs in an abstract and precise form, prior to coding,

– linking ground models to compilable code by a series of refinements, which
introduce step by step the details resulting from the design decisions for the
implementation.

We propose to broaden the program verifier challenge by relating the verifi-
cation of the correctness for compilable programs to the experimental validation
of the application-domain-based semantical correctness for ground models and
to the mathematical verification of their refinements to compilable code, using
Abstract State Machine (ASM) ground models [11] (Sect. 1) and ASM refine-
ments [12] (Sect. 2). This leads us to formulate a broadening of Hoare’s challenge,
together with a series of milestones towards the overall goal (Sect. 4).



1 ASM Ground Models (System Blueprints): A
Semantical Foundation for Program Verification

Compilable programs, though often considered as the true definition of the sys-
tem they represent, in many complex applications do however not “ground the
design in reality”, since they provide no correspondence between the extra-logical
theoretical terms appearing in the code and their empirical interpretation, as re-
quested by a basic principle of Carnap’s analysis of scientific theories [24]. By
ground models for software systems I mean mathematical application-centric
models, which define what Brooks [23] calls “the conceptual construct” or the
“essence” of code for a computer-based system and thus “ground the design in
reality”. Ground models are the result of the notoriously difficult and error prone
elicitation of requirements (see [45, 47]), largely a formalization and clarification
task realizing the transition from mostly natural-language problem descriptions
to a sufficiently precise, unambiguous, consistent, complete and minimal formu-
lation, which represents the algorithmic content of the software contract.

By its epistemological role of relating some piece of “reality” to a linguistic
description, the fundamental concept of ground model has no purely mathemat-
ical definition, though it can be given a scientific definition in terms of basic
epistemological concepts which have been elaborated for empirical sciences by
analytic philosophers, see for example [43, 44]. We limit ourselves here to cite
from [11] the essential properties which characterize the notion of ground mod-
els and can all be satisfied by ASM ground models. Ground models must be:

– precise at the appropriate level of detailing yet flexible, to satisfy the required
accuracy exactly, without adding unnecessary precision;

– simple and concise to be understandable and acceptable as contract by both
domain experts and system designers. ASM ground models allow one to
achieve this property mainly by avoiding any extraneous encoding and by
reflecting “directly”, through the abstractions, the structure of the real-world
problem. This makes ground models manageable for inspection and analysis,
helps designers to resolve the “lack of scientific understanding on the part of
their customers (and themselves)” [46, p.66] and enables experts to “clearly
explain why . . . systems indeed work correctly” [3];

– abstract (minimal) yet complete. Completeness means that every semanti-
cally relevant feature is present, that all contract benefits and obligations
are mentioned and that there are no hidden clauses. In particular, a ground
model must contain as interface all semantically relevant parameters con-
cerning the interaction with the environment, and where appropriate also the
basic architectural system structure. The completeness property “forces” the
requirements engineer, as much as this is possible, to produce a model which
is “closed” modulo some “holes”, which are however explicitly delineated, in-
cluding a statement of the assumptions made for them at the abstract level
and to be realized through the detailed specification left for later refinements.
Model closure implies that no gap in the understanding of “what to build”
is left, that every relevant portion of implicit domain knowledge has been



made explicit and that there is no missing requirement—avoiding a typical
type of software errors that are hard to detect at the level of compilable
code [53, Fact 25]. Minimality means that the model abstracts from details
that are relevant either only for the further design or only for a portion of
the application domain which does not influence the system to be built;

– validatable (see [45])and thus in principle falsifiable by experiment and rig-
orous analysis, satisfying the basic Popperian criterion for scientific mod-
els [52];

– equipped with a simple yet precise semantical foundation as a prerequisite
for rigorous analysis and reliable tool support.

2 ASM Refinements: Management of Design Decisions
(Documentation and Verification)

The ASM refinement notion I have proposed1 generalizes Wirth’s and Dijkstra’s
classical refinement method [69, 27]. Using stepwise ASM refinements offers the
practitioner a technique to cope with the “explosion of ‘derived requirements’
(the requirements for a particular design solution) caused by the complexity of
the solution process” and encountered “when moving from requirements to de-
sign” [53, Fact 26], a process that precedes the definition of compilable code.
The ASM refinement method supports practical system validation and verifica-
tion techniques that split checking complex detailed properties into a series of
simpler checks of more abstract properties and their correct refinement, follow-
ing the path the designer has chosen to rigorously link through various levels of
abstraction the system architect’s view (at the abstraction level of a blueprint)
to the programmer’s view (at the level of detail of compilable code). Succes-
sive ASM refinements also provide a systematic code development documenta-
tion, including behavioral information by state-based abstractions and leading
to “further improvements to quality and functionality of the code . . . by good
documentation of the internal interfaces” [46, p.66].

In choosing how to refine an ASM M to an ASM M ∗, one has the freedom
to define the following items, as illustrated by Fig. 1:

– a notion (signature and intended meaning) of refined state,
– a notion of states of interest and of correspondence between M -states S and

M ∗-states S∗ of interest, i.e. the pairs of states in the runs one wants to relate
through the refinement, including usually the correspondence of initial and
(if there are any) of final states,

– a notion of abstract computation segments τ1, . . . , τm , where each τi repre-
sents a single M -step, and of corresponding refined computation segments
σ1, . . . , σn , of single M ∗-steps σj , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of inter-
est (the resulting diagrams are called (m,n)-diagrams and the refinements
(m,n)-refinements),

1 The proposal goes back to [6, 7, 9] where it was used to define what became the ISO
standard of Prolog [15]. For a recent survey see [12].



σ1 · · · σn| {z }
n steps of M ∗

-State S∗ S∗′

6

?

≡
6

?

≡

-State S S ′

m steps of Mz }| {
τ1 · · · τm

With an equivalence notion ≡ between data in
locations of interest in corresponding states.

Fig. 1. The ASM refinement scheme

– a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states,

– a notion of equivalence ≡ of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corre-
sponding states of interest.

Once the notions of corresponding states and of their equivalence have been
determined, one can define that M ∗ is a correct refinement of M if and only if
every (infinite) refined run simulates an (infinite) abstract run with equivalent
corresponding states. More precisely: fix any notions ≡ of equivalence of states
and of initial and final states. An ASM M ∗ is called a correct refinement of an
ASM M if and only if for each M ∗-run S∗

0 ,S∗
1 , . . . there are an M -run S0,S1, . . .

and sequences i0 < i1 < . . . , j0 < j1 < . . . such that i0 = j0 = 0 and Sik ≡ S∗
jk

for each k and either

– both runs terminate and their final states are the last pair of equivalent
states, or

– both runs and both sequences i0 < i1 < . . ., j0 < j1 < . . . are infinite.

The M ∗-run S∗
0 ,S∗

1 , . . . is said to simulate the M -run S0,S1, . . .. The states
Sik ,S

∗
jk

are the corresponding states of interest. They represent the end points of
the corresponding computation segments (those of interest) in Fig. 1, for which
the equivalence is defined in terms of a relation between their corresponding
locations (those of interest). The scheme shows that an ASM refinement allows
one to combine in a natural way a change of the signature (through the defini-
tion of states and of their correspondence, of corresponding locations and of the



equivalence of data) with a change of the control (defining the “flow of opera-
tions” appearing in the corresponding computation segments), thus integrating
declarative and operational techniques and classical modularization concepts.

The survey in [10] refers to numerous successful practical applications of the
above definition, which generalizes other more restricted refinements notions in
the literature [55, 56] and scales to the controlled and well documented develop-
ment of large systems. In particular it supports modularizing ASM refinement
correctness proofs aimed at mechanizable proof support, see [55, 64, 16, 21].

3 Summary of Work Done Using the ASM Method

The ASM method to high-level system design and analysis, which is explained
in the AsmBook [22], is characterized by the three notions of ASM, ASM ground
model and ASM refinement.

ASMs are naturally defined as extension of Finite State Machines [13]: just re-
place the two fixed FSM locations in and out , used for reading input and writing
output symbols, by any set of readable and/or writable, possibly parameterized,
locations (l , (p1, . . . , pn)) that may assume values of whatever types. Such sets
of updatable locations represent arbitrarily complex abstract memory or states,
what logicians call Tarski structures. Otherwise stated, ASMs are FSMs with
generalized instructions of form If Condition Then Updates, where the FSM-
input-event in = a is extended to an arbitrary first-order expression Condition
and the FSM-output-operation out := b to an arbitrary set Updates of assign-
ments l(t1, . . . , tn) := t . This definition supports the intuitive understanding of
ASMs as pseudo-code operating on abstract data structures.

Using ASMs as precise mathematical form of ground models [11] that are
linked to compilable programs by ASM refinements [12], allows one to address the
two sides of the software correctness problem in one framework, namely whether
the ground model (read: the specification) faithfully reflects the intentions of the
requirements and whether the code satisfies the ground model. For this purpose,
the ASM method has been linked to a multitude of analysis methods, in terms
of both experimental validation of models and mathematical verification of their
properties.

The validation (testing) of ASM models is supported by numerous tools to
mechanically execute ASMs (ASM Workbench [25], AsmGofer [59], an Asm2C++
compiler [60], C-based XASM [4], .NET-executable AsmL engine [32], CoreASM
Execution Engine [31, 30]). The verification of model properties is possible due
to the mathematical character of ASMs, which means precision at the desired
level of rigour. As a consequence any justification technique can be used, from
proof sketches over traditional or formalized mathematical proofs [63, 51] to tool
supported proof checking or interactive or automatic theorem proving, e.g. by
model checkers [68, 26, 39], KIV [57] or PVS [28, 38]. Also assertion-based tech-
niques can be applied to the state-based run-time ASM models, thus combin-
ing so-called declarative (static logical) and operational (run-time state-based)
methods and avoiding the straitjacket of purely axiomatic descriptions. Various



combinations of such verification and validation methods have been supported
and used also for the correctness analysis of compilers [29, 49] and hardware [66,
65, 61, 42].

As a consequence, the ASM method supports practical program design and
analysis by the following four activities:

– formulate relevant ground model properties (“assertions as specifications in
advance of code” [46, p.66]) in traditional mathematical terms, still free
from any further burden and restriction that typically derive from additional
concerns about a formalization in a specific logic language underlying a proof
calculus one may want to use for logical deduction purposes,

– experimentally validate ground model properties by mental or mechanical
simulation, performing experiments with the ground model as systematic
attempts a) to “falsify” the model in the Popperian sense [52] against the
to-be-encoded piece of reality, and b) to “validate” characteristic sets of sce-
narios, where “testing gives adequate assurance of serviceability” [46, p.69],

– mathematically verify desired ground model properties (e.g. their consis-
tency), using traditional mathematical or (semi-) automated techniques,

– link ground models in a mathematically verifiable way to compilable code
via ASM refinements.

4 A Research Challenge and Some Milestones Ahead

The main goal we want to propose, to lift Hoare’s challenge from program ver-
ification to a discipline of verifiable system development, is a long-term and
general methodological goal. It is clearly independent of the ASM system design
and analysis method, but from the preceding sections it should have become
clear that the ASM framework is appropriate to uniformly support the work on
the overall challenge. The challenge is to provide (read: define and implement) an
integrated tool support for hierarchies of mechanically verifiable and validatable
model refinement patterns, which link in a provably correct and modular way
the application-content of systems, as defined by ground models, to to-be-verified
compilable programs. This implies extensions and enhancements of the currently
available software development and analysis tools, targeted at combining in one
project the definition of abstract models and their stepwise refinements with
their simulation and verifications of their properties.

This main goal implies various subgoals, some of which we are going to de-
scribe as possible milestones of the overall challenge. The first group is related to
the refinement method, the second group to the construction of ground models.

A refinement generator milestone consists in defining—and where possi-
ble mechanically generating—practical and provably correct model refinement
schemes, which turn model properties into software interface assertions compris-
ing behavioral component aspects. Such refinement schemes are to be used where
run-time features are crucial for a satisfactory semantically founded correctness
notion for code.



A refinement verifier milestone is to enhance leading mechanical verification
systems by means to prove the correctness of model refinement steps. Such a ver-
ifier may exploit the modularity character of the underlying refinement schemes.

There are various subgoals of this milestone. An example consists in linking
ASMs to Event-B [1, 2] along the lines of [14], so that the B verification tool set
can be exploited to verify properties of ASMs and in particular the correctness
of ASM refinement steps.

Another subgoal example consists in supporting verifications of the step-
wise definition of programs written in widely used programming languages and
their implementation on virtual machines. Such verifications are needed to close
the model verification chain by linking verified abstract models to the gener-
ation of executable code. A concrete example in the literature has the form
of mappings of Java to the Java Virtual Machine respectively of C# to the
.NET Common Language Runtime, which have been provided in [64] respectively
in [17, 34] with the goal of modeling and analyzing within a uniform framework
the source language, the virtual machine and a compilation scheme linking the
first to the second. This subgoal comes with a series of near milestones, e.g. to
verify by existing mechanical theorem proving systems the following theorems,
proved in [64] using layered ASM models for interpreters of Java and the JVM:
Type safety of Java (Thm.8.4.1); Correctness of a Java2JVM compilation scheme
(Thm.14.1.1); JVM invariants for the soundness of Bytecode Type Assignments
(Thm.16.4.1); Completeness of the scheme for certifying Java2JVM compilation
(Thm.16.5.1,16.5.2); Soundness of the bytecode verifier (Thm.17.1.1). A way
to achieve this may be to extend the computer-based Java-subset verification
documented in [5, 50].

An interesting practical outcome one can expect of such an endeavor for the-
orem proving systems is a set of reusable modular proof schemes that reflect
hierarchies of layered abstract models, adding to the theorem-prover-oriented
analysis provided in [54–56] for the ASM refinement notion [12]. Schellhorn’s
analysis came out of the KIV verification, reported in [57, 58], of the mathe-
matical proof for the correctness of a compilation scheme of Prolog programs to
Warren Abstract Machine code provided in [21], starting from the ASM model for
ISO Prolog developed in [6–8, 20]. This leads to another near milestone, namely
reusing the Java/JVM-related proof schemes to establish the corresponding ver-
ifications for C# and the .NET CLR, based upon their ASM models developed
and verified in [17, 48, 34, 36, 33, 37, 35].

For language compilation there is also a compiler verification milestone,
where real-life target processors take the place virtual machines occupy in the
preceding milestones. It consists in developing methods supporting the verifica-
tion of verifying compilers themselves in a general manner, adaptable for different
source languages and target processors. A particular effort in this direction has
been pursued in the Verifix [41] project, where ASM ground models were used
extensively to describe the semantics of the underlying language and machines.

A related milestone consists in building a framework to guarantee forms of off-
device pre-verification of compiled code. For example for proving at compile time



that the generated bytecode will pass the verifier one could extend the certifying
compilation scheme developed for Java in [64, Sect.16.5], where the instructions
are annotated with type information that can be and is used in [64, Thm. 16.5.1
pg.266 sqq.] for the proof that the generated code is typable. This milestone is
part of a more general challenge, namely to provide a practical theory to support
the verification and validation of concepts and tools for generative programming
techniques. Here the classical compile-link-run model of the semantics of pro-
grams has to be extended by a multistage- and meta-programming model for
code, which is generated from components or code patterns or fragments, pos-
sibly written in low-level languages, according to directives that are expressed
through metadata.

A refinement validation milestone consists in linking the refinement of ground
models to model execution tools to make the generation and systematic com-
parison of corresponding test runs of abstract and refined machines possible. In
particular relating system and unit level test results should be supported.

A runtime verification milestone consists in instrumenting current model
execution tools to monitor the truth of selected properties at runtime, enabling
in particular the exploration of ground models to detect undesired or hidden
effects or missing behavior.

A re-engineering milestone is to define methods to extract ground models
from legacy code as basis for analysis (and re-implementation where possible).
The middle-size industrial case study described in [19] illustrates the feasibility
of this goal.

A system certification milestone is to integrate ground model validation and
analysis into industrial system certification processes. This effort can build upon
the use that has been made of ASM ground models to formulate industrial
standards, e.g. for the forthcoming standard of the Business Process Execution
Language for Web Services [67], for the ITU-T standard for SDL-2000 [40], for
the de facto standard for Java and the Java Virtual Machine [64], the ECMA
standard for C# and the .NET CLR [17, 62], the IEEE-VHDL93 standard [18].
This effort is certainly a long-term endeavor, but it appears to us to be both
feasible and necessary to formulate the technical content of software reliability
for embedded systems.

5 Concluding Remark

One reviewer asks what the advantages of the ASM method are over other ap-
proaches, whether it is “just a difference of notation” or whether there are “fun-
damental advantages”. The conceptual simplicity of ASMs as FSMs updating
arbitrary locations (read: general states), coupled to the use of standard algo-
rithmic notation, constitutes a practical advantage: it makes ASMs understand-
able for application-domain experts and familiar to every software practitioner,
thus supporting the mediation role ground models play for linking in an objec-
tively checkable way informal requirements (read: natural-language descriptions
of real-world phenomena) to mathematical models preceding compilable code.



A further practical advantage of the ASM method is that it allows designers,
programmers, verifiers and testers a) to exploit the abstraction/refinement pair,
within one coherent mathematical framework, for a systematic separation of
different concerns and b) to use any fruitful combination of whatever precise
techniques are available—whether or not formalized within a specific logic or
programming language or tool—to define, experimentally validate and mathe-
matically verify a series of accurate system models leading to compilable code.

References

1. J.-R. Abrial. Event based sequential program development: application to con-
structing a pointer program. In Proc. FME 2003, pages 51–74. Springer, 2003.

2. J.-R. Abrial. Event driven distributed program construction. Version 6, August
2004.

3. J.-R. Abrial. On constructing large computerized systems (a position paper). In
Proc. VSTTE, ETH Zürich, October 2005.

4. M. Anlauff and P. Kutter. Xasm Open Source. http://www.xasm.org/, 2001.

5. G. Betarte, E. Gimenez, C. Loiseaux, and B. Chetali. Formavie: Formal modelling
and verification of the java card 2.1.1 security architecture. In Proc. eSmart, 2002.

6. E. Börger. A logical operational semantics for full Prolog. Part I: Selection core
and control. In E. Börger, H. Kleine Büning, M. M. Richter, and W. Schönfeld,
editors, CSL’89. 3rd Workshop on Computer Science Logic, volume 440 of Lecture
Notes in Computer Science, pages 36–64. Springer-Verlag, 1990.

7. E. Börger. A logical operational semantics of full Prolog. Part II: Built-in predicates
for database manipulation. In B. Rovan, editor, Mathematical Foundations of
Computer Science, volume 452 of LNCS, pages 1–14. Springer-Verlag, 1990.

8. E. Börger. A logical operational semantics for full Prolog. Part III: Built-in pred-
icates for files, terms, arithmetic and input-output. In Y. N. Moschovakis, editor,
Logic From Computer Science, volume 21 of Berkeley Mathematical Sciences Re-
search Institute Publications, pages 17–50. Springer-Verlag, 1992.

9. E. Börger. Logic programming: The Evolving Algebra approach. In B. Pehrson
and I. Simon, editors, IFIP 13th World Computer Congress, volume I: Technol-
ogy/Foundations, pages 391–395, Elsevier, Amsterdam, 1994.

10. E. Börger. The origins and the development of the ASM method for high-level
system design and analysis. J. Universal Computer Science, 8(1):2–74, 2002.

11. E. Börger. The ASM ground model method as a foundation of requirements engi-
neering. In N.Dershowitz, editor, Verification: Theory and Practice, volume 2772
of LNCS, pages 145–160. Springer-Verlag, 2003.

12. E. Börger. The ASM refinement method. Formal Aspects of Computing, 15:237–
257, 2003.

13. E. Börger. The ASM method for system design and analysis. A tutorial intro-
duction. In B. Gramlich, editor, Proc. FroCoS, volume 3717 of LNAI, Vienna
(Austria), September 2005. Springer.

14. E. Börger. From Finite State Machines to Virtual Machines (Illustrating de-
sign patterns and event-B models). In E. Cohors-Fresenborg and I. Schwank,
editors, Präzisionswerkzeug Logik–Gedenkschrift zu Ehren von Dieter Rödding.
Forschungsinstitut für Mathematikdidaktik Osnabrück, 2006. ISBN 3-925386-56-4.



15. E. Börger and K. Dässler. Prolog: DIN papers for discussion. ISO/IEC JTCI
SC22 WG17 Prolog Standardization Document 58, National Physical Laboratory,
Middlesex, England, 1990.

16. E. Börger and I. Durdanović. Correctness of compiling Occam to Transputer code.
Computer Journal, 39(1):52–92, 1996.

17. E. Börger, G. Fruja, V. Gervasi, and R. Stärk. A high-level modular definition of
the semantics of C#. Theoretical Computer Science, 336(2–3):235–284, 2005.

18. E. Börger, U. Glässer, and W. Müller. The semantics of behavioral VHDL’93
descriptions. In EURO-DAC’94. European Design Automation Conference with
EURO-VHDL’94, pages 500–505, Los Alamitos, California, 1994. IEEE Computer
Society Press.

19. E. Börger, P. Päppinghaus, and J. Schmid. Report on a practical application of
ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of LNCS,
pages 361–366. Springer-Verlag, 2000.

20. E. Börger and D. Rosenzweig. A mathematical definition of full Prolog. Science
of Computer Programming, 24:249–286, 1995.

21. E. Börger and D. Rosenzweig. The WAM – definition and compiler correctness.
In C. Beierle and L. Plümer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Artificial
Intelligence, chapter 2, pages 20–90. North-Holland, 1995.

22. E. Börger and R. F. Stärk. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

23. F. P. J. Brooks. No silver bullet. Computer, 20(4):10–19, 1987.
24. R. Carnap. The methodological character of theoretical concepts. In H. Feigl and

M. Scriven, editors, Minnesota Studies in the Philosophy of Science, volume 2,
pages 33–76. University of Minnesota Press, 1956.

25. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universität
Paderborn, Germany, 2001.

26. G. Del Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf. TACAS
2000, volume 1785 of LNCS, pages 331–346. Springer-Verlag, 2000.

27. E. W. Dijkstra. Notes on structured programming. In O.-J. Dahl, E. W. Dijkstra,
and C. A. R. Hoare, editors, Structured Programming, pages 1–82. Academic Press,
1972.

28. A. Dold. A formal representation of Abstract State Machines using PVS. Verifix
Technical Report Ulm/6.2, Universität Ulm, Germany, July 1998.

29. A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-based mechanized
verification of compiler back-ends. In U. Glässer and P. Schmitt, editors, Proc. 5th
Int. Workshop on ASMs, pages 50–67. Magdeburg University, 1998.

30. R. Farahbod et al. The CoreASM Project. http://www.coreasm.org.
31. R. Farahbod, V. Gervasi, and U. Glässer. CoreASM: An Extensible ASM Execution

Engine. Fundamenta Informaticae XXI, 2006.
32. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web

pages at http://research.microsoft.com/foundations/AsmL/, 2001.
33. N. G. Fruja. The Correctness of the Definite Assignment Analysis in C#. J. Object

Technology, 3(9):29–52, 2004.
34. N. G. Fruja. A Modular Design for the .NET CLR Architecture. In A. S.

D. Beauquier and E. Börger, editors, 12th International Workshop on Abstract
State Machines, ASM 2005, Paris, France, pages 175–199, March 2005.



35. N. G. Fruja. Type Safety of Generics for the .NET Common Language Run-
time. In P. Sestoft, editor, European Symposium on Programming, ESOP 2006,
Vienna, Austria, volume 3924 of Lecture Notes in Computer Science, pages 325–
341. Springer-Verlag, 2006.

36. N. G. Fruja and E. Börger. Analysis of the .NET CLR Exception Handling. In
V. Skala and P. Nienaltowski, editors, 3rd International Conference on .NET Tech-
nologies, .NET 2005, Pilsen, Czech Republic, pages 65–75, May–June 2005.

37. N. G. Fruja and E. Börger. Modeling the .NET CLR Exception Handling Mecha-
nism for a Mathematical Analysis. Journal of Object Technology, 5(3):5–34, 2006.

38. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS. In
Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Ma-
chines: Theory and Applications, volume 1912 of LNCS, pages 303–322. Springer-
Verlag, 2000.

39. A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool. In
E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003–
Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer
Science, pages 278–292. Springer-Verlag, 2003.

40. U. Glässer, R. Gotzhein, and A. Prinz. Formal semantics of sdl-2000: Status and
perspectives. Computer Networks, 42(3):343–358, June 2003.

41. W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. W. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler correctness
and implementation verification: The verifix approach. In P. Fritzson, editor, Int.
Conf. on Compiler Construction, Proc. Poster Session of CC’96, Linköping, Swe-
den, 1996. IDA Technical Report LiTH-IDA-R-96-12.

42. A. Habibi. Framework for System Level Verification: The SystemC Case. PhD
thesis, Concordia University, Montreal, July 2005.

43. A. M. Haeberer and T. S. E. Maibaum. Scientific rigour, an answer to a prag-
matic question: a linguistic framework for software engineering. Number 23 in
International Conference on Software Engineering, Toronto, 2001.

44. A. M. Haeberer, T. S. E. Maibaum, and M. V. Cengarle. Knowing what require-
ments specifications specify. Typoscript, 2001.

45. M. P. E. Heimdahl. Let’s not forget validation. In Proc. VSTTE, ETH Zürich,
October 2005.

46. C. A. R. Hoare. The verifying compiler: A grand challenge for computing research.
J. ACM, 50(1):63–69, 2003.

47. C. B. Jones. What can we do (technically) to get ”the right specification”? In
Proc. VSTTE, ETH Zürich, October 2005.

48. H. V. Jula and N. G. Fruja. An Executable Specification of C#. In A. S.
D. Beauquier and E. Börger, editors, 12th International Workshop on Abstract
State Machines, ASM 2005, Paris, France, pages 275–287. University Paris 12,
March 2005.

49. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using ASM
specifications for compiler testing. In E. Börger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003–Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, page 415. Springer-Verlag, 2003.

50. G. Klein and T. Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. ACM Trans. Prog. Lang. Syst., 2006.

51. S. Nanchen and R. F. Stärk. A security logic for Abstract State Machines. In TR
423 CS Dept ETH Zürich, 2003.

52. K. Popper. Logik der Forschung. Zur Erkenntnishtoeire der modernen Naturwis-
senschaft. Wien, 1935.



53. R.L.Glass. Facts and Fallacies of Software Engineering. Addison-Wesley, 2003.
54. G. Schellhorn. Verifikation abstrakter Zustandsmaschinen. PhD thesis, Universität

Ulm, Germany, 1999.
55. G. Schellhorn. Verification of ASM refinements using generalized forward simula-

tion. J. Universal Computer Science, 7(11):952–979, 2001.
56. G. Schellhorn. ASM refinement and generalizations of forward simulation in data

refinement: A comparison. Theoretical Computer Science, 336(2-3):403–436, 2005.
57. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The

WAM case study. J. Universal Computer Science, 3(4):377–413, 1997.
58. G. Schellhorn and W. Ahrendt. The WAM case study: Verifying compiler cor-

rectness for Prolog with KIV. In W. Bibel and P. Schmitt, editors, Automated
Deduction – A Basis for Applications, volume III: Applications, pages 165–194.
Kluwer Academic Publishers, 1998.

59. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer.

60. J. Schmid. Compiling Abstract State Machines to C++. J. Universal Computer
Science, 7(11):1069–1088, 2001.

61. J. Schmid. Refinement and Implementation Techniques for Abstract State Ma-
chines. PhD thesis, University of Ulm, Germany, 2002.

62. R. F. Stärk and E. Börger. An ASM specification of C# threads and the .NET
memory model. In B. Thalheim and W. Zimmermann, editors, Abstract State
Machines 2004, Lecture Notes in Computer Science. Springer-Verlag, 2004.

63. R. F. Stärk and S. Nanchen. A logic for Abstract State Machines. J. Universal
Computer Science, 7(11):981–1006, 2001.

64. R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine: Defi-
nition, Verification, Validation. Springer-Verlag, 2001. .

65. J. Teich, P. Kutter, and R. Weper. Description and simulation of microprocessor
instruction sets using ASMs. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 266–286. Springer-Verlag, 2000.

66. J. Teich, R. Weper, D. Fischer, and S. Trinkert. A joint architecture/compiler
design environment for ASIPs. In Proc. Int. Conf. on Compilers, Architectures
and Synthesis for Embedded Systems (CASES2000), pages 26–33, San Jose, CA,
USA, November 2000. ACM Press.

67. M. Vajihollahi. High level specification and validation of the business process
execution language for web services. Master’s thesis, School of Computing Science
at Simon Fraser University, March 2004.

68. K. Winter. Model checking for Abstract State Machines. J. Universal Computer
Science, 3(5):689–701, 1997.

69. N. Wirth. Program development by stepwise refinement. Commun. ACM, 14(4),
1971.


