
The ASM Method for System Design and
Analysis. A Tutorial Introduction

Egon B�orger
Universit�a di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy

boerger@di.unipi.it

Abstract. We introduce into and survey the ASM method for high-
level system design and analysis. We explain the three notions|Abstract
State Machine [37], ASM ground model (system blueprint) [7] and ASM
re�nement [8]|that characterize the method, which integrates also cur-
rent validation and veri�cation techniques. We illustrate how the method
allows the system engineer to rigorously capture requirements by ASM
ground models and to stepwise re�ne these to code in a validatable and
veri�able way.

1 Scope and Achievements of the ASM Method
An outstanding feature of the ASM method is that within a single precise yet
simple conceptual framework, it naturally supports and uniformly integrates the
following activities and techniques, as illustrated by Fig. 1 (taken from [24]):
{ the major software life cycle activities, linking in a controllable way the
two ends of the development of complex software systems:
� requirements capture by constructing rigorous ground models, i.e.
accurate concise high-level system blueprints (system contracts), formu-
lated in domain-speci�c terms, using an application-oriented language
which can be understood by all stakeholders [7],

� architectural and component design bridging the gap between spec-
i�cation and code by piecemeal, systematically documented detailing of
abstract models via stepwise re�ned models to code [8],

� validation of models by their tool-supported simulation,
� veri�cation of model properties by tool-supported proof techniques,
� documentation for inspection, reuse and maintenance by providing,
through the intermediate models and their analysis, explicit descriptions
of the software structure and of the major design decisions,

{ the principalmodeling and analysis techniques, on the basis of a system-
atic separation of di�erent concerns (e.g. design from analysis, orthogonal
design decisions, multiple levels of de�nitional or proof detail, etc.):
� integrating dynamic (operational) and static (declarative) descriptions,
� combining validation (simulation) and veri�cation (proof) methods at
any desired level of detail.

TEST
CASES

domains
transition system

stepwise
refinement
reflecting
design

dynamic functions
external functions

decisions

manual

mechanized

PROVER

adding assumptionsadding definitions

SIMULATOR

using data from
application domain

Verification

Application Domain Knowledge

Ground Model

Informal Requirements

Code

Validation

+

Fig. 1. Models and methods in the ASM-based development process

The integration potential of the ASM method is reected by the great variety
of its successful applications (for references see [24, 9]), for example:
{ de�nition of industrial standards for Prolog (ISO), VHDL93 (IEEE), Java
and JVM (Sun), SDL-2000 (ITU-T), C# (ECMA), BPEL for Web Services,

{ design and reengineering of industrial control systems: software projects re-
lated to railway and mobile telephony network components (at Siemens),
debugger and UPnP speci�cation (at Microsoft), business systems interact-
ing with intelligent devices (at SAP),

{ modeling e-commerce and web services (at SAP),
{ simulation and testing: a �re detection system in coal mines, the simulation
of railway scenarios (at Siemens), the implementation of behavioral interface
speci�cations on the .NET platform and conformence test of COM compo-
nents (at Microsoft), compiler testing, test case generation,

{ design and analysis of protocols for authentication, cryptography, cache-
coherence, routing-layers for distributed mobile ad hoc networks, group-
membership etc.,

{ architectural design: veri�cation (e.g. of pipelining schemes or of VHDL-
based hardware design at Siemens), architecture/compiler co-exploration,
combined validation and veri�cation project,

{ language design: de�nition, implementation and analysis of the semantics for
real-life programmming languages, e.g. SystemC, Java/JVM|the book [51]
contains the up to now most comprehensive non-proprietary real-life ASM
case study, covering in every detail ground modeling, re�nement, structuring,
implementation, veri�cation and validation of ASMs|, C#, domain-speci�c
languages (Union Bank of Switzerland), etc.

{ veri�cation of compilation schemes and compiler back-ends.

The ASM method comes with a rigorous scienti�c foundation (see [24]). The
ASM ground model technique adds the precision of mathematical blueprints to
the loose character of human-centric UML descriptions. The ASM re�nement
method �lls a widely-felt gap in UML-based techniques, namely by accurately
linking the models at the successive stages of the system development cycle
in an organic and e�ectively maintainable chain of coherent system views at
di�erent levels of abstraction. The resulting documentation maps the structure
of the blueprint to compilable code, providing a road map for system use and
maintenance. The practitioner needs no special training to use the ASM method
since Abstract State Machines are a simple extension of Finite State Machines,
obtained by replacing unstructured \internal" control states by states comprising
arbitrarily complex data, and can be understood correctly as pseudo-code or
Virtual Machines working over abstract data structures.

2 Turning FSMs into Abstract State Machines
In this section we explain ASMs as mathematical form of Virtual Machines that
extend Finite State Machines and Codesign-FSMs by an enriched notion of state,
which in support of modular design is accompanied by a classi�cation of ASM
locations de�ned below.1

n

cond 1

cond nrule

1rule

i

j

jn

1

if ctl state = i then
if cond1 then
rule1
ctl state := j1

� � �
if condn then
rulen
ctl state := jn

Fig. 2. Viewing FSM instructions as control state ASM rules

An FSM is de�ned by a program of instructions of the form pictorially
depicted in Fig. 2, where i; j1; : : : ; jn are internal (control) states, cond� (for
1 � � � n) represents the input condition in = a� (reading input a�) and rule�
the output action out := b� (yielding output b�), which goes together with the
ctl state update to j� . Control state ASMs have the same form of programs, but
the underlying notion of state is extended from three locations, namely:
{ a single internal ctl state assuming values in a not furthermore structured
�nite set

1 The original de�nition in [37] was motivated by an epistemological concern related
to the Church-Turing thesis. For historical details see [6]. The practice-oriented ap-
proach we follow here is taken from [10].

{ two input and output locations in, out assuming values in a �nite alphabet
to a set of values of whatever types residing in updatable memory units, so-called
locations. Any desired level of abstraction can be achieved by permitting possibly
parameterized locations to hold values of arbitrary complexity, whether atomic
or structured: objects, sets, lists, tables, trees, graphs, whatever comes natural
at the considered level of abstraction. As a consequence, the FSM updates of
ctl state and of its output location are extended to ASM state changes result-
ing from updates of the value content of arbitrary many locations, namely via
multiple assignments of the form loc(x1; : : : ; xn) := val.

This simple change of view of what a state is yields machines whose states
can be arbitrary multisorted structures, i.e. domains of whatever objects coming
with predicates (attributes) and functions de�ned on them, structures program-
mers nowadays are used to from object-oriented programming. In fact such a
memory structure is easily obtained from the at location view of abstract ma-
chine memory by grouping subsets of data into tables (arrays), via an association
of a value to each table entry (f; (a1; : : : ; an)). Here f plays the role of the name
of the table, the sequence (a1; : : : ; an) the role of a table entry, f(a1; : : : ; an) de-
notes the value currently contained in the location (f; (a1; : : : ; an)). Such a table
represents an array variable f of dimension n, which can be viewed as the cur-
rent interpretation of an n-ary \dynamic" function or predicate (boolean-valued
function). This allows one to structure an ASM state as a set of tables and thus
as a multisorted structure in the sense of mathematics.

In accordance with the extension of unstructured FSM control states to ar-
bitrary ASM structures, the FSM-input conditions are extended to arbitrary
ASM-state expressions, which are called guards since they determine whether
an instruction can be executed.2 In addition, the usual non-deterministic inter-
pretation, in case more than one FSM-instruction can be executed, is replaced
by the parallel interpretation that in each ASM state, the machine executes si-
multaneously all the updates which are guarded by a condition that is true in
this state. This synchronous parallelism, which yields a clear concept of locally
described global state change, helps to abstract for high-level modeling from ir-
relevant sequentiality (read: an ordering of actions that are independent of each
other in the intended design) and supports re�nements to parallel or distributed
implementations.

As a result of this extension of FSMs we obtain the de�nition of an ASM
as a set of instructions of the following form, called ASM rules to stress the
distinction between the parallel execution model for ASMs and the sequential
single-instruction-execution model for traditional programs:

if cond then Updates
where Updates stands for a set of function updates f(t1; : : : ; fn) := t built from
expressions ti; t and an n-ary function symbol f . The notion of run is the same
2 For the special role of in/output locations see below the classi�cation of locations.

as for FSMs and for transition systems in general, taking into account the syn-
chronous parallel interpretation.3 Similarly to this extension of FSMs by basic
ASMs, asynchronous ASMs extend globally asynchronous, locally synchronous
Codesign-FSMs [42]. Only the notion of mono-agent sequential runs has to be
extended to asynchronous (also called partially ordered) multi-agent runs. For a
detailed de�nition in terms of ASMs we refer to [24, Ch.6.1].

Thus ASMs provide a rigorous mathematical semantics, which accurately
supports the way application-domain experts use high-level process-oriented de-
scriptions and software practitioners use \pseudo-code over abstract data". For
the sake of completeness we list below notations for some other frequently used
forms of rules, which enhance the expressivity of ASMs.

2.1 Classi�cation of ASM Functions and Locations
In this section we describe how the ASM method supports the separation of
concerns, information hiding, data abstraction, modularization and stepwise re-
�nement by a systematic distinction between basic locations and derived ones
(that are de�nable from basic ones), together with a read-write-permit classi�-
cation of basic locations into static and dynamic ones and of the dynamic ones
into monitored (only read), controlled (read and write), shared and output (only
write) locations, as illustrated by Fig. 3.4

These distinctions reect the di�erent roles played in a given machine M
by the auxiliary locations that are used in function updates to compute the
arguments ti and the new value t. The value of a static location never changes
during any run of M because it does not depend on the states of M . The value
of a dynamic location depends on the states of M since it may change as a
consequence of updates either by M or by the environment. Static locations can
be thought of as given by an initial system state, so that their de�nition can be
treated separately from the description of the system dynamics. It depends on
the degree of information-hiding the speci�er wants to realize how the meaning
of such locations is determined|by a mere signature (\interface") description or
by axiomatic constraints or by an abstract speci�cation, an explicit or recursive
de�nition, a program module, etc.

Controlled locations for M are the ones which are directly updatable by and
only by the rules of M , where they appear in at least one rule as the leftmost
location in an update f(s) := t for some s; t. These locations are the ones which
constitute the internally controlled part of the dynamics of M , for example the
location ctl state in an FSM. Locations calledmonitored byM are those read but
3 More precisely: to execute one step of an ASM in a given state S determine all the
�reable rules in S (s.t. cond is true in S), compute all expressions ti; t in S occuring
in the updates f(t1; : : : ; tn) := t of those rules and then perform simultaneously all
these location updates if they are consistent. In the case of inconsistency, the run is
considered as interrupted if no other stipulation is made, like calling an exception
handling procedure or choosing a compatible update set.4 A set of locations or a function is called of a kind if all their locations are of that
kind.

controlled out

derived

(monitored)
in

(interaction)

static

shared

dynamic

basic

function/relation/location

Fig. 3. Classi�cation of ASM locations

not updated by M and updatable by other machines or the environment. They
appear in updates of M , but not as a leftmost update location. An example
is the input location in of an FSM. These monitored locations constitute the
externally controlled part of the dynamic state of M . The concept of monitored
locations allows one to separate in a speci�cation the computation concerns
from the communication concerns. In fact, the de�nition does not commit to
any particular mechanism (e.g. message passing via channels) to describe the
exchange of information between interacting agents. As with static locations the
speci�cation of monitored locations is open to any appropriate method, a feature
that helps the system designer to control the amount of information which he
wants to give to the programmer. The only (but crucial) assumption made is
that in a given state the values of all monitored locations are determined.

Combinations of internal and external control are captured by interaction
or shared locations that can be read and are directly updatable by more than
one machine (so that typically a protocol is needed to guarantee consistency of
updates). Output locations are updated but not read by M and are typically
monitored by other machines or by the environment. An example is the location
out of an FSM. Locations are called external for M if for M they are either
static or monitored.

Distinguishing basic locations from derived locations whose values are de�ned
by a �xed scheme in terms of other (static or dynamic) locations, pragmatically
supports de�ning the latter by a speci�cation or computation mechanism which
is given separately from the main machine. Thus derived locations can be thought
of as de�ning a global method with read-only variables.

An important type of monitored functions are dynamic selection functions f ,
which out of a collection X of objects satisfying a property ' select one ele-
ment f(X) in a way that may depend on the current state. They are frequently

t is current active thread execJava
t

in ExecRunnableThread

resume
suspend thread

Choose t

yesno

Fig. 4. Multiple thread Java machine

used to abstract from details of scheduling procedures. The following notation
denotes rule(f(X)) when no speci�c name of the selection function f is needed:

choose x with '
rule(x)

Also notational variations are frequently used, like choose x 2 X in rule(x).
Fig. 4 shows an example from the ASM model for thread handling in Java and
C# [51, 49].

Similarly the following notation is used to make the synchronous parallelism
of ASMs expressable in terms of arbitrary properties:

forall x with '
rule(x)

standing for the simultaneous execution of rule(x) for every element x satisfy-
ing '.

2.2 Some Examples
Many industrial control systems, protocols, business processes and the like come
with a concept of status or mode or phase that directs complex state trans-
formations. Such a high-level system structure can be appropriately modeled by
control state ASMs, introduced in [5] and closest to FSMs, i.e. ASMs all of whose
rules are of the form in Fig. 5, written Fsm(i; if cond then rule; j).

Fig. 5. FSM

A typical example is the top-level Debugger model in Fig. 6, which was
de�ned in [3] as part of a reverse-engineering case study to model a command-line

OnStoppingEvent

OnNonEmptyEventQueue

OnNonEmptyEventQueueOnAnyEvent

RunQ

OnStart

TryToBreak

Run

OnNonStoppingEvent

OnRunningCommand

OnEmptyEventQueue

OnExit

Init

Break

OnBreakingCommand

Fig. 6. Debugger control state ASM

debugger of a stack-based run-time environment. During the reverse engineering
process, this simple model led to the discovery of a aw in the code, namely
that the submachine executed during the dotted mode transition could lead to a
deadlock and had to be replaced by a transition into a �fth mode RunQ (which
was inserted into the implementation by an additional ag).

A business process example with only start/stop and busy mode is illustrated
in Fig. 7, which is used in [1] to de�ne the kernel of a web service mediator. The
machine delivers for a current request a service answer that is to be compiled
from the set of results of an iterative subrequest processing submachine, which
in turn sends out further subrequests to { and collects the respective services
from { other possibly independent subproviders.

started INITIALIZE(seqSubReq) subReqProcessg

ITERATE-
SUBREQ-

PROCESSG

Finished-
SubReqProcessg

COMPILEOUTANSWMSG
from

AnswerSet(currReqObj)
deliver

NoYes

Fig. 7. Virtual Provider Processing the current request

Retransmitsend

match

timeout

CloseCurrFileTransfer

RefreshMsgId
TransmitNxtFile

check

Fig. 8. Kermit protocol sender ASM

Fig. 8 de�nes the top-level control structure of a double-phase sender ASM,
which appears in the Kermit protocol as AlternatingBitSender instance and
as its re�nement to a SlidingWindowSender [40]. For a generalization as a
service interaction pattern see [4].

Fig. 9 from [23] de�nes the black-box view of neural nets characterized by
two top-level phases: in the input phase the Neural Kernel is activated by the
arrival of new input from the environment (transmitted by special input units
to dedicated internal units), to perform on that input an internal computation
which ends with emitting an output to the environment and switching back to
the input mode.

ClearState

no

yes

NK Step

computed
more units to be

compute
activate

Neural Kernelconsumed
new input to be

input

Fig. 9. Neural abstract machine model

2.3 ASM Submachines
The diagrams for control state ASMs enhance similar graphical UML notations
by their rigorous semantics, which is formally de�ned in Fig. 2, 5, based upon
the precise ASM semantics of the occurring abstract submachines that typically
describe rather complex state transformations. In the examples above these sub-
machines describe a Java interpreter execJava in Fig. 4; the Debugger actions

OnStart, etc. in Fig. 6; the subrequest processing iterator in Fig. 7; the di�erent
re�nements of the Kermit macros in Fig. 8; the Neural Kernel Step submachine
in Fig. 9 whose basic computing units (nodes of a directed data-ow graph) per-
form a �nite sequence of atomic actions propagating their results through the
graph until the output units are reached.

Where convenient one can also abstract away the FSM-typical control-state
details of an intended sequentiality and encapsulate the execution of a ma-
chine M immediately followed by the execution of N into a black-box view
M seq N , which is supported also by the well-known traditional graphical rep-
resentations of FSMs that omit labels for intermediate internal states. Iterating
such a seq operator leads to so-called turbo ASMs that support the standard
iteration constructs of programming. In the same way one can de�ne a general
ASM submachine concept that �ts the synchronous parallel view of ASMs and
supports the two abstraction levels de�ned by the black-box and the white-box
view of submachines (see [21]). It also supports the traditional understanding of
recursive machine calls (see [12]).

We illustrate ASM submachines by two examples. The �rst one is the sub-
machine Initialize(class) used in the ASM model for a Java interpreter [51],
providing a succinct formulation for the intricate interaction of the initialization
of classes with other language concepts. In Java the initialization of a class c is
done implicitly at the �rst use of c, respecting the class hierarchy (the superclass
of c has to be initialized before c). Thus Initialize(class) stores its call parame-
ter class, say into a local variable currInitClass, and then iterates the creation
of class initialization frames until a class is reached which is Initialized.5

Initialize(class) =
currInitClass := class seq
while not Initialized(currInitClass)
CreateInitFrame(currInitClass)
if not Initialized(superClass(currInitClass)) then
currInitClass := superClass(currInitClass))

The Initialize submachine o�ers the possibility that the designer works with
a black-box view|of an atomic operation that pushes all initialization methods
in the right order onto the frame stack, followed by calling the Java interpreter
to execute them (in the inverse order)|whereas the programmer and the veri�er
work with the re�ned white-box view, which provides the necessary details to
implement the machine and to analyze its global properties of interest (see [22]).
A re�nement of Initialize for a C# interpreter has been de�ned in [17] and has
been used in [32] to investigate problems related to class initialization in C#.

We illustrate the support of recursive submachines by an ASM describing the
well-known procedure to quicksort lists L: FIRST partition the tail of the list
5 The termination happens at the latest at the top of the �nite class hierarchy.
The submachine CreateInitFrame(c) sets classState(c) to InProgress whereby
Initialized(currInitClass) becomes true.

into the two sublists tail(L)<head(L); tail(L)�head(L) of elements < head(L) re-
spectively � head(L) and quicksort these two sublists separately (independently
of each other), THEN concatenate the results placing head(L) between them.6

Quicksort(L) =
ifj L j� 1 then result := L else
let
x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)�head(L))

in result := concatenate(x; head(L); y)
Computing tail(L)<head(L); tail(L)�head(L) appears in this machine as an

external subcomputation. We illustrate in Sect. 5 how to internalize such a sub-
computation by a re�nement step.

3 ASM Ground Models (System Blueprints)
The role of a system blueprint (ground model) is to capture changing system
requirements (\what to build") in a consistent and unambiguous, simple and con-
cise, abstract and complete way, so that the resulting documentation \grounds
the design in reality" by its being understandable and checkable (for correctness
and completeness) by both domain experts and system designers. Using ASMs
one can cope with ever-changing requirements by building ground models for
change which share the above eight attributes, as we will shortly describe here,
refering for further explanations to [7].

Understandability implies that domain expert and system designer share the
language in which the ground model is formulated, as part of the contract that
binds the two parties. In this respect it is crucial that ASMs allow one to calibrate
the degree of precision of a ground model to the conceptual frame of the given
problem domain, supporting the concentration on domain issues instead of issues
of notation.

Checkability means that both reasoning and experimentation can be applied
to a blueprint to establish that it is complete and consistent, that it reects
the original intentions and that these are correctly conveyed| together with all
the necessary underlying application-domain knowledge|to the designer. Since
ASM ground models are formulated in application-domain terms, they are in-
spectable for correctness and completeness by the application-domain expert; on
the other side, due to their mathematical nature, they also support the designer
in mathematically checking the internal model consistency and the consistency
of di�erent system views. In addition, exploiting the concept of ASM run, one
can perform experiments with ASM ground models simulating them for running
relevant scenarios (use cases), supporting systematic attempts to \falsify" the
model against the to-be-encoded piece of reality. As technical side-e�ect one can
de�ne { prior to coding { a precise system-acceptance test plan, thus turning
6 See [12] for a formal de�nition of the let x = R(a); y = S(b) in M construct.

the ground model into a test model that is to be matched by the tester against
executions of the �nal code.

Understandability and checkability of ASM ground models already help to
avoid that a software project fails simply because it does not build the right
system, due to a misunderstanding of the requirements. We now shortly char-
acterize the remaining above mentioned six intrinsic properties an ASM ground
model has to satisfy, namely to be:
{ precise (unambiguous and consistent) at the appropriate level of detailing
yet exible, to satisfy the required accuracy avoiding unnecessary precision;

{ simple and concise to be understandable by both domain experts (for in-
spection) and system designers (for analysis). ASMs allow one to explicitly
formulate those abstractions that \directly" reect the structure of the real-
world problem, avoiding any extraneous encoding;

{ abstract (minimal) yet complete. Completeness means that all and only se-
mantically relevant features are to be made present: parameters concerning
the interaction with the environment, the basic architectural system struc-
ture, the domain knowledge representation, etc., alltogether making the ASM
\closed" modulo some \holes". However, the holes are explicitly delineated,
including statements of the assumptions made for them at the abstract level
(to be realized through the detailed speci�cation via later re�nements). Min-
imality means that the model abstracts from details that are relevant either
only for the further design or only for a portion of the application domain,
which does not inuence the system to be built.
It is this combination of blueprint properties that made ASM ground mod-

els so successful as means to formulate high-level models for industrial control
systems, patent documents, standards. See the formulation of the forthcoming
standard for the Business Process Execution Language for Web Services [52],
for the ITU-T standard for SDL-2000 [35], the ECMA standard for C# [17],
the de facto standard for Java and its implementation on the JVM [51], the
IEEE-VHDL93 standard [18], the ISO-Prolog standard [14]. Or see the devel-
opment of railway [13, 19] and mobile telephony network components [25] at
Siemens. These examples show also that ASM ground models are �t for reuse.
When the requirements change, these changes can often be directly reected by
blueprint adaptations, typically additions to or re�nements of the ground model
abstractions.

4 ASM Re�nements (Reecting Design Decisions)
We describe in this section the practice-oriented ASM re�nement notion [8],
which provides a framework to systematically separate, structure and document
orthogonal design decisions and thus to e�ectively relate di�erent system views
and aspects. The method supports cost-e�ective system maintenance and man-
agement of system changes as well as piecemeal system validation and veri�cation
techniques. Putting together the single re�nement steps, typically into a chain

or tree of successively more detailed models, allows the designer to rigorously
link the system architect's view (at the abstraction level of a blueprint) to the
programmer's view (at the level of detail of compilable code), crossing levels of
abstraction in a way that supports design-for-change.

Re�nement is a general methodological principle which is present wherever
a complex system or problem is described piecemeal, decomposing it into con-
stituent parts which are detailed in steps to become manageable. Re�nement
goes together with the inverse process of abstraction. The principle of the ASM
re�nement method is illustrated by Fig. 10: to re�ne an ASM M to an ASM
M�, the designer has the freedom to de�ne the following items:
{ a notion of re�ned state,
{ a notion of states of interest and of correspondence between M -states S and
M�-states S� of interest, i.e. the pairs of states in the runs one wants to relate
through the re�nement, including usually the correspondence of initial and
(if there are any) of �nal states,

{ a notion of abstract computation segments �1; : : : ; �m, where each �i repre-
sents a single M -step, and of corresponding re�ned computation segments
�1; : : : ; �n, of single M�-steps �j , which in given runs lead from correspond-
ing states of interest to (usually the next) corresponding states of inter-
est (the resulting diagrams are called (m;n)-diagrams and the re�nements
(m;n)-re�nements),

{ a notion of locations of interest and of corresponding locations, i.e. pairs of
(possibly sets of) locations one wants to relate in corresponding states,

{ a notion of equivalence � of the data in the locations of interest; these local
data equivalences usually accumulate to a notion of equivalence of corre-
sponding states of interest.
Once the notions of corresponding states and of their equivalence have been

determined, one can de�ne that M� is a correct re�nement of M if and only if
every (in�nite) re�ned run simulates an (in�nite) abstract run with equivalent
corresponding states. More precisely: �x any notions � of equivalence of states
and of initial and �nal states. An ASM M� is called a correct re�nement of an
ASM M if and only if for each M�-run S�0 ; S�1 ; : : : there is an M -run S0; S1; : : :
and sequences i0 < i1 < : : : ; j0 < j1 < : : : such that i0 = j0 = 0 and Sik � S�jkfor each k and either
{ both runs terminate and their �nal states are the last pair of equivalent
states, or

{ both runs and both sequences i0 < i1 < : : :, j0 < j1 < : : : are in�nite.
Often theM�-run S�0 ; S�1 ; : : : is said to simulate theM -run S0; S1; : : :. The states
Sik ; S�jk are the corresponding states of interest. They represent the end points
of the corresponding computation segments (those of interest) in Fig. 10, for
which the equivalence is de�ned in terms of a relation between their correspond-
ing locations (those of interest). The scheme shows that an ASM re�nement
allows one to combine in a natural way a change of the signature (through the

�1 � � � �n| {z }
n steps of M�

-State S� S�0

6

?
�

6

?
�

-State S S0

m steps of Mz }| {
�1 � � � �m

With an equivalence notion � between data in
locations of interest in corresponding states.

Fig. 10. The ASM re�nement scheme

de�nition of states and of their correspondence, of corresponding locations and
of the equivalence of data) with a change of the control (de�ning the \ow of
operations" appearing in the corresponding computation segments).

It is important for the practicability of ASM re�nements that the size of
m and n in (m;n)-re�nements is allowed to dynamically depend on the state.
Practical experience also shows that (m;n)-re�nements with n > 1 and includ-
ing (m; 0); (0; n)-steps support the feasibility of decomposing complex (global)
actions into simpler (locally describable) ones whose behavior can be veri�ed
in practice. Procedural (1; n)-re�nements with n > 1 have their typical use in
compiler veri�cation when replacing a source code instruction by a chunk of
target code; for numerous examples see [16, 15, 53, 39, 36, 51]. A convenient way
to hide multiple steps of a procedural re�nement is to use ASM submachines as
discussed above, which allow one to \view" n submachine steps as one step of
an overall (here the more abstract) computation.

The ASM literature surveyed in [6] is full of examples of the above de�ni-
tion, which generalizes numerous more specialized and less practical re�nements
notions in the literature [43, 44]. The ASM re�nement method integrates declar-
ative and operational techniques and widely used modularization concepts into
the design and analysis of ASM models. In particular it supports modulariz-
ing ASM re�nement correctness proofs aimed at mechanizable proof support,
see [43].

5 ASM Analysis Techniques (Validation and Veri�cation)
Based upon the notion of ASM run, various tools have been built to mechani-
cally execute ASM models for their experimental validation by simulation and
testing, notably: ASM Workbench [26], AsmGofer [46], ASM2C++ compiler [47],
XASM [2], AsmL [31] and CoreASM [30]. Based upon the mathematical char-
acter of ASMs, also any standard mathematical veri�cation techniques can be
applied to prove or disprove ASM model properties, implying precision at the
desired level of rigour: from proof sketches over traditional [20, 51] or formalized
mathematical proofs [50] to tool supported proof checking or interactive or au-
tomatic theorem proving, e.g. by KIV [45], PVS [28, 33], model checkers [27, 34].
In a comprehensive development and analysis environment for real-life ASMs,
various combinations of such veri�cation and validation methods can be sup-
ported and can be used for the analysis of compilers [29, 41] and hardware [48,
38] and in the context of the program veri�er challenge [11].

6 Combined Re�nement and Veri�cation Example
In this section we illustrate for the mathematically inclined reader how to com-
bine the stepwise re�nement technique with piecemeal proving of properties of
interest. We use as simple but characteristic examples a re�nement of the above
Quicksort machine and an ASM for the well-known leader election protocol
together with its extension by a shortest path computation.

The goal of the leader election protocol is to achieve the election of a leader
among �nitely many homogeneous agents in a connected network, using only
communication between neighbor nodes. The leader is de�ned as max(Agent)
with respect to a linear order < among agents. The algorithmic idea, underlying
the ASM de�ned in Fig. 11 together with the macros below, is as follows: every
agent proposes to his neighbors his current leader cand idate, checks the leader
proposals received from his neighbors and upon detecting a proposal which
improves his leader candidate, he improves his candidate for his next proposal.
The protocol correctness to be proved reads as follows: if initially every agent
is without proposals from his neighbors and will proposeToNeighbors himself
as candidate, then eventually every agent will checkProposals with empty set
proposals and cand = max(Agent).

LeaderElectionMacros =
propose = forall n 2 neighb insert cand to proposals(n)
proposals improve = max(proposals) > cand
improve by proposals = cand := max(proposals)
EmptyProposals = (proposals := empty)
there are proposals = (proposals 6= empty)

Assuming that every enabled agent will eventually make a move, the protocol
correctness can be proved by an induction on runs and onPfleader� cand(n) j
n 2 Agentg, which measures the distances of candidates from the leader.

Improve proposals
Proposals

EmptyProposals

Proposals

EmptyProposals
ImproveByProposals

Neighbours
propose To check

there are

propose

yes

no

Fig. 11. Basic ASM of LeaderElection agents

Assume we now want to compute for each agent also a shortest path to
the leader. One has to provide for every agent (except for the leader), in ad-
dition to the leader candidate, also a neighbor which is currently known to
be closest to the leader, together with the minimal distance to the leader via
that neighbor. This is an example of a pure data re�nement and consists in en-
riching cand and proposals by a neighbor with minimal distance to the leader,
recorded in new dynamic functions nearNeighb : Agent and distance : Distance
(e.g. Distance = N [f1g), so that proposals � Agent � Agent � Distance
(triples of leader cand, nearNeighbor and distance to the leader). Initially we
assume nearNeighbor = self and distance = 1 except for the leader where
distance = 0.

Thus each agent of the re�ned asyncMinPathToLeader ASM executes the
properly initialized basic ASM de�ned in Fig. 11 with the re�ned macros below.
Priority is given to determine the largest among the proposed neighbors (where
Max over triples takes the max over the proposed neighbor agents), among the
proposalsFor the current cand the one with minimal distance is chosen.

MinPathToLeaderMacros =
propose = forall n 2 neighb

insert (cand; nearNeighb; distance) to proposals(n)
proposals improve = let m =Max(proposals) in
m > cand or
(m = cand and minDistance(proposalsFor m) + 1 < distance)

improve by proposals =
cand :=Max(proposals)
update PathInfo to Max(proposals)

update PathInfo to m =choose (n; d) with
(m;n; d) 2 proposals and d = minDistance(proposalsFor m)
nearNeighb := n
distance := d+ 1

The leader election correctness property can now be sharpened by the short-
est path correctness property, namely that eventually for every agent, distance
is the minimal distance of a path from agent to leader, and nearNeighbor
is a neighbor on a minimal path to the leader (except for the leader where
nearNeighbor = leader). The proof extends the above induction by a side in-
duction on the minimal distances in proposalsFor Max(proposals.

As second example we illustrate how by a re�nement step for Quicksort
one can internalize the computation of tail(L)<head(L); tail(L)�head(L) into a
partitioning submachine Partition(l; h; p). This machine works on the repre-
sentation of lists as functions L : [r; s]! V AL from intervals of natural numbers
to a set of values. When r < s, Partition is started with the search bound-
aries l = r; h = s and the list head pivot = L(r). It terminates when reaching
l = h with L(l) = pivot, all L-elements smaller than the pivot to the left of
l, and all the others at l or to the right of l. Until reaching l = h, the par-
titioning procedure alternates between searching from above for list elements
L(h) � pivot and searching from below for list elements L(l) � pivot. When
such an element is encountered and it is di�erent from the element at the other
current search boundary|one of them is the pivot|, then the boundary ele-
ments L(l); L(h) are swapped and the search switches to the other boundary.
When L(h) � pivot � L(l) � L(h) before l = h is encountered (namely when
pivot has multiple occurrences in the list), h can be decreased by one.

Partition(l; h; pivot) =
if L(h) > pivot then h := h� 1
elseif L(l) < pivot then l := l + 1
elseif L(l) > L(h) then
L(l) := L(h)
L(h) := L(l)

elseif l < h then h := h� 1

7 Conclusion

The ASM method o�ers no fool-proof button-pushing, completely mechanical
design and veri�cation procedure, but it directly supports professional knowledge
and skill in \building models for change", stepwise detailing them to compilable
code and maintaining models and code in a cost-e�ective and reliable way. This
is the best one can hope for, given the intrinsically creative character of de�ning
the essence of a complex computer-based system.7

7 Final version to appear in B. Gramlich (Ed.): Frontiers of Combining Systems.
Springer LNAI 3717 (2005), 264-283.

References
1. M. Altenhofen, E. B�orger, and J. Lemcke. A high-level speci�cation for mediators.

In 1st International Workshop on Web Service Choreography and Orchestration for
Business Process Management, 2005.

2. M. Anlau� and P. Kutter. Xasm Open Source. Web pages at
http://www.xasm.org/, 2001.

3. M. Barnett, E. B�orger, Y. Gurevich, W. Schulte, and M. Veanes. Using Abstract
State Machines at Microsoft: A case study. In Y. Gurevich, P. Kutter, M. Odersky,
and L. Thiele, editors, Abstract State Machines: Theory and Applications, volume
1912 of Lecture Notes in Computer Science, pages 367{380. Springer-Verlag, 2000.

4. A. Barros and E. B�orger. A compositional framework for service interaction pat-
terns and communication ows. In Proc. 7th International Conference on Formal
Engineering Methods (ICFEM 2005), Springer LNCS, 2005.

5. E. B�orger. High-level system design and analysis using Abstract State Machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends in
Applied Formal Methods (FM-Trends 98), volume 1641 of Lecture Notes in Com-
puter Science, pages 1{43. Springer-Verlag, 1999.

6. E. B�orger. The origins and the development of the ASM method for high-level
system design and analysis. J. Universal Computer Science, 8(1):2{74, 2002.

7. E. B�orger. The ASM ground model method as a foundation of requirements engi-
neering. In N.Dershowitz, editor, Veri�cation: Theory and Practice, volume 2772
of LNCS, pages 145{160. Springer-Verlag, 2003.

8. E. B�orger. The ASM re�nement method. Formal Aspects of Computing, 15:237{
257, 2003.

9. E. B�orger. Modeling with Abstract State Machines: A support for accurate system
design and analysis. In B. Rumpe and W. Hesse, editors, Modellierung 2004,
volume P-45 of GI-Edition Lecture Notes in Informatics, pages 235{239. Springer-
Verlag, 2004.

10. E. B�orger. From �nite state machines to virtual machines (Illustrating de-
sign patterns and event-B models). In E. Cohors-Fresenborg and I. Schwank,
editors, Pr�azisionswerkzeug Logik{Gedenkschrift zu Ehren von Dieter R�odding.
Forschungsinstitut f�ur Mathematikdidaktik Osnabr�uck, 2005. ISBN 3-925386-56-4.

11. E. B�orger. Linking content de�nition and analysis to what the compiler can verify.
In Proc.IFIP WG Conference on Veri�ed Software: Tools, Techniques, and Exper-
iments, Lecture Notes in Computer Science, Zurich (Switzerland), October 2005.
Springer.

12. E. B�orger and T. Bolognesi. Remarks on turbo ASMs for computing functional
equations and recursion schemes. In E. B�orger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003 { Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, pages 218{228. Springer-Verlag,
2003.

13. E. B�orger, H. Busch, J. Cuellar, P. P�appinghaus, E. Tiden, and I. Wildgruber.
Konzept einer hierarchischen Erweiterung von EURIS. Siemens ZFE T SE 1 In-
ternal Report BBCPTW91-1 (pp. 1{43), Summer 1996.

14. E. B�orger and K. D�assler. Prolog: DIN papers for discussion. ISO/IEC JTCI
SC22 WG17 Prolog Standardization Document 58, National Physical Laboratory,
Middlesex, England, 1990.

15. E. B�orger and G. Del Castillo. A formal method for provably correct composition
of a real-life processor out of basic components (The APE100 Reverse Engineering

Study). In B. Werner, editor, Proc. 1st IEEE Int. Conf. on Engineering of Complex
Computer Systems (ICECCS'95), pages 145{148, November 1995.

16. E. B�orger and I. Durdanovi�c. Correctness of compiling Occam to Transputer code.
Computer Journal, 39(1):52{92, 1996.

17. E. B�orger, G. Fruja, V. Gervasi, and R. St�ark. A high-level modular de�nition of
the semantics of C#. Theoretical Computer Science, 336(2/3), 2005.

18. E. B�orger, U. Gl�asser, and W. M�uller. The semantics of behavioral VHDL'93
descriptions. In EURO-DAC'94. European Design Automation Conference with
EURO-VHDL'94, pages 500{505, Los Alamitos, California, 1994. IEEE Computer
Society Press.

19. E. B�orger, P. P�appinghaus, and J. Schmid. Report on a practical application of
ASMs in software design. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele,
editors, Abstract State Machines: Theory and Applications, volume 1912 of Lecture
Notes in Computer Science, pages 361{366. Springer-Verlag, 2000.

20. E. B�orger and D. Rosenzweig. The WAM { de�nition and compiler correctness.
In C. Beierle and L. Pl�umer, editors, Logic Programming: Formal Methods and
Practical Applications, volume 11 of Studies in Computer Science and Arti�cial
Intelligence, chapter 2, pages 20{90. North-Holland, 1995.

21. E. B�orger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of Lecture Notes in Computer Science, pages
41{60. Springer-Verlag, 2000.

22. E. B�orger and W. Schulte. Initialization problems for Java. Software { Concepts
and Tools, 19(4):175{178, 2000.

23. E. B�orger and D. Sona. A neural abstract machine. J. Universal Computer Science,
7(11):1007{1024, 2001.

24. E. B�orger and R. F. St�ark. Abstract State Machines. A Method for High-Level
System Design and Analysis. Springer, 2003.

25. G. D. Castillo and P. P�appinghaus. Designing software for internet telephony:
experiences in an industrial development process. In A. Blass, E. B�orger, and
Y. Gurevich, editors, Theory and Applications of Abstract State Machines, Schloss
Dagstuhl, Int. Conf. and Research Center for Computer Science, 2002.

26. G. Del Castillo. The ASM Workbench. A Tool Environment for Computer-Aided
Analysis and Validation of Abstract State Machine Models. PhD thesis, Universit�at
Paderborn, Germany, 2001. .

27. G. Del Castillo and K. Winter. Model checking support for the ASM high-level
language. In S. Graf and M. Schwartzbach, editors, Proc. 6th Int. Conf. TACAS
2000, volume 1785 of Lecture Notes in Computer Science, pages 331{346. Springer-
Verlag, 2000.

28. A. Dold. A formal representation of Abstract State Machines using PVS. Veri�x
Technical Report Ulm/6.2, Universit�at Ulm, Germany, July 1998.

29. A. Dold, T. Gaul, V. Vialard, and W. Zimmermann. ASM-based mechanized
veri�cation of compiler back-ends. In U. Gl�asser and P. Schmitt, editors, Proc. 5th
Int. Workshop on Abstract State Machines, pages 50{67. Magdeburg University,
1998.

30. R. Farahbod, V. Gervasi, and U. Gl�asser. CoreASM: An extensible ASM execu-
tion engine. In D. Beauquier, E. B�orger, and A. Slissenko, editors, Proc.ASM05.
Universit�e de Paris 12, 2005.

31. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web
pages at http://research.microsoft.com/foundations/AsmL/, 2001.

32. N. G. Fruja. Speci�cation and implementation problems for C#. In B. Thal-
heim and W. Zimmermann, editors, Abstract State Machines 2004, volume 3052
of Lecture Notes in Computer Science, pages 127{143. Springer, 2004.

33. A. Gargantini and E. Riccobene. Encoding Abstract State Machines in PVS.
In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State
Machines: Theory and Applications, volume 1912 of Lecture Notes in Computer
Science, pages 303{322. Springer-Verlag, 2000.

34. A. Gawanmeh, S. Tahar, and K. Winter. Interfacing ASMs with the MDG tool. In
E. B�orger, A. Gargantini, and E. Riccobene, editors, Abstract State Machines 2003{
Advances in Theory and Applications, volume 2589 of Lecture Notes in Computer
Science, pages 278{292. Springer-Verlag, 2003.

35. U. Gl�asser, R. Gotzhein, and A. Prinz. Formal semantics of SDL-2000: Status and
perspectives. Computer Networks, 42(3):343{358, June 2003.

36. G. Goos and W. Zimmermann. Verifying compilers and ASMs. In Y. Gurevich,
P. Kutter, M. Odersky, and L. Thiele, editors, Abstract State Machines: Theory and
Applications, volume 1912 of Lecture Notes in Computer Science, pages 177{202.
Springer-Verlag, 2000.

37. Y. Gurevich. Evolving algebras 1993: Lipari Guide. In E. B�orger, editor, Speci�-
cation and Validation Methods, pages 9{36. Oxford University Press, 1995.

38. A. Habibi. Framework for System Level Veri�cation: The SystemC Case. PhD
thesis, Concordia University, Montreal, July 2005.

39. A. Heberle. Korrekte Transformationsphase { der Kern korrekter �Ubersetzer. PhD
thesis, Universit�at Karlsruhe, Germany, 2000.

40. J. Huggins. Kermit: Speci�cation and veri�cation. In E. B�orger, editor, Speci�ca-
tion and Validation Methods, pages 247{293. Oxford University Press, 1995.

41. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin, and V. Shishkov. Using ASM
speci�cations for compiler testing. In E. B�orger, A. Gargantini, and E. Riccobene,
editors, Abstract State Machines 2003{Advances in Theory and Applications, vol-
ume 2589 of Lecture Notes in Computer Science, page 415. Springer-Verlag, 2003.

42. L. Lavagno, A. Sangiovanni-Vincentelli, and E. M. Sentovitch. Models of compu-
tation for system design. In E. B�orger, editor, Architecture Design and Validation
Methods, pages 243{295. Springer-Verlag, 2000.

43. G. Schellhorn. Veri�cation of ASM re�nements using generalized forward simula-
tion. J. Universal Computer Science, 7(11):952{979, 2001.

44. G. Schellhorn. ASM re�nement and generalizations of forward simulation in data
re�nement: A comparison. Theoretical Computer Science, 2004.

45. G. Schellhorn and W. Ahrendt. Reasoning about Abstract State Machines: The
WAM case study. J. Universal Computer Science, 3(4):377{413, 1997.

46. J. Schmid. Executing ASM speci�cations with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer.

47. J. Schmid. Compiling Abstract State Machines to C++. J. Universal Computer
Science, 7(11):1069{1088, 2001.

48. J. Schmid. Re�nement and Implementation Techniques for Abstract State Ma-
chines. PhD thesis, University of Ulm, Germany, 2002.

49. R. F. St�ark and E. B�orger. An ASM speci�cation of C# threads and the .NET
memory model. In W. Zimmermann and B. Thalheim, editors, Abstract State
Machines 2004, volume 3052 of Lecture Notes in Computer Science, pages 38{60.
Springer-Verlag, 2004.

50. R. F. St�ark and S. Nanchen. A logic for Abstract State Machines. J. Universal
Computer Science, 7(11):981{1006, 2001.

51. R. F. St�ark, J. Schmid, and E. B�orger. Java and the Java Virtual Machine: De�-
nition, Veri�cation, Validation. Springer-Verlag, 2001. .

52. M. Vajihollahi. High level speci�cation and validation of the Business Process
Execution Language for web services. Master's thesis, School of Computing Science
at Simon Fraser University, April 2004.

53. W. Zimmerman and T. Gaul. On the construction of correct compiler back-ends:
An ASM approach. J. Universal Computer Science, 3(5):504{567, 1997.

