
Remarks on Turbo ASMs for Functional
Equations and Recursion Schemes

Egon Börger1 and Tommaso Bolognesi2

1 Università di Pisa, Dipartimento di Informatica, I-56125 Pisa, Italy
boerger@di.unipi.it

2 CNR, ISTI, Pisa bolognesi@ei.pi.cnr.it

Abstract. The question raised in [15] is answered how to naturally
model widely used forms of recursion by abstract machines. We show
that turbo ASMs as defined in [7] allow one to faithfully reflect the com-
mon intuitive single-agent understanding of recursion. The argument is
illustrated by turbo ASMs for Mergesort and Quicksort. Using turbo
ASMs for returning function values allows one to seamlessly integrate
functional description and programming techniques into the high-level
’abstract programming’ by state transforming ASM rules.

1 Introduction

This paper has been triggered by two recent publications, namely [15] and [3].
In the first paper Moschovakis claims that identifying algorithms with abstract
machines ‘does not square with our intuitions about algorithms and the way
we interpret and apply results about them’ and suggests that ‘algorithms are
recursive definitions while machines model implementations, a special kind of
algorithms’. A concrete challenge is stated in the form of a question, namely ‘If
algorithms are machines, then which machine is the mergesort?’ In the second
paper Blass and Gurevich react to what they call ‘a provocative article...casting
doubt on the ASM thesis’. Their answer to the concrete challenge consists in
describing ‘the mergesort algorithm, on its natural level of abstraction, in terms
of distributed abstract state machines’, instantiating the more general scheme
in [13] with the intention to support the ASM thesis (‘Every algorithm can be
expressed, on its natural level of abstraction, by an ASM’).

Before going to explain the reasons why we are dissatisfied with this solution
and to expose what we believe to be a simpler answer which is based upon basic
mono-agent ASMs and better supports the ASM thesis, a double proviso should
make clear that our explanation is a technical one, driven by the concern for
a clean and transparent integration of well-established programming techniques
into high-level system design by ASMs. As a consequence our explanation tries to
avoid the difficult epistemological issues raised by Moschovakis, Blass and Gure-
vich. On the one side, what is ‘the natural level of abstraction’ of an algorithm,
in this particular case of mergesort, is to a large extent in the eye of the beholder,
but our impression (and the feedback we got from asking around) is that rarely

somebody thinks of a distributed computation when reasoning about or trying
to explain or to implement common recursive algorithms like mergesort. In fact
Blass and Gurevich themselves admit in [3, Sect.6] that the runs of distributed
ASMs defined in [11], which their explanation of mergesort-like recursions cru-
cially relies upon, are ‘a long story’, whereas our students learn to understand
and use recursion quickly and rather early in their career. Blass and Gurevich
base their explanation of recursion on the conversion of recursive ASMs to dis-
tributed ASMs defined in [13], a quite complex procedure they invoke to express
the standard mathematical term evaluation mechanism for recursive equations:

Converting a recursive ASM to a distributed ASM amounts to making
explicit the creation of vassals, the waiting for the vassals’ return values,
and the use of these return values to continue the computation.

On the other side we do not want to enter the discussion whether algorithms
‘are’ recursive definitions, although certainly there are many examples most of
us would call algorithms which however are not reducible in a natural way to
recursive definitions.

Our answer to Moschovakis’ question is two-fold. Formulated in general terms
it says that functional languages, e.g. Haskell, or more precisely their inter-
preters, are well-known abstract machines for mergesort-like algorithms, since
they offer a perfect match for defining and computing algorithms by such sys-
tems of recursive equations. In that sense Moschovakis’ question has been an-
swered already a long time ago when the techniques for implementing functional
programming languages were developed. However one may argue that defining
such interpreters has to deal with features which are typical for implementing
functional languages, like passing subcomputation values, spawning or deleting
subtasks, etc.—routine matters for implementors of functional languages and
involving much more than a mathematical user of systems of recursive equations
would like to see. We take this as a legitimate argument and therefore provide
here also a more concrete answer by directly defining the machinery which un-
derlies the way how recursive equations are used by humans to compute the
value of the function in question, avoiding any spurious implementation related
feature. We explicitly extract here the high-level mathematical machinery which
is tacitly used for the standard functional calculations and without which the
equations would not constitute the description of an algorithm (but in the best
case a specification, as Blass and Gurevich point out). This machinery is eas-
ily defined as a simple mono-agent abstract state machine, namely an abstract
form of well-known mechanisms for algorithmic term evaluation procedures. It
avoids to invoke multiple agents and distributed computations, and directly re-
flects what the average computer scientist refers to when explaining how to use
recursive equations.

For concrete comparison we illustrate the argument on the mergesort algo-
rithm discussed in [15, 3] and on quicksort, but our definitions explain in full
generality how functional programming concepts and methods can be modeled
faithfully by a special class of ASMs and how they can thereby be naturally

integrated into the state based ASM framework. Since we want our argument to
provide further concrete evidence for the above stated ASM thesis [12, 2], we take
care to provide our model for the conceptual ingredients of functional program-
ming at a more abstract level than that of the ASM engines AsmGofer [16] and
AsmL [9]—which implement an ASM based framework enriched by functional
and object-oriented programming features—and also of the implementation of
procedure calls in XASM [1, 17].

2 Turbo ASMs

As has often been critically observed, the characteristic feature of basic ASMs—
simultaneous execution of multiple atomic actions in a global state—comes at a
price, namely the lack of direct support for practical composition and structur-
ing principles. To make such features available as standard refinements of basic
ASMs, in [7] a class of ASMs has been defined which offers as building blocks
sequential composition seq, iteration iterate, and parameterized (possibly re-
cursive) submachines. These so-called Turbo ASMs realize a black-box view of
their component machines, hiding the internals of their (sub)computations by
compressing them into one step (hence the name) and thus fit the synchronous
parallelism of standard ASMs.

Purely iterative turbo ASMs, built by seq and iterate from function updates
using as background functions only the initial functions of recursion theory,
have been shown in [7, Sect.3.3] to compute arbitrary computable functions in
a way which combines the advantages of Gödel-Herbrand style functional and
of Turing style imperative programming. For parameterized submachines also
value returning ASMs have been defined by extracting from the global result
of a turbo submachine computation what one wants to consider as result value.
A simple variation of that definition suffices to support the more general goal
we want to reach here, namely to justify the smooth integration of stateless
recursive functional programming into the state based synchronous parallel ASM
framework by a natural subclass of value returning turbo ASMs. These machines
are one-agent ASMs with multiple, synchronous parallel rules (or submachines)
which express the usual procedure for evaluation of functional recursive equations
and thus are our candidates for answering Moschovakis’ question.

The following definition of turbo submachine call is taken unchanged from
[7, Sect.4].

Definition 1. Let R(x1, . . . , xn) = body be the declaration of a named turbo
ASM rule R, let A be a state. If [[body [a1/x1, . . . , an/xn]]]A is defined, then also
[[R(a1, . . . , an)]]A is defined and its value is

[[R(a1, . . . , an)]]A = [[body [a1/x1, . . . , an/xn]]]A.

By this definition every call R(a) of a turbo submachine provides its global
result in one step (if it terminates at all), namely by yielding the cumulative
update set of its entire computation (where in the case of overwriting due to
sequential execution the last write wins).

To exploit this atomic view of turbo ASMs for returning values by machines
which are supposed to compute functions of their input, it suffices to project that
value out of the total computational effect [[R(a1, . . . , an)]]A. For this purpose
in [7, Sect.5.2] the usual notation l ← R(a1, . . . , an) is adopted. We want the
machine to store the result of R in location l , so that at the end of the R-
computation the location l will contain the intended result value, in accordance
with the expectation the programmer associates with this notation. R is a named
rule as in the preceding definition in which a reserved 0-ary function result
occurs with a placeholder role for storing the return value1. result represents
the interface offered for communicating results from a rule execution to a location
l which can be determined by the caller. Formally this comes up to replace result
in the computation of R by l .

[[l ← R(a1, . . . , an)]]A = [[body [l/ result, a1/x1, . . . , an/xn]]]A

This definition should not be misunderstood as an invitation to consider value
returning machine calls as a form of side-effect producing evaluation of ‘terms’
R(t). On the contrary we believe that it is a precious methodological insight of
Gurevich’s ASM concept to only have main effects—updates which change the
given state as defined by the rules—and to abstract from any other effect, rather
than having them around as uncontrolled ‘side’ effects. As a consequence we
believe it to be a pragmatically advisable system design principle not to blur the
distinction between terms (which evaluate to objects) and rules (which evaluate
to update sets triggering state changes), although the functional and λ-calculus
tradition in theoretical computer science shows how one can make sense out of
identifying objects and algorithms by turning everything into a function. Stick-
ing to the convenient distinctions does not prevent us from having a mechanism
to extract from a state some particular values one may wish to consider as distin-
guished objects coming out from subcomputations. In fact calling R(t) as defined
in [7] means that R is executed as a turbo ASM with parameter t and produces
a complete state change, namely through its update set produced starting from
the call state. The notation l ← R(t) allows the designer to project out of that
‘result’ state the value of a specific location, namely the one named by l2. The
turbo ASM notation R(t) by itself does not provide any state hiding mechanism
(though it can easily be enhanced to do so by standard modularization methods
for rule import/export, (re)naming conventions for submachine signatures, local
state concepts, etc., see e.g. [7]).

1 Should a tuple of return values be desired, one would have finitely many such 0-ary
functions resultj for j = 1, . . . ,m.

2 In [14, pg.19] it is stated that “the idea of XASM is to generalize the original idea
of Gurevich, resulting in a more practical specification and implementation tool”
by introducing a new concept of “XASM call” that “leads to a design where every
construct (including expressions and rules of Gurevich’s ASMs) is denoted by both
a value and an update set” (op.cit.pg.2). This throwing together of algorithms and
the objects they compute, blurring the distinction between rules and terms, may
have led to the thorough misunderstanding of turbo ASMs which transpires from

3 Modeling Recursion by Value Returning Turbo ASMs

There are many ways to explain the meaning of various forms of recursion. The
turbo ASM submachine concept reviewed above abstractly mimics a standard
imperative calling mechanism, which provides the key for laying in this section
a particularly simple and rigorous foundation for the common intuitive under-
standing of recursion in terms of single-agent ASM computations. Furthermore
by the atomicity of their black-box computations, turbo ASMs allow us to re-
flect exactly the machinery which underlies the common mathematical use of
functional equations to evaluate functions defined by recursion, as we illustrate
in this section for the Quicksort and Mergesort algorithms.

The update set produced by executing a turbo ASM call represents the total
effect of executing the submachine in the call state (atomicity of the turbo ASM
computation). Using the machine to return a value adds a form of functional ab-
straction from everything in that computation except the resulting input-output
(argument-value) relation3. Technically we combine the turbo ASM notation for
value returning machines with the let-construct, mimicking the use of activation
records to store parameters as local variables. Since for each submachine call a
dedicated placeholder is needed to record the result of a subcomputation, in the
following definition we apply an external function new to the dynamic set FUN0

of 0-ary dynamic functions (‘write variables’). new is supposed to provide each
time a completely fresh location, i.e. a location which has never been used before
and is also not used for any other simultaneous call of new . This implies that if
a machine is invoked within a same step simultaneously on different arguments
(a1, ...an), new is assumed to provide as many result locations as there are in-
vocations. For a detailed mathematical definition of this use of new see [10], [8,
Ch.2.4.4]4.

the statement in op.cit.pg 2 that turbo ASMs are “excluding the essential feature
of both Anlauff’s and May’s original call to allow returning not only update sets,
but as well a value.” The definition from [7] reported above makes clear that the
statement is simply wrong, as is the conclusion drawn from it in op.cit. pg.2 that
“This restriction makes their (i.e. Börger’s and Schmid’s) call useless for the modeling
of recursive algorithms” (see the next section). The reader is the judge whether
the above definition of turbo ASMs, and their use to extract return values from
subcomputations, reflects current programming practice and does it in a transparent
way. As reported in the comment on May’s work in [6], it was the desire to simplify—
read: to avoid the complexity of unnecessarily general logico-algebraic concepts for
explaining standard programming concepts—which led Börger and Schmid to look
for an elementary and transparently implementable definition of submachines which
fits the characteristic synchronous parallelism of ASMs.

3 The pure functional effect of course is achieved only if the submachine computation
on the caller’s side affects only the result location.

4 As alternative for the use of new one can turn result into a monadic function which
takes the list of parameters as arguments, so that the results of invokations with
different arguments are stored in different locations.

Definition 2. (Using return values in turbo ASMs). Let Ri ,S be arbitrary turbo
ASMs with formal parameter sequences xi of Ri and parameters yi of S . For
corresponding actual parameter sequences ai we define:

let {y1 = R1(a1), . . . , yn = Rn(an)} in S ≡
let l1, . . . , ln = new(FUN0) in

forall 1 ≤ i ≤ n do li ← R(ai)
seq
let y1 = l1, . . . , yn = ln in S

This definition allows one to explicitly capture the abstract machine which un-
derlies the common mathematical evaluation procedure for functional expres-
sions, including those defined by forms of recursion. The definition does not
invite to mix terms (which are to be evaluated to objects) and machines (which
have to be executed to obtain the desired state change). In fact for rules R and
terms t the use of R(t) is justified by our definition only as part of a call of R
(i.e. in a place where a rule is expected) and in one of the two forms l ← R(t)
or let x = R(t) in S . Passing (by value) the result returned by a turbo ASM
captures the implicit storage of intermediate values by subterms during the eval-
uation of functional equations5. We illustrate this by the following turbo ASM
definitions of Quicksort and of Mergesort which directly translate the usual re-
cursive definition of the algorithms to provide as result a sorted version of any
given list.

The computation suggested by the well-known recursive equations to quick-
sort L proceeds as follows: FIRST partition the tail of the list into the two sublists
tail(L)<head(L), tail(L)≥head(L) of elements < head(L) respectively ≥ head(L)
and quicksort these two sublists separately (independently of each other), THEN
concatenate the results placing head(L) between them. The fact that this descrip-
tion uses various auxiliary list and comparison operations is reflected by the
appearance of corresponding auxiliary functions in the following turbo ASM.

Quicksort(L) =
if | L |≤ 1 then result:= L else

let
x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result:= concatenate(x , head(L), y)

In the usual verbal paraphrase reported above of the recursive equations for
Quicksort there is no mention of agents, certainly no mention of multiple agents
or of creation of ‘vassals’, not even of ‘return’ing (by whom? from where?) values,
but only of a certain order of some computation steps which explicitly appear as

5 Introducing a stack discipline constitutes a further step towards an implementation.
Since for each call we provide a new location, we can abstract from their ordering
(e.g. in a stack one being on top of the other) and from their deletion (which remains
for a refinement by a garbage collector, e.g. by a stack operation pop).

the ‘principal’ steps, namely to first compute some intermediate values for certain
arguments—the result values of the two recursive subcomputations—and then
‘to use...these...values to continue the computation’ to produce the desired ‘main’
result. This is exactly what our formal ASM turbo machine definition mentions,
abstracting from all the details of how these subcomputations are organized, as
does the system of recursive equations.

On the other side, it seems to us that the definition of our Quicksort turbo
ASM exactly mimics the usual recursive equations for the algorithm, and is as
far from ‘modeling an implementation’ as the ‘recursive definitions‘ are. Our
translation of functional terms f (s) using the construct let x = F (s) applied to
turbo ASM computations F directly captures the common procedure to evaluate
in a certain order the subterms appearing in equations, to ‘keep in mind’ a certain
number of them for a certain time until the moment comes where they are
used simultaneously6. This mixture of ordering and independence is captured
by the appropriate mixture of synchronous parallelism, sequentialization and
turbo effect (atomic submachine view) provided by turbo ASMs.

One can argue whether computing tail(L)<head(L), tail(L)≥head(L) is part of
the quicksort machine computation or not. The answer to the question depends
on the level of abstraction at which one wants to define the machine. One can
show that the following procedural refinement of list partitioning in Quicksort
is correct and provides a correct ‘implementation’ (to use Moschovakis’ term)
of the more abstract machine above, though we would consider it still as an
abstract machine.

Data refinement of Quicksort. One can refine Quicksort to a control
state 7turbo ASM where the partitioning of L into L<head(L) and L≥head(L) is
computed using the following basic ASM Partition(l , h, p), working on the
representation of lists as functions L : [r , s] → VAL from intervals of natural
numbers to a set of values. When r < s, Partition is started with the search
boundaries l = r , h = s and the list head pivot = L(r). It terminates when
reaching l = h with L(l) = pivot , all L-elements smaller than the pivot to
the left of l , and all the others at l or to the right of l . Until reaching l =
h, the partitioning procedure alternates between searching from above for list
elements L(h) ≤ pivot and searching from below for list elements L(l) ≥ pivot .
When such an element is encountered and it is different from the element at the
other current search boundary—one of them is the pivot—, then the boundary
elements L(l),L(h) are swapped and the search switches to the other boundary.
When L(h) ≤ pivot ≤ L(l) ≤ L(h) before l = h is encountered (namely when
pivot has multiple occurrences in the list), h can be decreased by one.

6 This virtual intermediate storage of ’keeping in mind’ intermediate results computed
for subterms, typical for the functional handling of equations, is reflected in the
definition let x = R(a) in S by providing new locations where to temporarily keep
the results of the subcomputations, to be used ‘later’ when executing S .

7 Control state ASMs defined in [4] constitute a subclass of basic ASMs, extending
the classical Finite State Machines by allowing rules to be executed when passing
from one to another internal (‘control’) state. They are extensively used in [8].

Partition(l , h, pivot) =
if L(h) > pivot then h := h − 1
elseif L(l) < pivot then l := l + 1
elseif L(l) > L(h) then

L(l) := L(h)
L(h) := L(l)

elseif l < h then h := h − 1

We are going now to illustrate our argument further by the Mergesort ex-
ample, which is the one discussed by Moschovakis and Blass and Gurevich. The
computation suggested by the usual recursive equations to mergesort a given
list L consists in FIRST splitting it into a LeftHalf (L) and a RightHalf (L) (if
there is something to split) and mergesorting these two sublists separately (in-
dependently of each other), THEN to Merge the two results by an auxiliary
elementwise Merge operation. This is expressed by the following turbo ASM
which besides two auxiliary functions LeftHalf , RightHalf comes with an exter-
nal function Merge defined below as a submachine.

Mergesort(L) =
if | L |≤ 1 thenresult:= L else

let
x = Mergesort(LeftHalf (L))
y = Mergesort(RightHalf (L))

in result:= Merge(x , y)

Usually also Merge is defined by a recursion, suggesting the following com-
putation scheme which is formalized by the turbo ASM below. If both lists are
non-trivial, by a case distinction the smaller one of the two list heads is deter-
mined and placed as the first element of the result list, concatenating it with the
result of a separate and independent Merge operation for the two lists remaining
after having removed the chosen smaller head element. The ι-operator in ιx (P)
denotes the unique x with property P (if there is such an x).

Merge(L,L′) =
if L = ∅ or L′ = ∅ then result:= ιl(l ∈ {L,L′} and l 6= ∅)
elseif head(L) ≤ head(L′) then

let x = Merge(tail(L),L′) in result:= concatenate(head(L), x)
elseif head(L′) ≤ head(L) then

let x = Merge(L, tail(L′)) in result:= concatenate(head(L′), x)

Data refinement of Mergesort and Merge. One can show that the
following definition of equivalence of corresponding locations provides a rule-
wise step-by-step refinement to a model where lists are represented as functions
L : [l , h]→ VAL from intervals of natural numbers to a set of values. We leave it
to the reader to decide whether the result of this refinement should be considered
to be an abstract machine or an implementation.

– L = ∅ ≡ l > h, | L |≤ 1 ≡ l ≥ h
– head(L) = L(l), tail(L) = L \ {(l ,L(l))}
– LeftHalf (L) = L � [l , half (l + h)], RightHalf (L) = L � [half (l + h) + 1, h]

where half (2x) = x , half (2x + 1) = x + 1 (for example)
– concatenate(v ,L) = {(l , v)} ∪ RightShift(L, 1)

where RightShift(L,n) = λx .L(x − n)

In [15] also the issue of outputting intermediate results is mentioned, e.g.
to compute the infinite sequence of primes. This can easily be incorporated by
updates of the form result:=result ∗newItem which extend the current result
by a new item. Thus if the fixpoint of a computation is infinite, result will
become a piecewise computed infinite sequence.

4 Conclusion

Result returning turbo ASMs make two ingredients of the evaluation of func-
tional equations explicit which are taken for granted and—from the specification
point of view luckily—abstracted away by the functional notation: the implicit
storage of intermediate values by subterms and the independence or ordering
of their computation and use in the evaluation procedure. If one wants to con-
sider these abstract machines as ‘mathematical models of computers’[15], then
one should view also systems of recursive equations that way. Through our re-
finement definition (Def. 2) the concrete details of the machine computation
are appropriately hidden, and at the same time provide a seamless connection
to further implementation steps through unfolding the machine notation. The
natural and tight correspondence between sets of recursive equations and these
machines contributes to the pragmatic evidence accumulated over the years (see
[6]) that ASMs can indeed be tailored to describe arbitrary algorithms on their
natural level of abstraction, here the level of evaluating functional equations.

We pointed out above that our answer to Moschovakis’ question is quite
different from the one in [13, 3] where it is argued that ‘recursive computations
are to be viewed as a special case of distributed computation’ in which each
recursive call is executed by a newly created callee agent expected to return his
result to the caller. The way we define the result of the turbo ASM call implies
that from the caller’s view it is returned immediately, directly reflecting the
functional view which only uses the result in the given evaluation process and
abstracts from how and by whom the result has been obtained. As a consequence
our explanation of recursion does not need to invoke multiple agents, but it
is compatible with using them for a distributed implementation, which is at
a more detailed level of modeling than the functional one. To view recursive
computations as a special case of distributed computation implies to considerably
lower the level of computational abstraction where the algorithm is analysed (or
to increase the level of detailing if one prefers to look at it the other way round8).

A related criticism of pushing the interpretation of the ASM thesis beyond its
natural limits has been formulated in [5].

Acknowledgement. We thank the following colleagues for discussing and
critically commenting upon a draft of this paper: W. Ahrendt, R. Banach, H.
Langmaack, P. Päppinghaus, D. Rosenzweig, R. Stärk, W. Zimmermann and an
anonymous referee.

References

1. M. Anlauff. XASM — an extensible, component-based abstract state machines
language. In Y. Gurevich, P. Kutter, M. Odersky, and L. Thiele, editors, Abstract
State Machines: Theory and Applications, volume 1912 of LNCS, pages 69–90.
Springer-Verlag, 2000.

2. A. Blass and Y. Gurevich. Abstract State Machines capture parallel algorithms.
ACM Transactions on Computational Logic, 3, 2002. .

3. A. Blass and Y. Gurevich. Algorithms vs. machines. Bulletin EATCS, 2002.

4. E. Börger. High level system design and analysis using abstract state machines.
In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann, editors, Current Trends
in Applied Formal Methods (FM-Trends 98), number 1641 in LNCS, pages 1–43.
Springer-Verlag, 1999.

5. E. Börger. Computation and specification models. A comparative study. In
P. Mosses, editor, Proc. FLoC’02 Workshop Action Semantics and Related Seman-
tic Frameworks, BRICS Series. Department of Computer Science at University of
Aarhus, 2002.

6. E. Börger. The origins and the development of the ASM method for high level
system design and analysis. J. of Universal Computer Science, 8(1):2–74, 2002.

7. E. Börger and J. Schmid. Composition and submachine concepts for sequential
ASMs. In P. Clote and H. Schwichtenberg, editors, Computer Science Logic (Pro-
ceedings of CSL 2000), volume 1862 of LNCS, pages 41–60. Springer-Verlag, 2000.

8. E. Börger and R. Stärk. Abstract State Machines. A Method for High-Level System
Design and Analysis. Springer-Verlag, 2003.

9. Foundations of Software Engineering Group, Microsoft Research. AsmL. Web
pages at http://research.microsoft.com/foundations/AsmL/, 2001.

10. N. G. Fruja and R. F. Stärk. The hidden computation steps of turbo Abstract
State Machines. In E. Börger, A. Gargantini, and E. Riccobene, editors, Abstract
State Machines 2003. Springer, 2003.

11. Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In E. Börger, editor, Specifi-
cation and Validation Methods, pages 9–36. Oxford University Press, 1995.

12. Y. Gurevich. Sequential Abstract State Machines capture sequential algorithms.
ACM Transactions on Computational Logic, 1(1):77–111, July 2000.

13. Y. Gurevich and M. Spielmann. Recursive Abstract State Machines. J. of Universal
Computer Science, 3(4):233–246, 1997.

8 In fact Blass and Gurevich wonder in [3, Sect.4] whether one ‘shouldn’t consider a
broader class of implementations’ than the one apparently Moschovakis is refering
to. Once a recursive call has become a computation in a distributed context, many
different possibilities to organize the subcomputations show up which cannot even
be formulated in terms of the functional recursive equations.

14. P. Kutter. The formal definition of Anlauff’s eXtensible Abstract State Machine.
TIK-Report 136, ETH Zürich, June 2002.

15. Y. N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid, editors,
Mathematics Unlimited—2001 and beyond. Springer, 2001.

16. J. Schmid. Executing ASM specifications with AsmGofer. Web pages at
http://www.tydo.de/AsmGofer.

17. X.ASM. Xasm Open Source. Web pages at http://www.xasm.org/, 2001.

