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Abstract

For each of the principal current models of computation and of high-
level system design, we present a uniform set of transparent easily un-
derstandable descriptions, which are faithful to the basic intuitions and
concepts of the investigated systems. Our main goal is to provide a math-
ematical basis for the technical comparison of established models of com-
putation which can contribute to rationalize the scientific evaluation of
different system specification approaches in the literature, clarifying in
detail their advantages and disadvantages. As a side effect we obtain a
powerful yet simple new conceptual framework for teaching the funda-
mentals of computation theory.

1 Introduction

The presentation of this work in the Action Semantics workshop started from
Peter Mosses’ question to compare Action Notation (AN) [45] and Abstract
State Machines (ASMs) [26]. Answering that question naturally led to a broader
investigation, namely a comparative analysis of current specification and com-
putation systems in terms of ASMs.

In this paper we assume the reader to know the definition of AN and of the
notion of ASM. The main difference between the Action Semantics framework
and the ASM method is their different goal. Action Notation has been tailored
to support the development of programming languages. The notion of ASMs
has been equipped with a general purpose method for high-level hardware and
software system analysis and design and its stepwise refinement to code. There is
also a difference in the origin of AN and ASMs which shaped the two approaches.
AN was developed aiming at enriching denotational features with practically
useful operational ones. In an attempt to overcome pragmatically dissatisfactory

0A preliminary version has been presented under the title Definitional Suggestions for
Computation Theory to the Dagstuhl Seminar on “Theory and Application of Abstract State
Machines”, Schloss Dagstuhl, March 4-8, 2002.
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aspects of a purely denotational approach, primitive and composed actions were
directly reflected in close correspondence to programming concepts (semantic
mapping of abstract syntax trees to predefined actions) and led to a compromise
between competing language development requirements, corresponding to views
of the designer, the implementer and the programmer. Gurevich’s foundational
concern to sharpen the Church-Turing thesis [38] led to an arguably most general
notion of virtual machine which became the mathematical basis of the broad-
spectrum high-level ASM method for practical system design and analysis [16].

The differences in origin and goal explain also the major technical differences
in the realization of AN and ASMs. Actions in AN categorize what in ASMs
comes as abstract, a priori unclassified function updates and declarations. Three
parameters, organized into so-called facets, serve as basis for the classification:
a) different computational aspects, b) types of effect propagation of actions, and
c) types of action performance. The basic facet covers fundamental control pat-
terns like sequentiality, parallelism, non-determinism; data storage phenomena
are dealt with in the functional facet in case they are transient between actions,
or in the imperative facet if they are stable in cells; the communicative facet
describes interactions between distributed agents; scope information is treated
in the declarative facet. Most of these features are not directly available in
ASMs, though they are definable in a natural way (see [26]). Furthermore AN
aims at the generation of a tool environment from language specifications, e.g.
the semantics-directed generation of interpreters, compilers, etc., whereas ASMs
support a general-purpose method which covers all system design and analysis
aspects. In fact ASMs have been specialized to provide an executable semantics
for AN, see [6] which contains also further details on tailoring ASMs to fit the
AN framework.

In the rest of this paper we use ASMs as a framework for a comparative anal-
ysis of other specification and computation systems, comprising the following
ones:

• UML Diagrams for System Dynamics

• Classical Models of Computation

– Automata: Moore-Mealy, Stream-Processing FSM, Co-Design FSM,
Timed FSM, PushDown, Turing, Scott, Eilenberg, Minsky, Wegner

– Substitution systems: Thue, Markov, Post

– Tree computations: backtracking in logic and functional program-
ming, context free grammars, attribute grammars, tree adjoining
grammars

– Structured and functional programming

∗ Programming constructs: seq, while, case, alternate, par
∗ Gödel-Herbrand computable functions: Böhm-Jacopini Theorem
∗ Recursion

• Specification and Computation Models for System Design
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– Executable high-level design languages: UNITY, COLD

– State-based specification languages

∗ distributed (Petri Nets)
∗ sequential: VDM, Z, B

– Virtual machines

– Logic-based modeling systems

∗ axiomatic systems: denotational, algebraic
∗ process algebras (CSP, LOTOS, etc.)

2 Motivation

Since we will use Abstract State Machines (ASMs) as modeling framework, a
question to answer before proceeding is why we do not use the proof for the
synchronous parallel version of the ASM thesis which claims a form of compu-
tational universality for ASMs. The general thesis, as formulated in 1985 by
Gurevich in a note to the American Mathematical Society [38], reads as follows
(where dynamic structures stand for what nowadays are called ASMs):

Every computational device can be simulated by an appropriate dy-
namic structure—of appropriately the same size—in real time

For the synchronous parallel case of this thesis Blass and Gurevich [11] dis-
covered postulates from which every synchronous parallel computational device
could be proved to be simulatable in lock-step by an appropriate ASM. Why
are we not satisfied with the ASMs constructed by this proof?

The answer has to do with the price to be paid for proving computational
universality from abstract postulates which cover a great variety of systems.
On the one side, the ASM method emphasizes to model algorithms and systems
closely and faithfully, at their level of abstraction, laying down the essential com-
putational ingredients completely and expressing them directly, without using
any encoding which is foreign to the computational device under study. On the
other side, if one looks for a mathematical argument proving from explicitly
stated assumptions the computational universality of ASMs as claimed in the
thesis, some generality in stating the postulates is unavoidable, to capture the
huge class of data structures and of the many ways they can be used in a basic
computation step, which for every proposed concrete system have to be derived
(decoded) from the postulates.

The construction by Blass and Gurevich in op.cit., which associates to ev-
ery synchronous parallel computational system an ASM simulating the system
step-by-step, depends in fact on the way the abstract postulates capture the
amount of computation (by every single agent) and of the communication be-
tween the synchronized agents which is allowed in a synchronous parallel compu-
tation step. The necessity to uniformly unfold arbitrary concrete basic parallel
communication and computation steps from the postulates as a matter of fact
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yields some encoding overhead, to guarantee for every computational system
which possibly could be proposed a representation by the abstract concepts of
the postulates. As side effect of this— epistemologically significant—generality
of the postulates, the application of the general transformation scheme to es-
tablished models of computation may yield ASMs which are more involved than
necessary and may blur features which really distinguish different concrete sys-
tems.

Furthermore, postulating by an existential statement e.g. that states are
appropriate equivalence classes of structures of a fixed signature (in the sense
of logic), that evolution happens as iteration of single steps, that the single-step
exploration space is bounded (i.e. that there is a uniform bound on memory
locations basic computation steps depend upon, up to isomorphism), does not
by itself provide, for a given computation or specification model, a standard
reference description of its characteristic states, of the objects entering a basic
computation step, and of the next-step function. In addition no proof is known
to include distributed systems.

Our goal is that of naturally modeling systems of specification and compu-
tation, based upon a careful analysis of the characteristic conceptual features
of each of them. We look for ASM descriptions for each established model of
computation or of high-level system design which

• for every framework directly reflect the basic intuitions and concepts, by
gently capturing the basic data structures and single computation steps
which characterize the investigated system,

• are formulated in a way which is uniform enough to allow explicit com-
parisons between the classical system models,

• include asynchronous distributed systems.

By deliberately keeping the ASM model for each proposed system as close as
possible to the original usual description of the system, so that it can be recog-
nized to be simulated faithfully and step by step by the ASM model, we provide
for the full ASM thesis a strong pragmatic argument which

• avoids a sophisticated existence proof for the ASM models from abstract
postulates,

• avoids decoding of concrete concepts from abstract postulates,

• avoids a sophisticated proof to establish the correctness of the ASM mod-
els.

Since despite of listening carefully to the specifics of each investigated system
and of tailoring the simulating ASM models accordingly we can achieve a cer-
tain uniformity, we provide a mathematical basis for technical comparison of
established system design approaches which we hope will
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• contribute to rationalize the scientific evaluation of different system spec-
ification approaches, clarifying their advantages and disadvantages,

• offer a powerful yet simple framework for teaching computation theory,
unraveling the basic common structure of the myriad of different machine
concepts which are studied in computation theory.

3 UML Diagrams for System Dynamics

For the modeling purpose, we use a generalization of Finite State Machines
(FSMs) to a class of Abstract State Machines (ASMs) which have been intro-
duced in [15] under the name of control state ASMs and are tailored to UML
diagram visualizable machines. A control state ASM is an ASM whose rules are
all of the following form:

if ctl state = i then
if cond1 then

rule1

ctl state := j1
· · ·

if condn then
rulen

ctl state := jn

In a given control state i, these machines do nothing when no condition condk

is satisfied; otherwise for every condk which is satsfied, rulek is executed and
the control state changes to jk so that usually the conditions are supposed or
guaranteed to be disjoint to avoid conflicting updates which would stop the
ASM computation. Control state ASMs represent a normal form for UML
activity diagrams (see[17]) from where they inherit the graphical representation
of control states by circles or by (possibly named) directed arcs, to visually
distinguish the control-passing role of control states from that of the update
actions concerning the underlying data structure which are expressed by the
ASM rules inscribed into rectangles, separated from the rule guards written
into rhombs. Control state ASMs thus offer to use arbitrarily complex parallel
(synchronized) data structure manipulations below the main control structure
of finite state machines. The resemblance to FSMs is reflected by the following
notation:

Fsm(i, if cond then rule, j) =
if ctl state = i and cond then

rule
ctl state := j

so that the control state ASM rule above becomes the set of rules Fsm(i, if
condk then rulek, jk) for k = 1, . . . , n.
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When writing ASMs M we will use below the distinction between functions
which are controlled by M (meaning that they are updated by rules of M and
not by the environment) and those which are monitored by M (i.e. updated
only by the environment, but read by M) or shared (i.e. updatable and readable
by both M and the environment).

This intuitive understanding of control state ASMs and of different function
types suffices for most of the machines defined in this paper. Otherwise we will
state what more is needed. For a detailed textbook definition of these machines
and of their synchronous or asynchronous multi-agent version we refer the reader
to [26].

4 Classical Models of Computation

We show here that the classical automata and substitution systems, ranging
from FSMs to computationally universal systems including the structured and
the functional programming approaches, are all natural variations of classes of
(mostly control state) ASMs. Introducing those formalisms as ASMs, as we do
in our lectures on computation theory, avoids having to redefine the semantics
of such systems again and again for each variation of the underlying concept
of algorithm. This generalizes the uniform semantical frame underlying Scott’s
definitional suggestions for automata theory [51]. In this section we suppose the
reader to know the basic concepts of computation theory (see any textbook on
the subject, e.g. [14]).

4.1 Automata

We model here classical automata concepts, computationally universal ones as
well as restricted machines.

4.1.1 Finite State Machines

The standard FSMs, also known as Mealy automata, are control state ASMs
whose rules have the following form with a dynamic input function in and a
dynamic output function out:

Fsm(i, if in = a then out := b, j)

in, out usually range over letters a, b, but one may also have words or other
value types and also sets or sequences of input or output lines (ports), like in
networks of finite automata [27].

The subclass of Moore automata is characterized by the same form of rules
but with skip instead of the output assignment. This give rise to the general-
ization to Mealy/Moore ASMs defined in [15], a subclass of control state ASMs
where the emission of output is replaced by arbitrary ASM rules:

MealyAsm = Fsm(i, if in = a then rule, j).
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MealyAsms appear for example as components of co-design FSMs where rules
are needed to compute arbitrary combinational (external and instantaneous)
functions. Co-design FSMs are used in [43] for high-level architecture design
and specification and for a precise comparison of current models of computation.
Other examples of MealyAsms will be shown below.

If one prefers to write FSM programs in the usual tabular form, with one
entry (i, a, j, b) for every instruction “in state i reading input a, go to state
j and print output b”, one obtains the following guard-free Mealy FSM rule
scheme for updating (ctl state, out). The parameters Nxtctl,Nxtout are the two
projection functions which define the program table, mapping ‘configurations’
(i, a) of control state and input to the next control state j and next output b.

MealyFsm(Nxtctl,Nxtout) =
ctl state := Nxtctl(ctl state, in)
out := Nxtout(ctl state, in)

Since the input functions in are monitored, they are not updated in the rule
scheme, though one can certainly make them shared, e.g. to formalize an input
tape which is scanned piecemeal say from left to right.

1-way automata are turned into 2-way automata by including into the in-
structions also Moves of the input head (say on the input tape), yielding ad-
ditional updates of the head position and a refinement of in to in(head) (the
input portion seen by the new reading head):

TwoWayFsm(Nxtctl,Nxtout,Move) =
ctl state := Nxtctl(ctl state, in(head))
out := Nxtout(ctl state, in(head))
head := head + Move(ctl state, in(head))

Non-deterministic versions of FSMs, as well as of all the machines we consider
below so that there we will only mention deterministic machine versions, are
obtained by placing the rules R1, . . . , Rm to be chosen from under the choose
operator, obtaining ASMs with rules of the following form:

choose R ∈ {R1, . . . , Rm} in R.

4.1.2 Stream Processing FSMs

Stream processing FSMs are a specialization of FSMs to machines which com-
pute stream functions Sm → Sn over a data set S (typically the set S = A∗

of finite or S = AN of infinite words over a given alphabet A), yielding an
output stream out resulting from consumption of the input stream in. Non-
deterministically in each step these automata

• read (consume) at every input port a prefix of the input stream in,

• produce at each output port a part of the output stream out,
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• proceed to the next control state ctl state.

This can be captured by introducing into the MealyFsm model two choice-
supporting functions Prefix:Ctl×Sm → PowerSet(Sm

fin), yielding sets of finite
prefixes among which to choose for given control state and input stream, and
Transition:Ctl×(Sm

fin)→ PowerSet(Ctl×Sn
fin) describing the possible choices

for the next control state and the next finite bit of output. The rule extension
for stream processing FSMs is then as follows, where input consumption is
formalized by deletion of the chosen prefix from the shared function in:

StreamProcessingFsm(Prefix, Transition) =
choose pref ∈ Prefix(ctl state, in)

choose (c, o) ∈ Transition(ctl state, pref)
ctl state := c
out := concatenate(o, out)
in := delete(pref, in)

In [41] these machines are used to enrich the classical networks of stream process-
ing FSMs (stream processing components communicating among each other via
input/output ports) by ASM state transformations of individual components.

4.1.3 Timed Automata

In timed automata [5] letter input comes at a real-valued occurrence time which
is used in the transitions where clocks record the time difference of the current
input with respect to the previous input:

time∆ = occurrenceT ime(in)− occurrenceT ime(previousIn).

Firing of transitions may be subject to clock constraints and includes clock up-
dates (resetting a clock or adding to it the last input time difference). Typically
the constraints are about input to occur within (<,≤) or after (>,≥) a given
(constant) time interval, leaving some freedom for timing runs, i.e. choosing
sequences of occurrenceT ime(in) to satisfy the constraints. Thus timed au-
tomata can be modeled as control state ASMs where all rules have the following
form:

TimedAutomaton(Constraint, Reset) =
Fsm(i, if TimedIn(a) then ClockUpdate(Reset), j)
where

TimedIn(a) = (in = a and Constraint(time∆) = true)
ClockUpdate(Reset) =

forall c ∈ Reset do c := 0
forall c 6∈ Reset do c := c + time∆
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4.1.4 Push Down Automata

In pushdown automata the Mealy automaton ‘reading from the input tape’ and
‘writing to the output tape’ is extended to reading from input and/or a stack
and writing on the stack. Since these machines may have control states with no
input-reading or no stack-reading, pushdown automata are control state ASMs
with rules of one of the following forms and the usual meaning of the stack
operations push, pop (optional items are enclosed in []):

PushDownAutomaton =
Fsm(i, if Reading(a, b) then StackUpdate(w), j)
where

Reading(a, b) = [in = a] and [top(stack) = b]
StackUpdate(w) = stack := push(w, [pop](stack))

4.1.5 Turing-like Automata

Writing pushdown transitions in tabular form

PushDownAutomaton(Nxtctl,Write) =
ctl state := Nxtctl(ctl state, in, top(stack))
stack := Pop&Push(stack, Write(ctl state, in, top(stack)))

identifies the ‘memory refinement’ of FSM input and output tape to input and
stack memory. The general scheme becomes explicit with Turing machines
which combine input and output into one tape memory with moving head. All
the Turing-like machines we mention below are control state ASMs which in
each step, placed in a certain position of their memory, read this memory in the
environment of that position and react by updating mem and pos. Variations
of these machines are due to variations of mem, pos, env, whereas their rules
are all of the following form:

TuringLikeMachine(mem, pos, env) =
Fsm(i, if Cond(mem(env(pos)) then update (mem(env(pos)), pos), j)

For the original Turing machines this scheme is instantiated by mem = tape
containing words, integer positions pos:Z where single letters are retrieved,
env = identity, Writes in the position of the tape head. This leads to extending
the rules of TwoWayFsm as follows (replacing in by tape and Nxtout by
Write):

TuringMachine(Nxtctl,Write,Move) =
ctl state := Nxtctl(ctl state, tape(head))
tape(head) := Write(ctl state, tape(head))
head := head + Move(ctl state, tape(head))

The extension of the 1-tape Turing machine to a k-tape and to an n-dimensional
TM results from data refining the 1-tape Turing memory and the related op-
erations and functions. Register machines are a data refined instance of k-tape
Turing machines ([14, Ch.AI1]).
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Scott [51] and Eilenberg [31] instead of read/write operations on words
stored in a tape provide data processing for arbitrary data, residing in abstract
memory, by arbitrarily complex global mem-transforming functions. Eilen-
berg’s X-machines (and similarly their stream processing version) can be mod-
eled as instances of Mealy ASMs whose rules in addition to yielding output also
update mem via global memory functions f (one for each input and control
state):

XMachine = Fsm(i, if in = a then {out := b, mem := f(mem)}, j)

The global memory Actions of Scott machines together with their standard
IfThenElse control flow, directed by global memory Test predicates, yield
control state ASMs consisting of rules of the following form:

ScottMachine(Action, Test) =
ctl state := IfThenElse(ctl state, Test(ctl state)(mem))
mem := Action(ctl state)(mem)

4.1.6 Interacting Turing Machines

Wegner’s interactive Turing machines [53] in each step can receive some input
from the environment and yield output to the environment. Thus they simply
extend the TuringMachine by an additional input parameter and an output
action

TuringInteractive(Nxtctl,Write,Move) =
ctl state := Nxtctl(ctl state, tape(head), input)
tape(head) := Write(ctl state, tape(head), input)
head := head + Move(ctl state, tape(head), input)
output(ctl state, tape(head), input)

Considering the output as written on an in-out tape comes up to define
output := concatenate(input, Out(control, tape(head), input)) as the output ac-
tion using a function Out defined by the program. Viewing the input as a
combination of preceding inputs/outputs with the new user input comes up to
define input as a derived function input = combine(output, user input) depend-
ing on the current output and user input. The question of single-stream versus
multiple-stream interacting Turing machines (SIM/MIM) is only a question of
instantiating input to a stream vector (inp1, . . . , inpn).

4.1.7 Substitution Systems

Replacement systems à la Thue, Markov, Post are Turing-like machines oper-
ating over mem:A∗ for some finite alphabet A with a finite set of word pairs
(vi, wi) where in each step one occurrence of a ‘premisse’ vi in mem is replaced
by the corresponding ‘conclusion’ wi. The difference between Thue systems and
Markov algorithms is that Markov algorithms have a fixed scheduling mecha-
nism for choosing the replacement pair and for choosing the occurrence of the
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to be replaced vi. In the semi-Thue ASM rule below we use mem([p, q]) to
denote the subword of mem between the p-th and the q-th letter of mem, which
matches v if it is identical to v. By mem(w/[p, q]) we denote the result of sub-
stituting w in mem for mem([p, q]). The non-determinism of Thue systems is
captured by two selection functions.

ThueSystem(ReplacePair) =
let (v, w) = selectrule(ReplacePair)
let (p, q) = selectsub(mem)

if match(mem([p, q]), v) then mem := mem(w/[p, q])

The Markov ASM is obtained from the Thue ASM by a pure data re-
finement, instantiating selectrule(ReplacePair,mem) to yield the first (v, w) ∈
ReplacePair with a premise occurring in mem, and selectsub(mem, v) to deter-
mine the leftmost occurrence of v in mem. Note that we include the condition
on matching already into the specification of these selection functions. Similarly
by instantiating selectrule(ReplacePair,mem) the ASM for Post normal sys-
tems is obtained to yield a pair (v, w) ∈ ReplacePair with a premise occurring
as initial subword of mem, selectsub(mem) to determine this initial subword of
mem, and by updates of mem which delete the initial subword v and copy w at
the end of mem.

4.2 Tree Computations

In this section we model some basic tree computation schemes including lan-
guage generating grammars like context free, attribute and tree adjoining gram-
mars. Essentially we show how the notion of tree generation and traversal using
a backtracking scheme can be captured by an ASM in such a way that apply-
ing to it appropriate data refinements yields well-known logic and functional
programming patterns and generative grammars (context free and attribute
grammars). For the underlying refinement notion see ??.

4.2.1 Backtracking

We define here a Backtrack machine which dynamically constructs a tree of al-
ternatives and controls its traversal. When its ctl state which we call here mode
is ramify, it creates as many new children nodes to be computation candidates
for its currnode as there are computation alternatives, provides them with the
necessary environment and switches to selection mode. In mode = select, if
at currnode there is no more candidate the machine Backtracks, otherwise it
lets the control move to TryNextCandidate to get executed. The external
function alternatives determines the solution space depending upon its param-
eters and possibly the current state. The dynamic function env records the
information every new node needs to carry out the computation determined by
the alternative it is associated with. The macro Back moves currnode one step
up in the tree, to parent(currnode), until the root is reached where the compu-
tation stops. TryNextCandidate moves currnode one step down in the tree

11



to the next candidate, where next is a possibly dynamic choice function which
determines the order for trying out the alternatives. Typically the underlying
execution machine will update mode from execute to ramify, in case of a suc-
cessful execution, or to select if the execution fails. This model is summarized
by the following definition.

Backtrack =
if mode = ramify then

let k = |alternatives(Params)|
let o1, . . . , ok = new(NODE)

candidates(currnode) := {o1, . . . , ok}
forall 1 ≤ i ≤ k

parent(oi) := currnode
env(oi) := i-th(alternatives(Params))

mode := select
if mode = select then

if candidates(currnode) = ∅ then Back else
TryNextCandidate
mode := execute

where
Back =

if parent(currnode) = root then mode := Stop
else currnode := parent(currnode)

TryNextCandidate =
currnode := next(candidates(currnode))
Delete(next(candidates(currnode)), currnode)

We show now that by pure data refinements Backtrack can be turned into
the backtracking engine for the core of ISO Prolog [21], of IBM’s constraint logic
programming language CLP(R) [23], of the functional programming language
Babel [19], and also for context free and for attribute grammars [42].

4.2.2 Logic Programming Engine

We data refine here Backtrack to the backtracking engine for Prolog by in-
stantiating the function alternatives to the function procdef(stm, pgm). This
is a Prolog specific function which yields the sequence of clauses in pgm to be
tried out in this order to execute the current goal stm; these clauses come to-
gether with the needed state information from currnode. We determine next as
head function on sequences, reflecting the depth-first left-to-right tree traversal
strategy of ISO Prolog. It remains to add the execution engine for Prolog spec-
ified as ASM in [21], which switches mode to ramify if the current resolution
step succeeds and otherwise switches mode to select.

The backtracking engine for CLP(R) is the same, one only has to extend
procdef by an additional parameter for the current set of constraints for the
indexing mechanism and to add the CLP(R) engine specified as ASM in [23].
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The functional language Babel uses the same function next, whereas the
function alternatives is instantiated to fundef(currexp, pgm) yielding the list
of defining rules provided in pgm for the outer function of currexp. The Babel
execution engine specified as ASM in [19] applies the defining rules in the given
order to reduce currexp to normal form (using narrowing, a combination of
unification and reduction).

4.2.3 Context-Free and Attribute Grammars

To instantiate Backtrack for context free grammars G generating leftmost
derivations we define alternatives(currnode,G) to yield the sequence of symbols
Y1, . . . , Yk of the conclusion of a G-rule whose premisse X labels currnode, so
that env records the label of a node, either a variable X or terminal letter a. The
definition of alternatives includes a choice between different rules X → w in G.
For leftmost derivations next is defined as for Prolog. As machine in mode =
execute one can add the following rule. For nodes labeled by a variable it triggers
further tree expansion, for terminal nodes it extracts the yield (concatenating
the terminal letter to the word generated so far) and moves the control to the
parent node to continue the derivation in mode = select.

Execute(G) =
if mode = execute then

if env(currnode) ∈ V AR then mode := ramify else
output := output ∗ env(currnode)
currnode := parent(currnode)
mode := select

For attribute grammars it suffices to extend the instantiation for context free
grammars as follows. For the synthesis of the attribute X.a of a node X from
its childrens’ attributes we add to the else-clause of the Back macro the corre-
sponding update, e.g. X.a := f(Y1.a1, . . . , Yk.ak) where Yi = env(oi) for children
nodes oi and X = env(parent(currnode)). Inheriting an attribute from the par-
ent and siblings can be included in the update of env (e.g. upon node creation),
extending it to update also node attributes. The attribute conditions for gram-
mar rules are included into Execute(G) as additional guard to yielding output,
of the form Cond(currnode.a, parent(currnode).b, siblings(currnode).c).

In a similar way one can formulate an ASM for tree adjoining grammars,
generalizing Parikh’s analysis of context free languages by ‘pumping’ of con-
tex free trees from basis trees (with terminal yield) and recursion trees (with
terminal yield except for the root variable), see [42].

4.3 Structured Programming

In this section we model standard structured programming constructs by natural
classes of ASMs. In [24] two operators seq and iterate have been defined to
compose ASMs sequentially and iteratively, capturing these two notions in a
black-box view which fits the synchronous parallelism of ASMs, hiding internals
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of subcomputations by compressing them into one step (so that the resulting
machines became known as turbo ASMs). This allows one to provide succinct
ASMs for standard programming constructs, as we are going to illustrate by
turbo ASMs for the celebrated Structured Programming Theorem of Böhm and
Jacopini [12], thus showing how to combine the advantages of Gödel-Herbrand
style functional and of Turing style imperative programming.

Call Böhm-Jacopini-ASM any ASM M which can be defined, using only
seq, while, from ASMs whose non-controlled functions are restricted to one (a
0-ary) input function (whose value is fixed by the initial state), one (a 0-ary)
output function, and the initial functions of recursion theory as static functions.
The purpose of the 0-ary input function which we write inM is to contain the
number sequence which is given as input for the computation of the machine.
Similarly outM is used to receive the output of M . The initial functions of
recursion theory are the following functions from Cartesian products of natural
numbers into the set of natural numbers: +1, all the projection functions Un

i ,
all the constant functions Cn

i and the characteristic function of the predicate
6= 0. The while-operator can be defined in the usual way from an iteration
operator:

while (cond) R = iterate (if cond then R).

As usual a number theoretic function f :Nn → N is called computable by an
ASM M if for every n-tuple x ∈ Nn of arguments on which f is defined,
the machine started with input x terminates with output f(x). By ‘M started
with input x’ we mean that M is started in the state where all the dynamic
functions different from inM are completely undefined and where inM = x.
Assuming the monitored function inM not to change its value during an M -
(turbo) computation, it is natural to say that M ‘terminates in a state with
output’ y, if in this state outM gets updated for the first time, namely to y. In
the machines F we are going to construct now by induction for every partial
recursive function f , the termination state will always be the state in which the
intended turbo-computation reached its final goal.

Each initial function f is computed by the machine F of only one function
update which reflects the defining equation of f .

F ≡ outF := f(inF )

In the inductive step we construct, for every partial recursive definition of a
function f from its constituent functions fi, a machine F which mimics the
standard evaluation procedure underlying that definition. We use the following
macros which describe inputting from some external input source in to a ma-
chine F before it gets started respectively extracting the machine output upon
termination of F to some external target location out. These macros reflect the
mechanism for providing arguments and yielding values which is implicit in the
standard use of functional equation systems to determine the value of a function
for a given argument.
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F (in) ≡ inF := in seq F
out := F (in) ≡ inF := in seq F seq out := outF

4.3.1 Function Composition

If functions g, h1, . . . , hm are computed by Böhm-Jacopini-ASMs G, H1, . . . ,Hm,
then their composition f defined by f(x) = g(h1(x), . . . , hm(x)) is computed
by the following machine F = FctCompo where for reasons of simplicity but
without loss of generality we assume that the submachines have pairwise disjoint
signatures:

FctCompo(G, H1, . . . ,Hm) =
{H1(inF ), . . . ,Hm(inF )} seq outF := G(outH1 , . . . , outHm

)

Unfolding this structured program reflects the order one has to follow for eval-
uating the subterms in the defining equation for f , an order which is implicitly
assumed in the equational (functional) definition. First the input is passed to
the constituent functions hi to compute their values, whereby the input func-
tions of Hi become controlled functions of F . The parallel composition of the
submachines Hi(inF ) reflects that their computations are completley indepen-
dent from each other; what counts and is expressed is that all of them have to
terminate before the next ‘functional’ step is taken. That next step consists in
passing the sequence of outHi

as input to the constituent function g. Finally g’s
value on this input is computed and assigned as output to outF .

4.3.2 Primitive Recursion

Let a function f be defined from g, h by primitive recursion:

f(x, 0) = g(x), f(x, y + 1) = h(x, y, f(x, y))

and let Böhm-Jacopini-ASMs G, H be given which compute g, h. Then the fol-
lowing machine F = PrimitiveRecursion computes f , composed as sequence
of three submachines. The start submachine evaluates the first defining equa-
tion for f by initializing the recursor rec to 0 and the intermediate value ival
to g(x). The while submachine evaluates the second defining equation for f
for increased values of the recursor as long as the input value y has not been
reached. The output submachine provides the final value of ival as output.
As in the case of simultaneous substitution, the sequentialization and iteration
described here make the bare minimum on ordering computational substeps ex-
plicit which is assumed and in fact needed in the standard functional use of the
defining equations for f .

PrimitiveRecursion(G, H) = let (x, y) = inF in
{ival := G(x), rec := 0} seq
(while (rec < y) {ival := H(x, rec, ival), rec := rec + 1}) seq
outF := ival
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4.3.3 Minimalization

If f is defined from g by the µ-operator, i.e. f(x) = µy(g(x, y) = 0), and
if a Böhm-Jacopini-ASM G computing g is given, then the following machine
F = µ-Operator computes f . The start submachine computes g(x, rec) for the
initial recursor value 0, the iterating machine computes g(x, rec) for increased
values of the recursor until 0 shows up as computed value of g, in which case
the reached recursor value is set as output.

µ-Operator(G) =
{G(inF , 0), rec := 0} seq
(while (outG 6= 0) {G(inF , rec + 1), rec := rec + 1}) seq
outF := rec

4.4 Functional Programming (Recursion)

In this section we show how to model basic functional programming constructs
by a natural subclass of turbo ASMs. A black-box submachine concept for
value returning turbo ASMs has been defined in [24] which abstractly models
the standard imperative calling mechanism. Triggered by the question raised
in [44]: ‘If algorithms are machines, then which machine is the mergesort?’, the
definition has been applied in [13] for simultaneous calls of multiple submachines,
to seamlessly integrate functional description and programming techniques into
ASMs. We illustrate this by a natural model for widely used forms of recursion.

The atomic view of an entire turbo ASM computation as one step is rendered
by a set [[R(a1, . . . , an)]]A of updates produced through executing the turbo ASM
call R(a1, . . . , an) in state A. This set represents the total effect of executing
the submachine R in the call state A and is defined by

[[R(a1, . . . , an)]]A = [[body[a1/x1, . . . , an/xn]]]A,

where the submachine R is declared by R(x1, . . . , xn) = body. The characteristic
functional abstraction consists in abstracting from everything in a computation
except the intended input/output relation, for example when using a machine to
return a value and then passing it by value to other machines S. This is easily
reflected in turbo ASMs by projecting that value out of the total computational
effect [[R(a1, . . . , an)]]A and passing it to S via the let-construct. Without loss
of generality we assume expected output to be stored in a reserved location
result which the programmer can change to a location l where he wants the
expected return value to be transfered. We adopt the standard notation l ←
R(a) to denote the turbo computation outcome [[Rl(a)]]A where Rl is the result of
replacing result in R by l, i.e. Rl = R(l/result), so that when the computation
is terminated its expected value can be retrieved from the location l. We use a
function new to provide for each submachine call a fresh location (read: a 0-ary
dynamic function, the variables of programming) where to record the result of
the subcomputation, given that simultaneous calls—also of the same machine
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but with different parameters—may yield different results. This explains the
following definition.

Definition. Let Ri, S be arbitrary turbo ASMs where Ri may come with
formal parameter sequences xi and S with formal parameter sequences yi . We
define:

let {y1 = R1(a1), . . . , yn = Rn(an)} in S =
let l1, . . . , ln = new(FUNCTION0) in

forall 1 ≤ i ≤ n do li ← Ri(ai)
seq
let y1 = l1, . . . , yn = ln in S

The use of turbo ASM return values allows one to explicitly capture the ab-
stract machine(ry) which underlies the common mathematical evaluation pro-
cedure for functional expressions, including those defined by forms of recursion.
We illustrate this by the following turbo ASM definitions of Quicksort and of
Mergesort which exactly mimic the usual recursive definition of the algorithms
to provide as result a sorted version of any given list. This answers the question
raised in [44]: ‘If algorithms are machines, then which machine is the mergesort?’

4.4.1 Quicksort

The computation suggested by the well-known recursive equations to quick-
sort L proceeds as follows: first partition the tail of the list into the two sublists
tail(L)<head(L), tail(L)≥head(L) of elements < head(L) respectively ≥ head(L)
and quicksort these two sublists separately (independently of each other), then
concatenate the results taking head(L) between them. The fact that this de-
scription uses various auxiliary list and comparison operations is reflected by the
appearance of corresponding auxiliary functions in the following turbo ASM.

Quicksort(L) =
if | L |≤ 1 then result := L else

let
x = Quicksort(tail(L)<head(L))
y = Quicksort(tail(L)≥head(L))

in result := concatenate(x, head(L), y)

4.4.2 Mergesort

The computation suggested by the usual recursive equations to mergesort a
given list L consists in first splitting it into a LeftHalf(L) and a RightHalf(L)
(if there is something to split) and mergesort these two sublists separately (in-
dependently of each other), then to Merge the two results by an auxiliary
elementwise Merge operation. This is expressed by the following turbo ASM
which besides two auxiliary functions LeftHalf , RightHalf comes with an
external function Merge defined below as a submachine.
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Mergesort(L) =
if | L |≤ 1 then result := L else

let
x = Mergesort(LeftHalf(L))
y = Mergesort(RightHalf(L))

in result := Merge(x, y)

Usually also Merge is defined by a recursion, suggesting the following compu-
tation scheme which is formalized by the turbo ASM below. If both lists are
non-trivial, by a case distinction the smaller one of the two list heads is deter-
mined and placed as the first element of the result list, concatenating it with
the result of a separate and independent Merge operation for the two lists re-
maining after having removed the chosen smaller head element. The ι-operator
in ιx(P ) denotes the unique x with property P (if there is such an x).

Merge(L,L′) =
if L = ∅ or L′ = ∅ then result := ιl(l ∈ {L,L′} and l 6= ∅)
elseif head(L) ≤ head(L′) then

let x = Merge(tail(L), L′) in result := concatenate(head(L), x)
else

let x = Merge(L, tail(L′)) in result := concatenate(head(L′), x)

5 System Design Models

In this section we show how to model by ASMs the basic semantical concepts
of currently used high-level design languages. We use in this section also the
concept of asynchronous multi-agent ASMs, roughly speaking sets of ASMs
whose runs are defined by appropriately constrained partial orders to reflect
the intended causal dependencies between steps of different machines. The
definition can be found in [39] and in [26, Ch.6].

5.1 Executable High-Level Design Languages

We discuss here two major executable high-level design languages of the 90’ies.
We relate their characteristic semantical features to ASMs, without mentioning
further the important executability aspect which clearly influenced the choice
of the language constructs. The languages are UNITY [28] and COLD [32].

5.1.1 UNITY

Unity computations are sequences of state transitions where each step com-
prises the simultaneous execution of multiple conditional variable assignments,
including quantified array variable assignments of form forall 0 ≤ i < N do
a(i) := b(i). States are formed by variables (0-ary dynamic functions which
may be shared, respecting some naming conventions), conditions are typically
formulated in terms of <,=, steps are executions of program statements which

18



correspond in a direct way to ASM rules. The steps are scheduled using a global
clock (the Unity system time) which synchronizes the system components for
an interleaving semantics: per step one statement of one component program in
the system is scheduled using non-deterministic schedulers (required to respect
a certain fairness condition on infinite runs). (Dijkstra’s guarded commands
come with the same type of non-deterministic choice of one command per step.)
Like in basic ASMs, there is no further control flow. Identifying components
with basic ASMs and systems with sets of components leads therefore to the
following computational model for Unity systems. Unity comes with a partic-
ular proof system, geared to extract proofs from the program text, equipped
with appropriately specialized composition and refinement concepts we do not
discuss here.

UnitySystem(S) =
choose com ∈ Component(S)

choose rule ∈ Rule(com)
rule

5.1.2 COLD

In the Common Object-oriented Language for Design states are realized as struc-
tures, including abstract data types (ADT) linked to an underlying dynamic
logic proof system which is geared to provide proofs for algebraic specifications
of states and their dynamics (à la Z and VDM). Computations are sequences
of state transitions (due to the execution of procedure calls, built from state-
ments viewed as expressions with side effects) allowing synchronous parallelism
of simultaneous multiple conditional variable assignments (but no explicit forall
construct) and non-deterministic choices among variable assignments and rules
(procedure invocations). Thus a Cold class (with a set of states, one initial
state, and a set of transition relations) corresponds in a standard way to a con-
trol state ASM, except that different states of a same class are allowed to have
different signatures. The black box view offered for sequencing and iteration is
directly reflected by the corresponding turbo ASM constructs, taking into ac-
count that Cold provides a separate guard statement for blocking evaluation of
guards which is executed only (with skip effect) when the guard becomes true.

There is an idiomatic high-level construct Mod of Cold which supports non-
determinism in choosing subsets of variables to be updated by chosen values. It
is modeled by the following ASM.

ColdModify(V ar) =
choose n ∈ N, choose x1, . . . , xn ∈ V ar, choose v1, . . . , vn ∈ V alue

forall 1 ≤ i ≤ n do val(xi) := vi

A similar construct Use permits to choose procedures from a set Proc to be
called in sequence.

ColdUse(Proc) = choose n ∈ N, choose p1, . . . , pn ∈ Proc
p1 seq . . . seq pn

19



5.2 State-based Specification Languages

For sequential state-based specification languages we discuss three representa-
tive systems: VDM [33] (denotational), Z [57] (axiomatic), and B [1] (pseudo-
code). As representative distributed state-based modeling systems we relate
Petri nets [47] to asynchronous ASMs.

5.2.1 VDM, Z, B

These three high-level design languages share the notion of computation as se-
quence of state transitions given by a before-after relation, where states are
formed by variables taking values in certain sets (in VDM built up from basic
types by constructors) with explicitly or implicitly defined auxiliary functions
and predicates. The single (in basic B sequencing-free and loop-free) transi-
tions can be modeled in a canonical way by basic ASM rules which capture
also the ‘unbounded’ as well as the ‘bounded’ choice and the parallelism B
offers in terms of simultaneous (‘multiple generalized’) substitution. The ba-
sic scheme is determined by what Abrial calls the ‘pocket calculator model’
which views a machine (program) as offering a set of operations (in VDM pro-
cedures with side effects) which are callable one at a time, e.g. in the non-
deterministic form choose R ∈ Operation in R or harnessed by a scheduler
let R = scheduled(Operation) in R; similarly for events which in event-B are
allowed to happen only one per time unit.

This view points to a methodological difference between the forces which
drove the development of the B method compared to that of the ASM method.
Abrial’s B method is the result of an engineer’s bottom-up analysis: ‘The ideas
behind the concept of abstract machine have all been borrowed from those
ideas that are behind some well-known programming features such as modules,
packages, abstract data types or classes’ [2, pg.175]. Also the event-B notion
of basic events, which corresponds to the guarded update rules of basic ASMs,
came out of the concern to ‘separate assignments from scheduling’. Gurevich’s
concept of ASMs is the result of a logician’s top-down analysis, brought to
light by a mathematical investigation of the ASM thesis (and supported by
an extensive experimentation with the concept, see [16], [26, Ch.10] for the
historical details).

The structuring mechanisms for large and refined B machines are captured
by turbo ASMs, including also the machine state hiding mechanism operations
typically come with: it is allowed to activate (call) an operation for certain
parameters, which results in an invariant preserving state modification, but
besides calling the operation and taking its result no other direct access to the
state is granted. Historically, this view has led to a certain bias to functional
modeling one can observe for uses of VDM.

By the logical nature of Z specifications, their before-after expressions define
the entire system dynamics. In B as in the ASM method, the formulation of the
system dynamics—in B by operations (in event-based B by events [2, 3, 4]), in
ASMs by rules—is separated from the formulation of the static state invariants
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and of the dynamic run constraints, which express desired system properties
one has to prove to hold through every possible state evolution. However for
carrying out these proofs, in contrast to the ASM method, there is a fixed
link between B and a computer assisted proof system relating syntactical pro-
gram constructs to proof rules which are used to establish program invariants
and dynamic constraints along with the program construction. Thus defining
modules becomes intimately related to inventing lemmas. This fits also the ba-
sically axiomatic foundation of B as of Z and VDM: VDM by a denotational
semantics; Z by axiom systems formulated in (mainly first-order) logic; B by
Dijkstra’s weakest precondition theory, interpreted in set-theoretic models and
based upon the syntactic global concept of substitution (from which local as-
signment x := t and parallel composition are derived). Differently from Z, which
due to the purely axiomatic character of Z descriptions has intrinsic problems
to turn specifications into executable code (see [40]), VDM and B are geared to
obtain software modules from abstract specifications via refinements which are
tailored to the proof rules used for proving that the refined operations satisfy
‘unchanged’ properties of their abstract counterparts.

5.2.2 Petri Nets

The general view of Petri nets is that of distributed transition systems trans-
forming objects under given conditions. In Petri’s classical instance the objects
are marks on places (‘passive net components’ where objects are stored), the
transitions (‘active net components’) modify objects by adding and deleting
marks on the places. In modern instances (e.g. the predicate/transition nets)
places are locations for objects belonging to abstract data types (read: variables
taking values of given type, so that a marking becomes a variable interpreta-
tion), transitions update variables and extend domains under conditions which
are described by arbitrary first-order formulae. The distributed nature of Petri
nets is captured by modeling them as asynchronous ASMs, associating to each
transition one agent to execute the transition. Each single transition is modeled
by a basic ASM rule of the form defined below, where pre/post-places are se-
quences or sets of places which participate in the ‘information flow relation’ (the
local state change) due to the transition and Cond is an arbitrary first-order
formula. By modeling Petri net states as ASM states we include the abstract
Petri net view proposed in [47] where states are interpreted as logical predicates
which are associated to places and transformed by actions.

PetriTransition = if Cond(preP laces) then Updates(postP laces)
where Updates(postP laces) = a set of function updates

5.2.3 Virtual Machines

Virtual machines by definition are machines. Typically they work over a specific
set of states, appropriate to the specific purpose. Thus they ‘are’ particular
ASMs. In fact for design or analysis purposes numerous virtual machines have
been explicitly modeled as ASMs, e.g. the Warren Abstract Machine [22] and
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its extensions [8, 23, 10, 9, 7], the Transputer [18], the RISC machine DLX [20],
the Java Virtual Machine [52], the Neural Net (abstract data flow) Machine [25],
the UPnP architecture [36]), etc.

5.3 Logic Based Modeling Systems

There is a myriad of logic-based and algebraic specification and ‘declarative
programming’ languages and calculi, like Prolog and its numerous variants,
VDM, Z, structural operational or natural semantics systems, process algebra
languages like CSP, LOTOS, innumerable ‘logics of programs’, dynamic logics,
temporal logics, rewriting logics, offering proof calculi to support verification of
program properties, etc. These approaches have the pattern of logic in common:
specifications are typically expressed by systems of equations (with fixpoint op-
erators to solve equations) or of general axioms and inference rules, so that
they all are exposed to the frame problem and the difficulty to control the or-
der of inference rule applications. Most of these systems are not conceived to
serve general-purpose specifications but are tailored to specific goals, the way
Plotkin’s Structural Operational Semantics [35] or Kahn’s Natural Semantics or
Mosses’ Action Semantics [45] are tailored for dealing with the semantics of pro-
gramming languages. Numerous of these approaches are driven by structural
patterns where the syntax dictates the principles of compositionality. Since
this is not the place to evaluate the advantages or disadvantages of such often
stateless approaches with respect to state-based transition systems, we limit
ourselves to observe that the ASM method allows one to use such logic-based
design and verification techniques where appropriate—desired, technically fea-
sible and cost-effective—, integrating them into the high-level but state-based,
genuinely semantical and computation oriented specification and analysis tech-
niques which are possible with ASMs. Successful projects in this direction have
been reported using theorem proving systems (KIV, PVS, Isabelle) and model
checkers, see e.g. [46, 37, 49, 58, 30, 29, 50, 48, 34] and [54, 55, 56] for details.
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